HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 7:
Structured Data in LLVM IR

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

Contains content from lecture notes by Steve Zdancewic and Greg Morrisett

https://www.seas.harvard.edu/courses/cs153

Announcements

* CS Nights: Tuesdays 8pm-10pm, MD119
e Combined OH for CS153, CS61, CS121

*Pizza and community!

e Homework 2: X86lite
e Due today

e Homework 3: LLVMlite
*Will be released today

e Due in three weeks

oStart early!!!
* Challenging assignment; HW4 will be released in 2 weeks

* Arrays

* Tagged datatypes (and switches)
e Datatypes in LLVM

*Brief tour of HW3

Stephen Chong, Harvard University 3

Arrays

void foo() { void foo() {
char buf[27]; char buf[27];
buf[0] = 'a'; *(buf) = 'a’;
buf[l] = 'b'; *(buf+l) = 'b';
buf[25] = 'z'; *(buf+25) = 'z';
buf[26] = 0; *(buf+26) = 0;

} }

*Space is allocated on the stack for buf

* Note: without ability to allocate stack space dynamically (C’s
alloca function) need to know size of buf at compile
time...

ebuf[i] isreally just: (base_of_array) + i * elt_size

Multi-dimensional Arrays

°In C int m[4][3] yields an array with 4 rows
and 3 columns.

_aid out in row-major order:

m[0][0], m[O][1], m[O]J[2], m[1][O], m[1][1], ..

m[0][0]

m[O][1]

m[0][2]

m[1][0]

m[1l][1]

m[1][2]

m[2][0]

m[2][1]

m[2][2]

m[3][0]

m[3][1]

m[3][2]

Multi-dimensional Arrays

°In C int m[4][3] yields an array with 4 rows

dl’

_aid out in row-major order:

d 3 columns.

m[0][0], m[O][1], m[O]J[2], m[1][O], m[1][1], ..

eSom[i][7] is located where?

m[0][0]

m[O][1]

m[0][2]

m[1][0]

m[1l][1]

m[l1][2]

m[2][0]

m[2][1]

*(base address of m) + (1 * 3 * sizeof(int)) + j *
sizeof (1int)

Multi-dimensional Arrays

*|n Fortran, arrays are laid out in column major order

m[0][0]

m[O][1]

m[0][2]

m[1][0]

m[1][1]

m[1][2]

m[2][0]

m[2][1]

m[2][2]

m[3][0]

m[3][1]

m[3][2]

°In ML, there are no multi-dimensional arrays

e (int array) array is represented as an array of pointers to
arrays of ints

*Why is knowing the memory layout strategy importan?

Multi-dimensional Arrays

*|n Fortran, arrays are laid out in column major order

mOJ[O]|m[1][O0] m[2][O0]|m[3][O0](m[O]J[1]|m[1][1]fm[2][1]|m[3][1]m[O

°In ML, there are no multi-dimensional arrays

e (int array) array is represented as an array of pointers to
arrays of ints

*Why is knowing the memory layout strategy importan?

Array Bounds Checks

e Safe languages (e.g. Java, C#, ML but not C, C++) check array
indices to ensure that they are in bounds.
e Compiler generates code to test that the computed offset is legal

e Needs to know the size of the array... where to store it?
*One answer: Store the size before the array contents.

arr

N
Size=7 |A[0] A[1] A[2]|A[3] A[4] A[5] A[6]

e Other possibilities:
e Store size and a pointer to array data
e Pascal: only permit statically known array sizes (very unwieldy in practice)
e \What about multi-dimensional arrays?

Array Bounds Checks
(Implementation)

eExample: Assume $rax holds the base pointer (arr) and $ecx holds the array
index i. To read a value from the array arr[i]:

movqg -8(%rax) %rdx // load size into rdx

cmpg %$rdx %rcx // compare index to bound

j 1 ok // jump if 0 <= i < size

callg err oob // test failed, call the error handler

ok:

~ movq (%rax, %rcx, 8) dest // do the load from the array access

Clearly more expensive: adds move, comparison & jump
e More memory traffic

* These overheads are particularly bad in an inner loop
e Compiler optimizations can help remove the overhead

ee.g. In a for loop, if bound on index is known, only do the test once

e Hardware support can improve performance: executing instructions in parallel,
branch prediction

*But speculative execution is behind the Spectre/Meltdown vulnerabilities...

C-style Stri

e A string constant "foo" is represented as global data:
_stringd42: 0x66 O0x6F 0x6F 0x00

e C uses null-terminated strings

o Strings are usually placed in the text segment so they are read only.
eallows all copies of the same string to be shared.

e Rookie mistake (in C): write to a string constant.

char *p = "foo”;
p[0] = 'b’;

e |nstead, must allocate space on the heap:

char *p = (char *)malloc(4 * sizeof(char));
strncpy(p, “foo”, 4); /* include the null byte */
p[0] = 'b’;

Stephen Chong, Harvard University 11

Stephen Chong, Harvard University 12

C-style Enumerations / ML-style datatypes

eln C:

enum Day {sun, mon, tue, wed, thu, fri, sat} today;

eln ML:

type day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
* Associate an integer tag with each case: sun =0, mon =1, ...
*C lets programmers choose the tags

* ML datatypes can also carry data:

type foo = Bar of int | Baz of int * foo

*Representation: a foo value is a pointer to a pair: (tag, data)

*Example: tag(Bar) = 0, tag(Baz) = 1 £ 0 | 3
>

[let £ = Bar(3)]= C_//?

[let g = Baz(4, f)]= g J 1 | a | £

Switch Compilation

e Consider the C statement:

switch (e) {
case sun: sl; break;
case mon: s2; break;

case sat: s3; break;

}

* How to compile this?

*\What happens if some of the break statements are
omitted? (Control falls through to the next branch.)

Cascading ifs and Jumps

[switch(e) {case tagl: sl; break; case tag2 s2; ..}]=

stag = [e];

°Each $tagl..StagN Ly oo cape Bl
.. : %cmpl = icmp eq %tag, S$tagl
IS Just a constant br $cmpl label %bl, label %12
int tag value. bl: [s1]

br label %merge

12: %cmp2 = icmp eq %tag, Stag2
br %scmp2 label %b2, label %13

e Note: [break;] b2: [s2]
cop br label %13
(within the
switch branches) IN: %cmpN = icmp eq %tag, $tagN
. br %cmpN label %bN, label %merge
5. bN: [sN]
br Zmerge br label %merge

merge:

Alternatives for Switch Compilation

e Nested if-then-else works OK in practice if # of branches is small
°(e.g. < 16 or so).

e For more branches, use better datastructures to organize the jumps:
*Create a table of pairs (v1, branch_label) and loop through
*Or, do binary search rather than linear search
*Or, use a hash table rather than binary search

e One common case: the tags are dense in some range
Imin...max]

°Let N = max — min
e Create a branch table Branches[N] where Branches|i] = branch_label for tag i.
e Compute tag = [e] and then do an indirect jump:] Branches|[tag]

e Common to use heuristics to combine these techniques.

ML-style Pattern Matching

* ML-style match statements are like C’s switch statements except:

e Patterns can bind variables

e Patterns can nest TatCh e with
Bar(z) -> el

| Baz(y, Bar(w)) -> e2
| -> e3

e Compilation strategy: match e with

| Bar(z) -> el

| Baz(y, tmp) ->

. (match tmp with

at a time. | Bar(w) -> e2

| Baz(_, _) -> e3)

e “Flatten” nested patterns into
matches against one constructor

e Compile the match against the
tags of the datatype as for C-style switches.

e Code for each branch additionally must copy data from [e] to the variables bound in the patterns.

e There are many opportunities for optimization, many papers about “pattern-match
compilation”

e Many of these transformations can be done at the AST level

Stephen Chong, Harvard University 18

Structured Da

e LLVM’s IR is uses types to describe the structure of data.

t s:= Types

void

il | i8 | ie64 N-bit integers

[<#elts> x t] arrays

fty function types

{ty, L, o , t} structures

t* pointers

STident named (identified) type
fty ::= Function Types

t(t, .., t) return, argument types

e <#elts> is an integer constant > 0
e Structure types can be named at the top level:

3Tl = type {t,, &, .. , t,}

e Such structure types can be recursive
Stephen Chong, Harvard University

19

Example LL

* An array of 341 integers: [341 x 164]
* A two-dimensional array of integers: [3 x [4 x 164]]

o Structure for representing arrays with their length:
{ i64 , [0 x i64] }

e There is no array-bounds check; the static type information is only used for calculating
pointer offsets.

e C-style linked lists (declared at the top level):
$Node = type { 164, %Node*}

e Structs from the C program shown earlier:
$Rect = { %Point, %Point, %Point, %Point }
9Point = { i64, 164 }

Stephen Chong, Harvard University 20

getelementptr

*|LVM provides the getelementptr instruction to compute
pointer values

*Given a pointer and a “path” through the structured data pointed to by
that pointer, getelementptr computes an address

*This is the abstract analog of the X86 LEA (load effective address). It does
not access memory.

|t is a “type indexed” operation, since the size computations depend on
the type

insn ::= ..
| getelementptr t* %val, tl idxl, t2 idx2 ,..

* Example: access the x component of the first point of a rectangle:

$tmpl = getelementptr %$Rect* %square, 132 0, 132 0
$tmp2 = getelementptr %$Point* %$tmpl, 132 0, 132 O

GEP Example

int A 1. %s is a pointer to an (array of) %ST structs, suppose
14 . .
int B[10][207; the pointer value is ADDR

int C;
} 2. Compute the index of the 1st element by adding
struct ST { Size_ty(%ST).

struct RT X:

int Y 3. Compute the index of the Z field by adding

size ty(%RT) + size ty(i32) toskip

struct RT Z; past X and Y

}
int *foo(struct T *s
. 4. Compute the index of the B field by adding
return &s(l].25BEstH134y ize ty(i32) to skip past A.
} < -

. Index into the 2d array.

$RT = type { 132, [10 x [20 x i32]], i32 }

$ST = type { %RT, 132, %RT }

define 132* Qfoo(%ST* %s) {

entry: : Y : : ‘
%arrayidx = getelementptr %ST* %s, i32 1, 132 2, 132 1, 132 5, 132 13
ret 132* %arrayidx

Final answer: ADDR + size ty(%ST) + size ty(%RT) + size ty(i32)
+ size ty(i32) + 5*20*size ty(i32) + 13*size ty(i32)

*adapted from the LLVM documentation: see https:/llvm.org/docs/LangRef.html#getelementptr-instruction

22

https://llvm.org/docs/LangRef.html#getelementptr-instruction

getelementptr

e GEP never dereferences the address it’s
calculating:

e GEP only produces pointers by doing arithmetic
|t doesn’t actually traverse the links of a datastructure

*To index into a deeply nested structure, need to
“follow the pointer” by loading from the
computed pointer

¢ See list.ll from HW3

Compiling Data Structures via LLVM

e 1. Translate high level language types into an LLVM
representation type.

 For some languages (e.g. C) this process is straight forward
* The translation simply uses platform-specific alignment and padding

e For other languages, (e.g. OO languages) might be complex elaboration.
* e.g. for OCaml, arrays types might be translated to pointers to length-indexed
structs.
[int array] = { 132, [0 x 132]}*
e 2. Translate accesses of the data into getelementptr
operations:

ee.g. for Ocaml array size access:
[length a] =
%1 = getelementptr {132, [0x132]}* %a, 132 0, 132 O

Bitcast

e What if the LLVM IR’s type system isn’t expressive enough?

ee.g. if the source language has subtyping, perhaps due to inheritance
ee.g. if the source language has polymorphic/generic types

*| LVM IR provides a bitcast instruction

e This is a form of (potentially) unsafe cast. Misuse can cause serious bugs
(segmentation faults, or silent memory corruption)

Srect2 = type { 164, 164 } ; two-field record
$rect3 = type { 164, 164, 164 } + three-field record

define @foo() {

%1 = alloca %rect3 + allocate a three-field record
%2 = bitcast %rect3* %1 to %Srect2* + safe cast

$3 = getelementptr %$rect2* %2, 132 0, 132 1 ; allowed

esee HW3

Stephen Chong, Harvard University 26

[LLVMlite notes

eReal LLVM requires that constants appearing in getelementptr be
declared with type 132:

$struct = type { 164, [5 x 164], 164}

@gbl = global $%$struct {i64 1,
[5 x i64] [i64 2, i64 3, i64 4, i64 5, i64 6], i64 7}

define void @foo() {
$1 = getelementptr $%$struct* @gbl, 132 0, 132 0

| LVMlite ignores the 132 annotation and treats these as 164 values

*We keep the 132 annotation in the syntax to retain compatibility with the clang
compiler

Stephen Chong, Harvard University 28

Compiling LLVMlite Types to X86

°[i1], [i64], [t*] = quad word (8 bytes, 8-byte
aligned)

eraw i8 values are not allowed (they must be
manipulated via 18%*)

earray and struct types are laid out sequentially in
memory

egetelementptr computations must be relative to
the LLVMlite size definitions

eji.e. [11] = quad

Compiling LLV

e How do we manage storage for each %uid defined by an LLVM
Instruction?
*Option 1:
* Map each %uid to a x86 register
e Efficient!
e Difficult to do effectively: many %uid values, only 16 registers
*We will see how to do this later in the semester
* Option 2:
* Map each %.uid to a stack-allocated space

e |ess efficient!
eSimple to implement

e For HW3 we will follow Option 2

Stephen Chong, Harvard University 30

Other LLVMIit

e Globals

* must use %rip relative addressing

e Calls

*Follow x64 AMD ABI calling conventions
*Should interoperate with C programs

egetelementptr
etrickiest part

Stephen Chong, Harvard University 31

