
CS153: Compilers
Lecture 7:
Structured Data in LLVM IR

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Contains content from lecture notes by Steve Zdancewic and Greg Morrisett

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Announcements

•CS Nights: Tuesdays 8pm-10pm, MD119
•Combined OH for CS153, CS61, CS121

•Pizza and community!

•Homework 2: X86lite
•Due today

•Homework 3: LLVMlite
•Will be released today

•Due in three weeks
•Start early!!!
•Challenging assignment; HW4 will be released in 2 weeks

 2

Stephen Chong, Harvard University

Today

•Arrays
•Tagged datatypes (and switches)
•Datatypes in LLVM
•Brief tour of HW3

 3

Stephen Chong, Harvard University

Arrays

•Space is allocated on the stack for buf
•Note: without ability to allocate stack space dynamically (C’s
alloca function) need to know size of buf at compile
time…

•buf[i] is really just: (base_of_array) + i * elt_size
 4

void foo() {
 char buf[27];

 buf[0] = 'a';
 buf[1] = 'b';
 ...
 buf[25] = 'z';
 buf[26] = 0;
}

void foo() {
 char buf[27];

 *(buf) = 'a';
 *(buf+1) = 'b';
 ...
 *(buf+25) = 'z';
 *(buf+26) = 0;
}

Stephen Chong, Harvard University

Multi-dimensional Arrays

•In C int m[4][3] yields an array with 4 rows
and 3 columns.
•Laid out in row-major order:

•m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], ...

 5

m[0][0] m[0][1] m[0][2]

m[1][0] m[1][1] m[1][2]

m[2][0] m[2][1] m[2][2]

m[3][0] m[3][1] m[3][2]

Stephen Chong, Harvard University

Multi-dimensional Arrays

•So m[i][j] is located where?
•(base address of m) + (i * 3 * sizeof(int)) + j *
sizeof(int)

 6

m[0][0] m[0][1] m[0][2] m[1][0] m[1][1] m[1][2] m[2][0] m[2][1] m[2][2]

•In C int m[4][3] yields an array with 4 rows
and 3 columns.
•Laid out in row-major order:

•m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], ...

Stephen Chong, Harvard University

Multi-dimensional Arrays

•In Fortran, arrays are laid out in column major order  
 
 
 
 

•In ML, there are no multi-dimensional arrays
•(int array) array is represented as an array of pointers to

arrays of ints

•Why is knowing the memory layout strategy importan?

 7

m[0][0] m[0][1] m[0][2]

m[1][0] m[1][1] m[1][2]

m[2][0] m[2][1] m[2][2]

m[3][0] m[3][1] m[3][2]

Stephen Chong, Harvard University

Multi-dimensional Arrays

 8

m[0][0] m[1][0] m[2][0] m[3][0] m[0][1] m[1][1] m[2][1] m[3][1] m[0][2]

•In Fortran, arrays are laid out in column major order  
 
 
 
 

•In ML, there are no multi-dimensional arrays
•(int array) array is represented as an array of pointers to

arrays of ints

•Why is knowing the memory layout strategy importan?

Stephen Chong, Harvard University

Array Bounds Checks

•Safe languages (e.g. Java, C#, ML but not C, C++) check array
indices to ensure that they are in bounds.

•Compiler generates code to test that the computed offset is legal

•Needs to know the size of the array… where to store it?
•One answer: Store the size before the array contents.

•Other possibilities:
•Store size and a pointer to array data
•Pascal: only permit statically known array sizes (very unwieldy in practice)
•What about multi-dimensional arrays?

 9

Size=7 A[0] A[1] A[2] A[3] A[4] A[5] A[6]

arr

Stephen Chong, Harvard University

Array Bounds Checks
(Implementation)

•Example: Assume %rax holds the base pointer (arr) and %ecx holds the array
index i. To read a value from the array arr[i]: 

•Clearly more expensive: adds move, comparison & jump
•More memory traffic
•These overheads are particularly bad in an inner loop
•Compiler optimizations can help remove the overhead
•e.g. In a for loop, if bound on index is known, only do the test once

•Hardware support can improve performance: executing instructions in parallel,
branch prediction

•But speculative execution is behind the Spectre/Meltdown vulnerabilities...
 10

 movq -8(%rax) %rdx // load size into rdx  
cmpq %rdx %rcx // compare index to bound  
j l __ok // jump if 0 <= i < size  
callq __err_oob // test failed, call the error handler  

__ok:  
movq (%rax, %rcx, 8) dest // do the load from the array access

Stephen Chong, Harvard University

C-style Strings

•A string constant "foo" is represented as global data:  
 _string42: 0x66 0x6F 0x6F 0x00

•C uses null-terminated strings
•Strings are usually placed in the text segment so they are read only.

•allows all copies of the same string to be shared.

•Rookie mistake (in C): write to a string constant.

•Instead, must allocate space on the heap:

 11

char *p = "foo”;
p[0] = 'b’;

char *p = (char *)malloc(4 * sizeof(char));
strncpy(p, “foo”, 4); /* include the null byte */
p[0] = 'b’;

Stephen Chong, Harvard University

Tagged Datatypes

 12

Stephen Chong, Harvard University

C-style Enumerations / ML-style datatypes

•In C:

•In ML:

•Associate an integer tag with each case: sun = 0, mon = 1, …
•C lets programmers choose the tags

•ML datatypes can also carry data:

•Representation: a foo value is a pointer to a pair: (tag, data)
•Example: tag(Bar) = 0, tag(Baz) = 1 
⟦let f = Bar(3)⟧ =  
 
⟦let g = Baz(4, f)⟧ =

 13

enum Day {sun, mon, tue, wed, thu, fri, sat} today;

type day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

type foo = Bar of int | Baz of int * foo

0 3f

1 4 fg

Stephen Chong, Harvard University

Switch Compilation

•Consider the C statement:

•How to compile this?
•What happens if some of the break statements are

omitted? (Control falls through to the next branch.)

 14

switch (e) {
 case sun: s1; break;
 case mon: s2; break;
 …
 case sat: s3; break;
}

Stephen Chong, Harvard University

 Cascading ifs and Jumps

•Each $tag1…$tagN  
is just a constant  
int tag value.

•Note: ⟦break;⟧ 
(within the  
switch branches) 
is: 
 br %merge  

 15

%tag = ⟦e⟧;
br label %l1

l1: %cmp1 = icmp eq %tag, $tag1
br %cmp1 label %b1, label %l2

b1: ⟦s1⟧
br label %merge

l2: %cmp2 = icmp eq %tag, $tag2
br %cmp2 label %b2, label %l3

b2: ⟦s2⟧
br label %l3

…
lN: %cmpN = icmp eq %tag, $tagN

br %cmpN label %bN, label %merge
bN: ⟦sN⟧

br label %merge

merge:

⟦switch(e) {case tag1: s1; break; case tag2 s2; …}⟧ =

Stephen Chong, Harvard University

Alternatives for Switch Compilation

•Nested if-then-else works OK in practice if # of branches is small
•(e.g. < 16 or so).

•For more branches, use better datastructures to organize the jumps:
•Create a table of pairs (v1, branch_label) and loop through
•Or, do binary search rather than linear search
•Or, use a hash table rather than binary search

•One common case: the tags are dense in some range  
[min…max]

•Let N = max – min
•Create a branch table Branches[N] where Branches[i] = branch_label for tag i.
•Compute tag = ⟦e⟧ and then do an indirect jump: J Branches[tag]

•Common to use heuristics to combine these techniques.

 16

Stephen Chong, Harvard University

ML-style Pattern Matching

•ML-style match statements are like C’s switch statements except:
•Patterns can bind variables

•Patterns can nest

•Compilation strategy:
•“Flatten” nested patterns into 

matches against one constructor 
at a time.

•Compile the match against the 
tags of the datatype as for C-style switches.

•Code for each branch additionally must copy data from ⟦e⟧ to the variables bound in the patterns.

•There are many opportunities for optimization, many papers about “pattern-match
compilation”

•Many of these transformations can be done at the AST level

 17

match e with
| Bar(z) -> e1  
| Baz(y, Bar(w)) -> e2
| _ -> e3

match e with
| Bar(z) -> e1  
| Baz(y, tmp) ->
 (match tmp with

| Bar(w) -> e2
| Baz(_, _) -> e3)

Stephen Chong, Harvard University

Datatypes in the LLVM IR

 18

Stephen Chong, Harvard University

Structured Data in LLVM

•LLVM’s IR is uses types to describe the structure of data.

•<#elts> is an integer constant ≥ 0
•Structure types can be named at the top level:

•Such structure types can be recursive

 19

t ::= Types
void
i1 | i8 | i64 N-bit integers
[<#elts> x t] arrays
fty function types
{t1, t2, … , tn} structures
t* pointers
%Tident named (identified) type

fty ::= Function Types
 t (t1, .., tn) return, argument types

%T1 = type {t1, t2, … , tn}

Stephen Chong, Harvard University

Example LL Types

•An array of 341 integers: [341 x i64]

•A two-dimensional array of integers:[3 x [4 x i64]]

•Structure for representing arrays with their length: 
{ i64 , [0 x i64] }

•There is no array-bounds check; the static type information is only used for calculating
pointer offsets.

•C-style linked lists (declared at the top level): 
 %Node = type { i64, %Node*}

•Structs from the C program shown earlier:  
%Rect = { %Point, %Point, %Point, %Point }  
%Point = { i64, i64 }

 20

Stephen Chong, Harvard University

getelementptr

•LLVM provides the getelementptr instruction to compute
pointer values

•Given a pointer and a “path” through the structured data pointed to by
that pointer, getelementptr computes an address

•This is the abstract analog of the X86 LEA (load effective address). It does
not access memory.

•It is a “type indexed” operation, since the size computations depend on
the type 
 

•Example: access the x component of the first point of a rectangle:

 21

insn ::= …
| getelementptr t* %val, t1 idx1, t2 idx2 ,…

%tmp1 = getelementptr %Rect* %square, i32 0, i32 0
%tmp2 = getelementptr %Point* %tmp1, i32 0, i32 0

Stephen Chong, Harvard University 22

struct RT {
int A;
int B[10][20];
int C;

}
struct ST {

struct RT X;
int Y;
struct RT Z;

}
int *foo(struct ST *s) {
 return &s[1].Z.B[5][13];
}

%RT = type { i32, [10 x [20 x i32]], i32 }
%ST = type { %RT, i32, %RT }
define i32* @foo(%ST* %s) {
entry:

%arrayidx = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
ret i32* %arrayidx

}

*adapted from the LLVM documentation: see https://llvm.org/docs/LangRef.html#getelementptr-instruction

1. %s is a pointer to an (array of) %ST structs, suppose
the pointer value is ADDR

2. Compute the index of the 1st element by adding
size_ty(%ST).

3. Compute the index of the Z field by adding
size_ty(%RT) + size_ty(i32) to skip
past X and Y.

4. Compute the index of the B field by adding
size_ty(i32) to skip past A.

5. Index into the 2d array.

Final answer: ADDR + size_ty(%ST) + size_ty(%RT) + size_ty(i32)  
 + size_ty(i32) + 5*20*size_ty(i32) + 13*size_ty(i32)

GEP Example

https://llvm.org/docs/LangRef.html#getelementptr-instruction

Stephen Chong, Harvard University

getelementptr

•GEP never dereferences the address it’s
calculating:
•GEP only produces pointers by doing arithmetic
•It doesn’t actually traverse the links of a datastructure

•To index into a deeply nested structure, need to
“follow the pointer” by loading from the
computed pointer
•See list.ll from HW3

 23

Stephen Chong, Harvard University

Compiling Data Structures via LLVM

•1. Translate high level language types into an LLVM
representation type.
•For some languages (e.g. C) this process is straight forward
• The translation simply uses platform-specific alignment and padding

•For other languages, (e.g. OO languages) might be complex elaboration.
• e.g. for OCaml, arrays types might be translated to pointers to length-indexed
structs. 
⟦int array⟧ = { i32, [0 x i32]}*

•2. Translate accesses of the data into getelementptr
operations:
•e.g. for Ocaml array size access: 
⟦length a⟧ =  
%1 = getelementptr {i32, [0xi32]}* %a, i32 0, i32 0

 24

Stephen Chong, Harvard University

Bitcast

•What if the LLVM IR’s type system isn’t expressive enough?
•e.g. if the source language has subtyping, perhaps due to inheritance
•e.g. if the source language has polymorphic/generic types

•LLVM IR provides a bitcast instruction
•This is a form of (potentially) unsafe cast. Misuse can cause serious bugs

(segmentation faults, or silent memory corruption)

 25

%rect2 = type { i64, i64 } ; two-field record
%rect3 = type { i64, i64, i64 } ; three-field record

define @foo() {
 %1 = alloca %rect3 ; allocate a three-field record
 %2 = bitcast %rect3* %1 to %rect2* ; safe cast
 %3 = getelementptr %rect2* %2, i32 0, i32 1 ; allowed
 …
}

Stephen Chong, Harvard University

LLVMlite Specification

•see HW3

 26

Stephen Chong, Harvard University

LLVMlite notes

•Real LLVM requires that constants appearing in getelementptr be
declared with type i32:  

•LLVMlite ignores the i32 annotation and treats these as i64 values
•We keep the i32 annotation in the syntax to retain compatibility with the clang

compiler
 27

%struct = type { i64, [5 x i64], i64}

@gbl = global %struct {i64 1,  
 [5 x i64] [i64 2, i64 3, i64 4, i64 5, i64 6], i64 7}

define void @foo() {
 %1 = getelementptr %struct* @gbl, i32 0, i32 0
 …
}

Stephen Chong, Harvard University

Compiling LLVMlite to x86

 28

Stephen Chong, Harvard University

Compiling LLVMlite Types to X86

•⟦i1⟧, ⟦i64⟧, ⟦t*⟧ = quad word (8 bytes, 8-byte
aligned)

•raw i8 values are not allowed (they must be
manipulated via i8*)

•array and struct types are laid out sequentially in
memory

•getelementptr computations must be relative to
the LLVMlite size definitions
•i.e. ⟦i1⟧ = quad

 29

Stephen Chong, Harvard University

Compiling LLVM locals

•How do we manage storage for each %uid defined by an LLVM
instruction?

•Option 1:
•Map each %uid to a x86 register
•Efficient!
•Difficult to do effectively: many %uid values, only 16 registers
•We will see how to do this later in the semester

•Option 2:
•Map each %uid to a stack-allocated space
•Less efficient!
•Simple to implement

•For HW3 we will follow Option 2
 30

Stephen Chong, Harvard University

Other LLVMlite Features

•Globals
•must use %rip relative addressing

•Calls
•Follow x64 AMD ABI calling conventions
•Should interoperate with C programs

•getelementptr
•trickiest part

 31

