
CS153: Compilers
Lecture 5: Intermediate
Representation

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Contains content from lecture notes by Steve Zdancewic

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Announcements

•Homework 2: X86lite
•Due Tuesday Sept 24

•Extension School Office Hours started
•See https://canvas.harvard.edu/courses/63122/pages/

office-hours

•Homework 3: LLVMlite
•will be released next week

 2

https://canvas.harvard.edu/courses/63122/pages/office-hours
https://canvas.harvard.edu/courses/63122/pages/office-hours
https://canvas.harvard.edu/courses/63122/pages/office-hours

Stephen Chong, Harvard University

Today

•Intermediate representations

 3

Stephen Chong, Harvard University

Mid-level IR’s: Many Varieties

•Intermediate between AST (abstract syntax) and assembly
•May have unstructured jumps, abstract registers or memory locations
•Convenient for translation to high-quality machine code

•Example: all intermediate values might be named to facilitate optimizations that attempt
to minimize stack/register usage

•Many examples:
•Quadruples: a = b OP c (“three address form”)
•Triples: OP a b

• “Name” of result is implicit

•Useful for instruction selection on X86 via “tiling”

•SSA: variant of quadruples where each variable is assigned exactly once
• Easy dataflow analysis for optimization

• e.g. LLVM: industrial-strength IR, based on SSA

•Stack-based:
• Easy to generate

• e.g., Java Bytecode, UCODE

 4

Stephen Chong, Harvard University

Growing an IR

•Develop an IR in detail… starting from the very basic.

•Start: a (very) simple intermediate representation for the
arithmetic language
•Very high level
•No control flow

•Goal: A simple subset of the LLVM IR
•LLVM = “Low-level Virtual Machine”
•Used in HW3+

•Add features needed to compile rich source languages
 5

Stephen Chong, Harvard University

Eliminating Nested Expressions

•Fundamental problem:
•Compiling complex & nested expression forms to simple operations.

•Idea: name intermediate values, make order of evaluation explicit.
•No nested operations.

 6

((1 + X4) + (3 + (X1 * 5)))Source

AST

?IR

Add(Add(Const 1, Var X4),  
 Add(Const 3, Mul(Var X1,  
 Const 5)))

Stephen Chong, Harvard University

Translation to Simple Let Language

•Given this:

•Translate to this desired SLL form:

•Translation makes the order of evaluation explicit
•Names intermediate values
•Note: introduced temporaries are never modified

 7

Add(Add(Const 1, Var X4),  
 Add(Const 3, Mul(Var X1,  
 Const 5)))

let tmp0 = add 1L varX4 in
let tmp1 = mul varX1 5L in
let tmp2 = add 3L tmp1 in
let tmp3 = add tmp0 tmp2 in
 tmp3

Stephen Chong, Harvard University

Building IRs

•Look at files ir-by-hand.ml and ir?.ml.

 8

Stephen Chong, Harvard University

Intermediate Representations

•IR1: Expressions
•simple arithmetic expressions, immutable global variables

•IR2: Commands
•global mutable variables
•commands for update and sequencing

•IR3: Local control flow
•conditional commands & while loops
•basic blocks

•IR4: Procedures (top-level functions)
•local state
•call stack

 9

Stephen Chong, Harvard University

Control-Flow Graphs

•Graphical representation of a program
•Edges in graph represent control flow:  

how execution traverses a program
•Nodes represent statements

 10

x := 0;
y := 0;
while (n > 0) {
 if (n % 2 = 0) {
 x := x + n;
 y := y + 1;
 }
 else {
 y := y + n;
 x := x + 1;
 }
 n := n - 1;
}
print(x);

x:=x+n

y:=y+1

y := 0

n > 0

n%2=0

y:=y+n

print(x)
n:=n-1

x := 0

x:=x+1

true false

true false

Stephen Chong, Harvard University

Basic Blocks

•We will require that nodes of a control flow
graph are basic blocks
•Sequences of statements such that:
•Can be entered only at beginning of block
•Can be exited only at end of block
‣ Exit by branching, by unconditional jump to another block, or by

returning from function

•Basic blocks simplify representation and analysis

 11

Stephen Chong, Harvard University

Basic Blocks

•Basic block: single entry, single exit

 12

x := 0;
y := 0;
while (n > 0) {
 if (n % 2 = 0) {
 x := x + n;
 y := y + 1;
 }
 else {
 y := y + n;
 x := x + 1;
 }
 n := n - 1;
}
print(x);

x:=x+n
y:=y+1

x := 0
y := 0

n > 0

n%2=0

y:=y+n
x:=x+1

print(x)
n:=n-1

true false

true false

