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Announcements

•CS Nights: Tuesdays 8pm-10pm, MD119 
•Combined OH for CS153, CS61, CS121 

•Pizza and community! 

•Homework 2: X86lite 
•Due today 

•Homework 3: LLVMlite 
•Will be released today 

•Due in three weeks 
•Start early!!! 
•Challenging assignment; HW4 will be released in 2 weeks
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Today

•Arrays 
•Tagged datatypes (and switches) 
•Datatypes in LLVM 
•Brief tour of HW3
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Arrays

•Space is allocated on the stack for buf 
•Note: without ability to allocate stack space dynamically (C’s 
alloca function) need to know size of buf at compile 
time… 

•buf[i] is really just: (base_of_array) + i * elt_size
 4

void foo() {
  char buf[27];

  buf[0] = 'a';
  buf[1] = 'b';
  ...
  buf[25] = 'z';
  buf[26] = 0;  
}              

void foo() {
  char buf[27];

  *(buf) = 'a';
  *(buf+1) = 'b';
  ...
  *(buf+25) = 'z';
  *(buf+26) = 0;
}
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Multi-dimensional Arrays

•In C int m[4][3] yields an array with 4 rows 
and 3 columns. 
•Laid out in row-major order: 

•m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], ...
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m[0][0] m[0][1] m[0][2]

m[1][0] m[1][1] m[1][2]

m[2][0] m[2][1] m[2][2]

m[3][0] m[3][1] m[3][2]
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Multi-dimensional Arrays

•So m[i][j] is located where? 
•(base address of m) + (i * 3 * sizeof(int)) + j * 
sizeof(int)
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m[0][0] m[0][1] m[0][2] m[1][0] m[1][1] m[1][2] m[2][0] m[2][1] m[2][2]

•In C int m[4][3] yields an array with 4 rows 
and 3 columns. 
•Laid out in row-major order: 

•m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], ...
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Multi-dimensional Arrays

•In Fortran, arrays are laid out in column major order  
 
 
 
 

•In ML, there are no multi-dimensional arrays 
•(int array) array  is represented as an array of pointers to 

arrays of ints 

•Why is knowing the memory layout strategy importan?
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m[0][0] m[0][1] m[0][2]

m[1][0] m[1][1] m[1][2]

m[2][0] m[2][1] m[2][2]

m[3][0] m[3][1] m[3][2]
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Multi-dimensional Arrays
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m[0][0] m[1][0] m[2][0] m[3][0] m[0][1] m[1][1] m[2][1] m[3][1] m[0][2]

•In Fortran, arrays are laid out in column major order  
 
 
 
 

•In ML, there are no multi-dimensional arrays 
•(int array) array  is represented as an array of pointers to 

arrays of ints 

•Why is knowing the memory layout strategy importan?
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Array Bounds Checks

•Safe languages (e.g. Java, C#, ML but not C, C++) check array 
indices to ensure that they are in bounds. 

•Compiler generates code to test that the computed offset is legal 

•Needs to know the size of the array… where to store it? 
•One answer:  Store the size before the array contents. 

•Other possibilities: 
•Store size and a pointer to array data 
•Pascal: only permit statically known array sizes (very unwieldy in practice) 
•What about multi-dimensional arrays?
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Size=7 A[0] A[1] A[2] A[3] A[4] A[5] A[6]

arr
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Array Bounds Checks 
(Implementation)

•Example: Assume %rax holds the base pointer (arr) and %ecx holds the array 
index i.  To read a value from the array arr[i]: 

•Clearly more expensive: adds move, comparison & jump 
•More memory traffic 
•These overheads are particularly bad in an inner loop 
•Compiler optimizations can help remove the overhead 
•e.g. In a for loop, if bound on index is known, only do the test once 

•Hardware support can improve performance: executing instructions in parallel, 
branch prediction 

•But speculative execution is behind the Spectre/Meltdown vulnerabilities...
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  movq -8(%rax) %rdx         // load size into rdx  
cmpq %rdx %rcx // compare index to bound  
j l __ok // jump if  0 <= i < size  
callq __err_oob // test failed, call the error handler  

__ok:   
movq (%rax, %rcx, 8) dest // do the load from the array access
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C-style Strings

•A string constant "foo" is represented as global data:  
     _string42: 0x66 0x6F 0x6F 0x00 

•C uses null-terminated strings 
•Strings are usually placed in the text segment so they are read only.   

•allows all copies of the same string to be shared. 

•Rookie mistake (in C): write to a string constant. 

•Instead, must allocate space on the heap:
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char *p = "foo”;
p[0] = 'b’;

char *p = (char *)malloc(4 * sizeof(char));
strncpy(p, “foo”, 4);   /* include the null byte */
p[0] = 'b’;
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Tagged Datatypes
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C-style Enumerations / ML-style datatypes

•In C: 

•In ML: 

•Associate an integer tag with each case: sun = 0, mon = 1, … 
•C lets programmers choose the tags 

•ML datatypes can also carry data: 

•Representation: a foo value is a pointer to a pair:  (tag, data) 
•Example: tag(Bar) = 0, tag(Baz) = 1 
⟦let f = Bar(3)⟧ =  
 
⟦let g = Baz(4, f)⟧ = 
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enum Day {sun, mon, tue, wed, thu, fri, sat} today;

type day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

type foo = Bar of int | Baz of int * foo

0 3f

1 4 fg
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Switch Compilation

•Consider the C statement: 

•How to compile this? 
•What happens if some of the break statements are 

omitted? (Control falls through to the next branch.)
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switch (e) {
  case sun: s1; break;
  case mon: s2; break;
  …
  case sat: s3; break;
}
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 Cascading ifs and Jumps

•Each $tag1…$tagN  
is just a constant  
int tag value. 

•Note: ⟦break;⟧ 
(within the  
switch branches) 
is: 
  br %merge  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%tag = ⟦e⟧;
br label %l1

l1: %cmp1 = icmp eq %tag, $tag1  
br %cmp1 label %b1, label %l2

b1: ⟦s1⟧
br label %merge                   

l2: %cmp2 = icmp eq %tag, $tag2  
br %cmp2 label %b2, label %l3

b2: ⟦s2⟧
br label %l3

…
lN: %cmpN = icmp eq %tag, $tagN  

br %cmpN label %bN, label %merge
bN: ⟦sN⟧

br label %merge

merge: 

⟦switch(e) {case tag1: s1; break; case tag2 s2; …}⟧ =
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Alternatives for Switch Compilation

•Nested if-then-else works OK in practice if # of branches is small  
•(e.g. < 16 or so). 

•For more branches, use better datastructures to organize the jumps: 
•Create a table of pairs (v1, branch_label) and loop through 
•Or, do binary search rather than linear search 
•Or, use a hash table rather than binary search 

•One common case: the tags are dense in some range  
[min…max] 

•Let N = max – min 
•Create a branch table  Branches[N] where Branches[i] = branch_label for tag i. 
•Compute tag = ⟦e⟧ and then do an indirect jump: J Branches[tag] 

•Common to use heuristics to combine these techniques.
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ML-style Pattern Matching

•ML-style match statements are like C’s switch statements except: 
•Patterns can bind variables 

•Patterns can nest 

•Compilation strategy: 
•“Flatten” nested patterns into 

matches against one constructor 
at a time. 

•Compile the match against the 
tags of the datatype as for C-style switches. 

•Code for each branch additionally must  copy data from ⟦e⟧ to the variables bound in the patterns. 

•There are many opportunities for optimization, many papers about “pattern-match 
compilation” 

•Many of these transformations can be done at the AST level  
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match e with 
| Bar(z) -> e1  
| Baz(y, Bar(w)) -> e2
| _ -> e3

match e with 
| Bar(z) -> e1  
| Baz(y, tmp) -> 
     (match tmp with

| Bar(w) -> e2
| Baz(_, _) -> e3)
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Datatypes in the LLVM IR
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Structured Data in LLVM

•LLVM’s IR is uses types to describe the structure of data. 

•<#elts> is an integer constant ≥ 0 
•Structure types can be named at the top level: 

•Such structure types can be recursive
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t ::=  Types
void
i1 | i8 | i64 N-bit integers 
[<#elts> x t] arrays 
fty function types
{t1, t2, … , tn} structures 
t* pointers 
%Tident named (identified) type 

fty ::= Function Types 
 t (t1, .., tn)     return, argument types

%T1 = type {t1, t2, … , tn}
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Example LL Types

•An array of 341 integers: [ 341 x i64]

•A two-dimensional array of integers:[ 3 x [ 4 x i64 ] ]

•Structure for representing arrays with their length: 
{ i64 , [0 x i64] } 

•There is no array-bounds check; the static type information is only used for calculating 
pointer offsets. 

•C-style linked lists (declared at the top level): 
    %Node = type { i64, %Node*}

•Structs from the C program shown earlier:  
%Rect = { %Point, %Point, %Point, %Point }  
%Point = { i64, i64 }
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getelementptr

•LLVM provides the getelementptr instruction to compute 
pointer values 

•Given a pointer and a “path” through the structured data pointed to by 
that pointer, getelementptr computes an address 

•This is the abstract analog of the X86 LEA (load effective address). It does 
not access memory. 

•It is a “type indexed” operation, since the size computations depend on 
the type 
 

•Example: access the x component of the first point of a rectangle:
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insn ::= …
|  getelementptr t* %val, t1 idx1, t2 idx2 ,… 

%tmp1 = getelementptr %Rect* %square, i32 0, i32 0
%tmp2 = getelementptr %Point* %tmp1, i32 0, i32 0
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struct RT {
int A;
int B[10][20];
int C;

}
struct ST {

struct RT X;
int Y;
struct RT Z;

}
int *foo(struct ST *s) {
  return &s[1].Z.B[5][13];
}

%RT = type { i32, [10 x [20 x i32]], i32 }
%ST = type { %RT, i32, %RT }
define i32* @foo(%ST* %s) {
entry:

%arrayidx = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
ret i32* %arrayidx

}

*adapted from the LLVM documentation: see https://llvm.org/docs/LangRef.html#getelementptr-instruction

1. %s is a pointer to an (array of) %ST structs, suppose 
the pointer value is ADDR

2. Compute the index of the 1st element by adding 
size_ty(%ST).

3. Compute the index of the Z field by adding 
size_ty(%RT) + size_ty(i32) to skip 
past X and Y.

4. Compute the index of the B field by adding 
size_ty(i32) to skip past A.

5. Index into the 2d array.

Final answer:  ADDR + size_ty(%ST) + size_ty(%RT) + size_ty(i32)  
   + size_ty(i32) + 5*20*size_ty(i32) + 13*size_ty(i32)

GEP Example

https://llvm.org/docs/LangRef.html#getelementptr-instruction
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getelementptr

•GEP never dereferences the address it’s 
calculating: 
•GEP only produces pointers by doing arithmetic 
•It doesn’t actually traverse the links of a datastructure 

•To index into a deeply nested structure, need to 
“follow the pointer” by loading from the 
computed pointer 
•See list.ll from HW3
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Compiling Data Structures via LLVM

•1. Translate high level language types into an LLVM 
representation type. 
•For some languages (e.g. C) this process is straight forward 
• The translation simply uses platform-specific alignment and padding 

•For other languages, (e.g. OO languages) might be complex elaboration. 
• e.g. for OCaml, arrays types might be translated to pointers to length-indexed 
structs. 
⟦int array⟧  =  { i32, [0 x i32]}* 

•2. Translate accesses of the data into getelementptr 
operations: 
•e.g. for Ocaml array size access: 
⟦length a⟧ =         
%1 = getelementptr {i32, [0xi32]}* %a, i32 0, i32 0
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Bitcast

•What if the LLVM IR’s type system isn’t expressive enough? 
•e.g. if the source language has subtyping, perhaps due to inheritance 
•e.g. if the source language has polymorphic/generic types 

•LLVM IR provides a bitcast instruction 
•This is a form of (potentially) unsafe cast.  Misuse can cause serious bugs 

(segmentation faults, or silent memory corruption)
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%rect2 = type { i64, i64 }          ; two-field record
%rect3 = type { i64, i64, i64 }     ; three-field record

define @foo() {
  %1 = alloca %rect3     ; allocate a three-field record
  %2 = bitcast %rect3* %1 to %rect2*    ; safe cast
  %3 = getelementptr %rect2* %2, i32 0, i32 1  ; allowed
  …
}
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LLVMlite Specification

•see HW3

 26
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LLVMlite notes

•Real LLVM requires that constants appearing in getelementptr be 
declared with type i32:  

•LLVMlite ignores the i32 annotation and treats these as i64 values 
•We keep the i32 annotation in the syntax to retain compatibility with the clang 

compiler
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%struct = type { i64, [5 x i64], i64}

@gbl = global %struct {i64 1,  
   [5 x i64] [i64 2, i64 3, i64 4, i64 5, i64 6], i64 7}

define void @foo() {
  %1 = getelementptr %struct* @gbl, i32 0, i32 0
  …
}
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Compiling LLVMlite to x86
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Compiling LLVMlite Types to X86

•⟦i1⟧, ⟦i64⟧, ⟦t*⟧  = quad word (8 bytes, 8-byte 
aligned) 

•raw i8 values are not allowed (they must be 
manipulated via i8*) 

•array and struct types are laid out sequentially in 
memory 

•getelementptr computations must be relative to 
the LLVMlite size definitions 
•i.e. ⟦i1⟧ = quad 
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Compiling LLVM locals

•How do we manage storage for each %uid defined by an LLVM 
instruction? 

•Option 1: 
•Map each %uid to a x86 register 
•Efficient! 
•Difficult to do effectively: many %uid values, only 16 registers 
•We will see how to do this later in the semester 

•Option 2: 
•Map each %uid to a stack-allocated space 
•Less efficient!   
•Simple to implement 

•For HW3 we will follow Option 2
 30
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Other LLVMlite Features

•Globals 
•must use %rip relative addressing 

•Calls 
•Follow x64 AMD ABI calling conventions 
•Should interoperate with C programs 

•getelementptr
•trickiest part
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