
CS153: Compilers
Lecture 8: Lexing

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Contains content from lecture notes by Steve Zdancewic and Greg Morrisett

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Announcements

•Homework 3 (LLVMlite) out
•Due Tuesday Oct 15
•Start early!!!
•Challenging assignment; HW4 will be released Oct 8

 2

Stephen Chong, Harvard University

Basic Architecture: Review

 3

Parsing

Source Code

Elaboration

Lowering

Optimization

Code Generation

Target Code

Back end

Front end

Stephen Chong, Harvard University 4

Parsing

Lexical
Analysis

Syntax
Analysis

if price>500
 then tax=.08

if

price

 >

500

then

tax

 =

.08

price

 >

500

then

 =

tax .08

if

Stephen Chong, Harvard University 5

Lexical
Analysis

if price>500
 then tax=.08

if

price

 >

500

then

tax

 =

.08

Today

•Lexical analysis: breaks input sequence of
characters into individual words, aka “tokens”

Stephen Chong, Harvard University

Lexical Tokens

•A language classifies lexical tokens into token types

•So, a token type specifies a set of acceptable tokens.

•Reserved words are tokens that cannot be used as identifiers
•E.g., IF, VOID, RETURN

 6

Type Examples
ID foo n14 last
NUM 73 0 00 515 082
REAL 66.1 .5 10. 1e67
IF if
COMMA ,
NOTEQ !=
LPAREN (

Stephen Chong, Harvard University

Example 1

•Given a program  
 
 
 
 
the lexical analysis returns the sequence of tokens

 7

if (price>500)
 then tax=.08

IF LPAREN ID(price) GT NUM(500) RPAREN THEN
ID(tax) EQ REAL(0.08)

Stephen Chong, Harvard University

Example 2

• Given a program 
 

the lexical analysis returns

because 1xab is neither a
number nor an identifier.

 8

if (price>500)
 then tax=1xab

ERROR

Type Examples
ID foo n14 last
NUM 73 0 00 515 082
THEN then

•The lexical analysis can help
in reporting where an error
occurs in the code.

•By recognizing ‘\n’ as a token
and incrementing the line
number.

Stephen Chong, Harvard University

Example 3

• Given a program 
 
 
the lexical analysis returns

 9

if (price>500)
 thn tax=.08

IF LPAREN ID(price) GT
NUM(500) RPAREN ID(thn)
ID(tax) EQ REAL(0.08)

Type Examples
ID foo n14 last
NUM 73 0 00 515 082
THEN then

•Is this an error at the level of
lexical analysis?

•No, it is an error at the level of
syntax analysis (next lectures)!

Stephen Chong, Harvard University

Towards Implementing
A Lexical Analysis

•Recall: Lexical analysis breaks input into tokens.
•The lexical analysis needs to decide the token type

for a given string (i.e., sequence of characters).

 10

Is it a:
- ID ?
- NUM ?
- REAL?
- IF ?
- LPAREN ?
…

String Token type

Stephen Chong, Harvard University

Let’s simplify…

•Recall: Lexical analysis breaks input into tokens.
•The lexical analysis needs to decide the token type

for a given string (i.e., sequence of characters).

 11

Is it a:
- NUM ?

String Token type

Stephen Chong, Harvard University

A Set Membership Question

•Recall: a token type specifies a set of acceptable
tokens (i.e., strings).
•The set of acceptable tokes for NUM is {0,1,2,3,…}.

•But this set is infinite…

 12

Does it belong to:
- {0,1,2,3,…} ?

String Token type

Stephen Chong, Harvard University

A Set Membership Question

•How can we mechanically decide if a string
belongs to a (possibly infinite) set S of strings?

•An approach:
•Use a finite representation of S.
‣Regular expressions

•Check whether the string is accepted by such a finite
representation.
‣Deterministic finite-state automata

 13

Stephen Chong, Harvard University

Regular Expressions

•Each regular expression represents a set of
strings.

•Examples
•(0 | 1)* 0
•Binary numbers that are multiples of 2

•b*(abb*)*(a|ε)
•Strings of a’s and b’s without consecutive a’s

•(a|b)*aa(a|b)*
•Strings of a’s and b’s with consecutive a’s

 14

Stephen Chong, Harvard University

Regular Expressions (RE)

•Grammar
•∅ (matches no string)

•ε (epsilon – matches empty string)
•Literals (‘a’, ‘b’, ‘2’, ‘+’, etc.) drawn from alphabet
•Concatenation (R1 R2)
•Alternation (R1 | R2)
•Kleene star (R*)

 15

Stephen Chong, Harvard University

Set of Strings

•[[∅]] = { }

•[[ε]] = { “” }
•[[‘a’]] = { “a” }

•[[R1 R2]] = { s | s = α^β and α∈[[R1]] and β∈[[R2]] }

•[[R1 | R2]] = { s | s∈ [[R1]] or s∈ [[R2]] }  
 = [[R1]] ∪ [[R2]]

•[[R*]] = [[ε | RR*]]  
 = { s | s = “” or s=α^β and α∈[[R]]  
 and β∈[[R*]] }

 16

Stephen Chong, Harvard University

Syntactic Sugar

•[0-9] shorthand for 0 | 1 | … | 9
•R? shorthand for (R | ε) (i.e., R is optional)
•R+ shorthand for (R R*) (i.e., at least one R)

 17

Stephen Chong, Harvard University

Regular Expressions
to Specify Token Types!

•Question: What is the token type of input iffy?
•We want the token ID(iffy) rather than IF.

•In general, we want the longest match:
•longest initial substring of the input that can match a regular

expression is taken as next token
 18

Reg Exp Token Type
if IF

[a-z][a-z0-9]* ID

[0-9]+ NUM

([0-9]+ ”.” [0-9]*) |  
 ([0-9]* ”.” [0-9]+)

REAL

Stephen Chong, Harvard University

Recall: A Set Membership Question

•Lexical analysis breaks input into tokens.
•The lexical analysis needs to decide the token type

for a given string (i.e., sequence of characters).

 19

Is it a:
- NUM ?

String Token type

Stephen Chong, Harvard University

A Matching Question

•Lexical analysis breaks input into tokens.
•The lexical analysis needs to decide the token type

for a given string (i.e., sequence of characters).

 20

Does it match
- [0-9]+ ?

String Token type

Stephen Chong, Harvard University

From RE to DFA

•A Deterministic Finite-state Automaton (DFA) can
be used to decide whether an input matches a
regular expression.

•Example: DFA for regular expression [0-9]+ :

 21

start accept
0-9 0-9

NUM

Stephen Chong, Harvard University

Other DFAs

 22

start accept
i f

IF

start accept
a-z

a-z

0-9

ID

start
0-9

0-9

REAL

accept
0-9.

.

accept
0-90-9

Stephen Chong, Harvard University

Combined Finite Automaton

 23

start

accept

i

f
accept

IF

0-9
accept

0-9.

accept
0-90-9

a-z0-9

a-eg-z0-9

accept

a-hj-z

a-z

0-9ID

0-9

REALNUM

REAL

.

•This DFA takes as an input a sequence of characters
and returns a Token Type (if the input is accepted).
•So, this DFA can be used for Lexical Analysis.

Stephen Chong, Harvard University

Using DFAs

•Usually record transition function as array
indexed by state and characters (i.e., transition
table)
•See Appel Chap 2.3 for an example.

 24

Stephen Chong, Harvard University

How is a RE converted to a DFA?

1. Convert RE to a Nondeterministic Finite-state
Automaton (NFA).

2. Convert NFA to DFA.

 25

Stephen Chong, Harvard University

RE to NFA conversion

•Epsilon ε

•Literal ‘a’

•Concatenation R1R2

•Alternation R1 | R2

 26

εR1 R2

ε

ε

R1

R2

ε

ε

εstart accept

astart accept

Stephen Chong, Harvard University

RE to NFA conversion

•Kleene star R*

 27

ε

R

ε
ε

start accept

Stephen Chong, Harvard University

NFA to DFA conversion (intuition)

•The NFA of a regular expression R can be easily
composed from NFAs of subexpressions of R.

•But executing an NFA under input strings is
harder and less efficient than executing a DFA
due to the nondeterminism.

•So, we convert NFAs to DFAs.
•Basic idea: each state in DFA will represent a set of

states of the NFA.

 28

Stephen Chong, Harvard University

Example: NFA to DFA

 29

NFA:

DFA:

{2,3, 
5}

b

7

c

ε
43

d 65

ε

ε
ε

21
b

start

{1}

start

accept

Stephen Chong, Harvard University

Example: NFA to DFA

 30

NFA:

DFA:

{1} {2,3, 
5}

b

7

c

ε
43

d 65

ε

ε
ε

21
b

start accept

start

c

{4,7}

accept

Stephen Chong, Harvard University

Example: NFA to DFA

 31

NFA:

DFA:

7

c

ε
43

d 65

ε

ε
ε

21
b

Check that this DFA is,
in fact, deterministic!

{1} {2,3, 
5}

b

c

{4,7}

d
{6,7}

start accept

start

accept

accept

Stephen Chong, Harvard University

Lexical Analysis Summary

•Use a regular expression to specify the set
strings for each Token Type.
•Example: [0-9]+ specifies the set of strings for NUM

•Construct the NFA formed by .

•Construct the DFA for this NFA.
•Produce the transition table for that DFA.
•Implement longest match.

Ri

(R1 |R2 | . . . |Rn)

 32

Stephen Chong, Harvard University

Using a Lexer Generator

•The designer of a lexical analysis follows the first
step of the previous slide.

•The remaining steps are automatically performed
by the lexer generator!

 33

Stephen Chong, Harvard University

A Lexer Generator in ML

•Provide regular expressions for token types in file
mllexeg.mll

•Run lexer generator: ocamllex mllexeg.mll
•The lever generator produces the final transition

table at file mllexeg.ml

 34

Stephen Chong, Harvard University

Structure of ocamllex File

•Header and trailer are arbitrary OCaml code, copied to the output file
•Can define abbreviations for common regular expressions
•Rules are turned into (mutually recursive) functions with args1 ...
argn lexbuf

•lexbuf is of type Lexing.lexbuf

•Result of function is the result of ml code action
 35

{ header }
let ident = regexp ...
rule entrypoint1 [arg1 ... argn] =
 parse regexp { action }
 | ...
 | regexp { action }
and entrypoint2 [arg1 ... argn] =
 parse ...
and ...
{ trailer }

Stephen Chong, Harvard University

A hand-written Lexer

•See file lexer.ml

 36

