John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 8: Lexing

HARVARD

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

Contains content from lecture notes by Steve Zdancewic and Greg Morrisett

https://www.seas.harvard.edu/courses/cs153

AnNno

e Homework 3 (LLVMlite) out
* Due Tuesday Oct 15

o Start early!!!
» Challenging assignment; HW4 will be released Oct 8

Stephen Chong, Harvard University 2

Basic Archit

(Sou rce Code

Parsmg

Stephen Chong, Harvard University 3

Parsing

\d .
. . e 3
. - .
* . . .
. - . N
. . * -
. . . .
. . . .
. . . .
Pd - - -
. . . .
. . M
. .
. . .
. Y g '.
. . . .

. . . -
. - . .
. . . .
. o . 3
. 3 .

. 4
™ .
ol .
o .
o .
. e
.
.
. [‘e
.
. .
. .
. .
. .
. .
. .
. >
A 2
. ‘e
* n n
o .
. .
. .
o .
. .
.
.

if

if

price ‘/////~\\\\\‘
if price>500
then tax=.08 >00 . |

then price| |500 =

tax /\

tax .08

.08

Stephen Chong, Harvard University 4

To

. ™
| exical .
Analysis i
price
>
if price>500
then tax=.08 500
then
tax
.08

e Lexical analysis: breaks input sequence of
characters into individual words, aka “tokens”

Stephen Chong, Harvard University 5

Lexical Tokens

* A language classifies lexical tokens into token types

Type Examples

ID foo nl4 last

NUM 73 0 00 515 082
REAL 66.1 .5 10. le67
IF if

COMMA ,

NOTEQ | =

LPAREN (

S0, a token type specifies a set of acceptable tokens.

e Reserved words are tokens that cannot be used as identifiers
°E.g., IF, VOID, RETURN

Exa

e Given a program

1f (price>500)
then tax=.08

the lexical analysis returns the sequence of tokens

IF LPAREN ID(price) GT NUM(500) RPAREN THEN
ID(tax) EQ REAL(0.08)

Stephen Chong, Harvard University 7

Example 2

* Glven a program

1f (price>500)
then tax=1l1lxab

the lexical analysis returns

ERROR

because 1xab is neither a
number nor an identifier.

Type [Examples

1D foo nl4d last
NUM 73 0 00 515 082
THEN [then

e The

exical analysis can help

in reporting where an error

occurs in the code.
*By recognizing ‘\n’ as a token
and incrementing the line
number.

Example

* Glven a program

1f (price>500)
thn tax=.08

the lexical analysis returns

IF LPAREN ID(price) GT
NUM(500) RPAREN ID(thn)

ID(tax) EQ REAL(0.08)

Stephen Chong, Harvard University

Type [Examples

1D foo nl4 last
NUM 73 0 00 515 082
THEN |then

e|s this an error at the level of

lexical analysis?

eNo, it is an error at the level of
syntax analysis (next lectures)!

Towards Implementing
A Lexical Analysis

e Recall: Lexical analysis breaks input into tokens.

* The lexical analysis needs to decide the token type
for a given string (i.e., sequence of characters).

s 1t a:

- 1D ¢

- NUM ¢
| - REALY g
String Token type

- |F ¢
- LPAREN ¢

Let’'s simpli

eRecall: Lexical analysis breaks input into tokens.

* The lexical analysis needs to decide the token type
for a given string (i.e., sequence of characters).

Is It a:
- NUM ¢

String

Stephen Chong, Harvard University

Token type

>

11

A Set Membership Question

eRecall: a token type specifies a set of acceptable
tokens (i.e., strings).
* The set of acceptable tokes for NUM is {0,1,2,3,...}.

e But this set is infinite...

Does it belong to:

- {0,1,2,3,...} ? g
String 0,1,2,3, } Token type

A Set Membership Question

e How can we mechanically decide if a string
belongs to a (possibly infinite) set S of strings?

* An approach:

» Use a finite representation of S.

» Regular expressions

 Check whether the string is accepted by such a finite
representation.

» Deterministic finite-state automata

Regular Expressions

e Each regular expression represents a set of
strings.

e Examples
«(0]1)*
Binary numbers that are multiples of 2
b(abb*)*(al€)
- Strings of a’s and b’s without consecutive a’s
*(a|b)*aala|b)*
«Strings of a’s and b’s with consecutive a’s

Regular Expre

e Grammar
* 2 (matches no string)
°& (epsilon — matches empty string)
eliterals (‘a’, ‘b’, ‘2’, ‘+’, etc.) drawn from alphabet
e Concatenation (R1 R»)
e Alternation (R1 | Ro)
e Kleene star (R*)

Stephen Chong, Harvard University 15

Set of Stri

el =1]
°llel ={ "}
° [r/ /]] _ { “al }

*[Ry | Rl ={s | se
= [R¢] v
e [R*] = [€ | RR* |

={s|s=" ors=a"P and xe[R]

RiRo]l ={s|s=a”Band ae[R:] and Be[R:] }

[R1]
T T
[R2]

or se [|Ry] }

and Be[[R*] }

Stephen Chong, Harvard University

16

Syntacti
*[0-9] shorthandfor0 | 1 | ... | 9

*R? shorthand for (R | €) (i.e., R is optional)
e R+ shorthand for (R R*) (i.e., at least one R)

Stephen Chong, Harvard University 17

Regular Expressions
to Specify Token Types!

([0-91* ".” [0-9]+)

Reg Exp Token Type
1f |F
[a—-2z][a-2z0-9]* 1D
[0-91+ NUM
([0_9]+ N [0_9]*) | REAL

* Question: What is the token type of input 1£fy?
*\We want the token ID(1ffy) rather than IF.

*|n general, we want the longest match:

e |ongest initial substring of the input that can match a regular
expression is taken as next token

Recall: A Set Membership Question

e exical analysis breaks input into tokens.

* The lexical analysis needs to decide the token type
for a given string (i.e., sequence of characters).

Is It a:
- NUM 2 g

String Token type

A Matching Question

e exical analysis breaks input into tokens.

* The lexical analysis needs to decide the token type
for a given string (i.e., sequence of characters).

Does it match
- [0-9]+ ? g

Token type

String

From RE to DEFA

* A Deterministic Finite-state Automaton (DFA) can
be used to decide whether an input matches a
regular expression.

e Example: DFA for regular expression [0-9]

(1o eew)

NUM

-

@00 @

|F

0-9 0-9
—

REAL

Stephen Chong, Harvard University 22

Combined Finite Automaton

a-eg-z0-9

a—=2
f a-z0-9
accept accept 0-9
|F 1D
i

a-— hj Z 0-9
0-9
—> accept
REAL
0-9
—| accept
REAL

e This DFA takes as an input a sequence of characters
and returns a Token Type (if the input is accepted).

start

* S0, this DFA can be used for Lexical Analysis.

Using

e Usually record transition function as array
indexed by state and characters (i.e., transition
table)

eSee Appel Chap 2.3 for an example.

Stephen Chong, Harvard University 24

How 1s a RE con

1. Convert RE to a Nondeterministic Finite-state
Automaton (NFA).

2. Convert NFA to DFA.

Stephen Chong, Harvard University 25

RE to NFA conversion

*Epsilon €

eLiteral ‘a’
e Concatenation R{R> Qm Q_E.Q Rz@

3 R D{‘
e Alternation Ry | R» Q
£ Rz A

RE to N

e Kleene star R*

Stephen Chong, Harvard University 27

NFA to DFA conversion (intuition)

* The NFA of a regular expression R can be easily
composed from NFAs of subexpressions of R.

* But executing an NFA

under input strings is

harder and less efficient than executing a DFA
due to the nondeterminism.

¢S50, we convert NFAs to DFAs.
eBasic idea: each state in DFA will represent a set of

states of the NFA.

C
NFA: @ @\
& d &
&

DFA:

Stephen Chong, Harvard University 29

Example:

NFA: @£>

start accept
DEA- /" accept

()~

start

Stephen Chong, Harvard University 30

Example: NF

@f“

start accept

DFA: accept

- o -

Stephen Chong, Harvard University 31

Lexical Analysis Summary

e Use a regular expression R, to specity the set
strings for each Token Type.

eExample: [0-9]+ specifies the set of strings for NUM

e Construct the NFA formed by (R, |R,|...|R)).
e Construct the DFA for this NFA.

e Produce the transition table for that DFA.
*Implement longest match.

Using a Lexer

* The designer of a lexical analysis follows the first
step of the previous slide.

* The remaining steps are automatically performed
by the lexer generator!

Stephen Chong, Harvard University 33

A Lexer Generator in ML

e Provide regular expressions for token types in file
mllexeg.mll

*Run lexer generator: ocamllex mllexeg.mll

* The lever generator produces the final transition
table at file mllexeg.ml

Structure of ocamllex File

{ header }
let ident = regexp ...
rule entrypointl [argl ... argn] =

parse regexp { action }

| regexp { action }
and entrypoint2 [argl ... argn] =
parse ...
and ...
{ trailer }

e Header and trailer are arbitrary OCaml code, copied to the output file
e Can define abbreviations for common regular expressions

eRules are turned into (mutually recursive) functions with argsl ...
argn lexbuf
elexbuf is of type Lexing.lexbuf
e Result of function is the result of ml code action

A hanc

*See file lexer .ml

Stephen Chong, Harvard University 36

