
CS153: Compilers
Lecture 4:  
Intermediate Representation

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Contains content from lecture notes by Steve Zdancewic

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Announcements

•Homework 2: X86lite
•Due Tuesday Sept 24

•College office hours
•Keep eye on OH calendar at https://

www.seas.harvard.edu/courses/cs153

•Extension School office hours
•Poll out seeking your availability
•Will start next week

 2

https://www.seas.harvard.edu/courses/cs153
https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Today

•Compiling expressions directly to assembly
•Motivating Intermediate Representations (IRs)
•Simple Let Language

 3

Stephen Chong, Harvard University

Demo:  
Compiling Expressions

•See: compile.c, runtime.c

�4

Stephen Chong, Harvard University

Directly Translating AST to
Assembly

•For simple languages, no need for intermediate
representation.
•e.g. the arithmetic expression language from

•Main Idea: Maintain invariants
•e.g. Code emitted for a given expression computes the

answer into rax

•Key Challenges:
•storing intermediate values needed to compute

complex expressions
•some instructions use specific registers (e.g. shift)

 5

Stephen Chong, Harvard University

One Simple Strategy

•Compilation is the process of “emitting” instructions into an
instruction stream.

•To compile an expression, we recursively compile sub
expressions and then process the results.

•Invariants:
•Compilation of an expression yields its result in rax
•Argument (Xi) is stored in a dedicated operand
•Intermediate values are pushed onto the stack
•Stack slot is popped after use (so the space is reclaimed)

•Resulting code is wrapped to comply with cdecl calling
conventions

•See the function compile2 in compile.ml
 6

Stephen Chong, Harvard University

Why intermediate representations?

•These translations are syntax-directed
•Input syntax uniquely determines output

•No complex analysis or code transformation is done
•Works fine for simple languages!

•But…
•Resulting code quality is poor

•Richer source language features are hard to encode
• Structured data types, objects, first-class functions, etc.

•Hard to optimize the resulting assembly code
•Representation is too concrete – e.g. it has committed to using certain registers and the stack
•Only a fixed number of registers
• Some instructions have restrictions on where the operands are located

•Control-flow is not structured
•Arbitrary jumps from one code block to another
• Implicit fall-through makes sequences of code non-modular 
(i.e. you can’t rearrange sequences of code easily)

•Retargeting the compiler to a new architecture is hard
•Target assembly code is hard-wired into translation

 7

Stephen Chong, Harvard University

Intermediate Representations (IR’s)

•Abstract machine code: hides details of the target architecture
•Allows machine independent code generation and

optimization.

 8

AST IR

x86

Java	
Byte-
code

ArmOptimization

Stephen Chong, Harvard University

Multiple IR’s

•Goal: get program closer to machine code without losing the
information needed to do analysis and optimizations

•In practice, multiple intermediate representations 
might be used (for different purposes)

 9

MIR

\

HIR

Optimization Optimization

AST

x86

Java	
Byte-
code

Arm

Stephen Chong, Harvard University

What makes a good IR?

•Easy translation target (from the level above)

•Easy to translate (to the level below)

•Narrow interface
•Fewer constructs means simpler phases/optimizations

•Example: Source language might have while, for, foreach, do-
while, do-until loops, ...

•IR might have only while loops and sequencing
•Translation eliminates for and foreach

•Here the notation ⟦cmd⟧ denotes the “translation” or “compilation” of the
command cmd.

 10

⟦for(pre; cond; post) {body}⟧	
	=	  

			⟦pre; while(cond) {body;post}⟧

Stephen Chong, Harvard University

IR’s at the extreme

•High-level IR’s
•Abstract syntax + new node types not generated by the parser

• e.g. Type checking information or disambiguated syntax nodes

•Typically preserves the high-level language constructs
• Structured control flow, variable names, methods, functions, etc.

•May do some simplification (e.g. convert for to while)

•Allows high-level optimizations based on program structure
• e.g. inlining “small” functions, reuse of constants, etc.

•Useful for semantic analyses like type checking
 11

AST x86...

Higher-level IRs Lower-level IRs

Stephen Chong, Harvard University

IR’s at the extreme

•Low-level IR’s
•Machine dependent assembly code + extra pseudo-instructions

• e.g. a pseudo instruction for interfacing with garbage collector or memory allocator (parts of the
language runtime system)
• e.g. (on x86) a imulq instruction that doesn’t restrict register usage

•Source structure of the program is lost:
• Translation to assembly code is straightforward

•Allows low-level optimizations based on target architecture
• e.g. register allocation, instruction selection, memory layout, etc.

 12

AST x86...

Higher-level IRs Lower-level IRs

Stephen Chong, Harvard University

IR’s at the extreme

•What’s in between?

 13

AST x86...

Higher-level IRs Lower-level IRs

