
CS153: Compilers
Lecture 6:
Intermediate Representation
and LLVM

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Contains content from lecture notes by Steve Zdancewic and Greg Morrisett

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Announcements

•Homework 1 grades returned
•Style
•Testing

•Homework 2: X86lite
•Due Tuesday Sept 24

•Homework 3: LLVMlite
•Will be released Tuesday Sept 24

 2

Stephen Chong, Harvard University

Today

•Continue Intermediate Representation
•Intro to LLVM

 3

Stephen Chong, Harvard University

Low-Level Virtual Machine (LLVM)

•Open-Source Compiler Infrastructure
•see llvm.org for full documentation

•Created by Chris Lattner (advised by Vikram Adve) at UIUC
•LLVM: An infrastructure for Multi-stage Optimization, 2002
•LLVM: A Compilation Framework for Lifelong Program Analysis and

Transformation, 2004

•2005: Adopted by Apple for XCode 3.1

•Front ends:
•llvm-gcc (drop-in replacement for gcc)

•Clang: C, objective C, C++ compiler supported by Apple
•various languages: Swift, ADA, Scala, Haskell, …

•Back ends:
•x86 / Arm / PowerPC / etc.

•Used in many academic/research projects
 4

Stephen Chong, Harvard University

LLVM Compiler Infrastructure

 5

LLVM

frontends
like

'clang'

llc
backend
code gen

jit

Optimizations/
Transformations

Typed SSA
IR

Analysis

[Lattner et al.]

Stephen Chong, Harvard University

Example LLVM Code

•LLVM offers a textual
representation of its IR
•files ending in .ll

 6

define @factorial(%n) {
 %1 = alloca
 %acc = alloca
 store %n, %1
 store 1, %acc
 br label %start

start:
 %3 = load %1
 %4 = icmp sgt %3, 0
 br %4, label %then, label %else

then:
 %6 = load %acc
 %7 = load %1
 %8 = mul %6, %7
 store %8, %acc
 %9 = load %1
 %10 = sub %9, 1
 store %10, %1
 br label %start

else:
 %12 = load %acc
 ret %12
}

#include <stdio.h>
#include <stdint.h>

int64_t factorial(int64_t n) {
 int64_t acc = 1;
 while (n > 0) {
 acc = acc * n;
 n = n - 1;
 }
 return acc;
}

factorial64.c

factorial-pretty.ll

Stephen Chong, Harvard University

Real LLVM

•Decorates values with type
information  
 i64  
 i64*  
 i1

•Permits numeric  
identifiers

•Has alignment  
annotations

•Keeps track of  
entry edges for 
each block: 
preds = %5, %0

 7

; Function Attrs: nounwind ssp
define i64 @factorial(i64 %n) #0 {
 %1 = alloca i64, align 8
 %acc = alloca i64, align 8
 store i64 %n, i64* %1, align 8
 store i64 1, i64* %acc, align 8
 br label %2

; <label>:2 ; preds = %5, %0
 %3 = load i64* %1, align 8
 %4 = icmp sgt i64 %3, 0
 br i1 %4, label %5, label %11

; <label>:5 ; preds = %2
 %6 = load i64* %acc, align 8
 %7 = load i64* %1, align 8
 %8 = mul nsw i64 %6, %7
 store i64 %8, i64* %acc, align 8
 %9 = load i64* %1, align 8
 %10 = sub nsw i64 %9, 1
 store i64 %10, i64* %1, align 8
 br label %2

; <label>:11 ; preds = %2
 %12 = load i64* %acc, align 8
 ret i64 %12
}

factorial.ll

Stephen Chong, Harvard University

Example Control-flow Graph

 8

%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

loop:

entry:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

body: post:

define @factorial(%n) {

}

Stephen Chong, Harvard University

LL Basic Blocks and Control-Flow
Graphs

•LLVM enforces (some of) the basic block invariants syntactically.
•Representation in OCaml:

•A control flow graph is represented as a list of labeled basic blocks
with these invariants:

•No two blocks have the same label
•All terminators mention only labels that are defined among the set of basic

blocks
•There is a distinguished, unlabeled, entry block:

 9

type block = {
insns : (uid * insn) list;
term : (uid * terminator)

}

type cfg = block * (lbl * block) list

Stephen Chong, Harvard University

LL Storage Model: Locals

•Several kinds of storage:
•Local variables (or temporaries): %uid

•Global declarations (e.g. for string constants): @gid

•Abstract locations: references to (stack-allocated) storage created by the alloca instruction

•Heap-allocated structures created by external calls (e.g. to malloc)

•Local variables:
•Defined by the instructions of the form %uid = …
•Must satisfy the single static assignment invariant

• Each %uid appears on the left-hand side of an assignment only once in the entire control flow
graph.

•The value of a %uid remains unchanged throughout its lifetime

•Analogous to “let %uid = e in …” in OCaml

•Intended to be an abstract version of machine registers.
•We’ll see later how to extend SSA to allow richer use of local variables

•phi nodes

 10

Stephen Chong, Harvard University

LL Storage Model: alloca

•The alloca instruction allocates stack space and returns a reference to
it.

•The returned reference is stored in local:  
 %ptr = alloca typ

•The amount of space allocated is determined by the type

•The contents of the slot are accessed via the load and store instructions: 
 %acc = alloca i64 ; allocate a storage slot 
 store i64 341, i64* %acc ; store the integer value 341  
 %x = load i64, i64* %acc ; load the value 341 into %x 

•Gives an abstract version of stack slots

 11

Stephen Chong, Harvard University

Structured Data

 12

Stephen Chong, Harvard University

Compiling Structured Data

•Consider C-style structures like those below.
•How do we represent Point and Rect values?

 13

struct Point { int x; int y; };  

struct Rect { struct Point ll, lr, ul, ur };  

struct Rect mk_square(struct Point ll, int len) {
 struct Rect square;
 square.ll = square.lr = square.ul = square.ur = ll;
 square.lr.x += len;
 square.ur.x += len;
 square.ur.y += len;
 square.ul.y += len;
 return square;
}

ul

ll lr

ur

Stephen Chong, Harvard University

Representing Structs

•Store the data using two contiguous words of memory.
•Represent a Point value p as the address of the first word.

•Store the data using 8 contiguous words of memory.

•Compiler needs to know the size of the struct at compile time to allocate the
needed storage space.

•Compiler needs to know the shape of the struct at compile time to index into the
structure.

 14

x yp

ll.x ll.y lr.x lr.y ul.x ul.y ur.x ur.ysquare

struct Point { int x; int y; };

struct Rect { struct Point ll, lr, ul, ur };

Stephen Chong, Harvard University

Assembly-level Member Access

•Consider: ⟦square.ul.y⟧ = (x86.insns, x86.operand)

•Assume that %rcx holds the base address of square
•Calculate the offset relative to the base pointer of the data:

•ul = sizeof(struct Point) + sizeof(struct Point)
•y = sizeof(int)

•So: ⟦square.ul.y⟧ = (Movq 20(%rcx) ans, ans)
 15

ll.x ll.y lr.x lr.y ul.x ul.y ur.x ur.ysquare

struct Point { int x; int y; };  

struct Rect { struct Point ll, lr, ul, ur };

Stephen Chong, Harvard University

Padding & Alignment

•How to lay out non-homogeneous structured data?

 16

x a b y

x a b y

x a yb

32-bit boundaries

Padding

Not 32-bit  
aligned

struct Example {
 int x;
 char a;
 char b;
 int y;
};

Stephen Chong, Harvard University

Copy-in/Copy-out

•When we do an assignment in C as in: 
 
 
 
we copy all elements from source and put in the target.

•Same as doing word-level operations: 
 
 
 

•For really large copies, the compiler uses something like
memcpy (which is implemented using a loop in assembly).

 17

struct Rect mk_square(struct Point ll, int elen) {
 struct Square res;
 res.lr = ll;  
 ...

struct Rect mk_square(struct Point ll, int elen) {
 struct Square res;
 res.lr.x = ll.x;
 res.lr.y = ll.x;
 ...

Stephen Chong, Harvard University

C Procedure Calls

•Similarly, when we call a procedure, we copy arguments in, and
copy results out

•Caller sets aside extra space in its frame to store results that are bigger than
will fit in %rax

•We do the same with scalar values such as integers or doubles.

•Sometimes, this is termed "call-by-value".
•This is bad terminology
•Copy-in/copy-out is more accurate

•Benefit: locality

•Problem: expensive for large records…

•In C: can opt to pass pointers to structs: “call-by-reference”
•Languages like Java and OCaml always pass non-word-sized objects by

reference.

 18

Stephen Chong, Harvard University

Call-by-Reference:

•The caller passes in the address of the point and
the address of the result (1 word each).

 19

void mkSquare(struct Point *ll, int elen,
 struct Rect *res) {
 res->lr = res->ul = res->ur = res->ll = *ll;
 res->lr.x += elen;
 res->ur.x += elen;
 res->ur.y += elen;
 res->ul.y += elen;
}

void foo() {
 struct Point origin = {0,0};
 struct Square unit_sq;
 mkSquare(&origin, 1, &unit_sq);
}

Stephen Chong, Harvard University

Stack Pointers Can Escape

• Note that returning references to stack-allocated data
can cause problems…

• See unsafestack.c
• For data that persists across a function call, we need to

allocate storage in the heap…
• in C, use the malloc library

 20

int* bad() {
 int x = 341;
 int *ptr = &x;
 return ptr;
}

