
CS153: Compilers
Lecture 9: Recursive Parsing

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Contains content from lecture notes by Greg Morrisett

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Announcements

•HW3 LLVMlite out
•Due Oct 15

•New TF! Zach Yedidia
•Some more office hours  

will be added soon

2

Stephen Chong, Harvard University

Today

•Parsing
•Context-free grammars
•Derivations
•Parse trees
•Ambiguous grammars
•Recursive descent parsing
•Parser combinators

3

Stephen Chong, Harvard University 4

Parsing

Lexical
Analysis

Syntax
Analysis

if price>500
 then tax=.08

if

price

 >

500

then

tax

 =

.08

price

 >

500

then

 =

tax .08

if

Stephen Chong, Harvard University

Parsing

•Two pieces conceptually:
•Recognizing syntactically valid phrases.

•Extracting semantic content from the syntax.
• E.g., What is the subject of the sentence?

• E.g., What is the verb phrase?

• E.g., Is the syntax ambiguous? If so, which meaning do we
take?
‣ “Time flies like an arrow”, “Fruit flies like a banana”

‣ “2 * 3 + 4”
‣ “x ^ f y”

•In practice, solve both problems at the same time.
5

Stephen Chong, Harvard University

Specifying the Language

•A language is a set of strings. We need to specify what this
set is.

•Can we use regular expressions?

•In MLLex, we named regular expressions e.g.,
•digits = [0-9]+
•sum = (digits “+”)* digits
•Defines sums of the form 4893 + 48 + 92

•But what if we wanted to add parentheses to the language?
•digits = [0-9]+
•sum = expr “+” expr
•expr = digits | “(“ sum “)”

6

Stephen Chong, Harvard University

Specifying the Language

•It’s impossible for finite automaton to recognize language with
balanced parentheses!

•MLLex just treats digits as an abbreviation of the regex [0-9]+
•This doesn’t add expressive power to the language

•Doesn’t work for example above: try expanding the definition of
sum in expr:
•expr = digits | “(“ sum “)”
•expr = digits | “(“ expr “+” expr “)”
•But expr is an abbreviation, so we expand it and get
•expr = digits |  
 “(“ (digits | “(“ expr “+” expr “)”)  
 “+” (digits | “(“ expr “+” expr “)”) “)”

•Uh oh...
7

Stephen Chong, Harvard University

Context-Free Grammars

•Additional expressive power of recursion is exactly what we
need!

•Context Free Grammars (CFGs) are regular expressions with
recursion

•CFGs provide declarative specification of syntactic structure
•CFG has set of productions of the form 

 symbol → symbol symbol ... symbol 
with zero or more symbols on the right

•Each symbol is either terminal (i.e., token from the alphabet)
or non-terminal (i.e., appears on the LHS of some production)
•No terminal symbols appear on the LHS of productions

8

Stephen Chong, Harvard University

CFG example

•Terminals are: id print num , + () := ;
•Non-terminals are: S, E, L

•S is the start symbol

•E.g., one sentence in the language is  
 id := num; id := (id := num+num, id+id)
•Source text (before lexical analysis) might have been 

 a := 7; b := (c := 30+5, a+c)
9

S → S; S
S → id := E
S → print (L)

E → id
E → num
E → E + E
E → (S, E)

L → E
L → L, E

Stephen Chong, Harvard University

Derivations

•To show that a sentence is in the language of a grammar, we
can perform a derivation
•Start with start symbol, repeatedly replace a non-terminal by its

right hand side

•E.g.,
•S
•S;S
•id := E;S
•id := E;id := E
•id := num; id := E
•...
•id := num; id := (id := num+num, id+id)

10

S → S; S
S → id := E
S → print (L)
E → id
E → num
E → E + E
E → (S, E)
L → E
L → L, E

Stephen Chong, Harvard University

CFGs and Regular Expressions

•CFGs are strictly more expressive than regular
expressions

11

How can you translate a
regular expression into a

CFG?

Stephen Chong, Harvard University

Parse Tree

•A parse tree connects each symbol to the symbol it was
derived from

•A derivation is, in essence, a way of constructing a parse tree.
•Two different derivations may have the same parse tree

12

S → S; S
S → id := E
S → print (L)
E → id
E → num
E → E + E
E → (S, E)
L → E
L → L, E

S → S; S
S → id := E
S → print (L)
E → id
E → num
E → E + E
E → (S, E)
L → E
L → L, E

S

S S;

id := E

num

id := E

(,)S

id := E

E

+num

E

num

E

E +

id

E

id

Stephen Chong, Harvard University

How to Build a Parse Tree/  
Find a Derivation

•Conceptually, two possible ways:
•Start from start symbol, choose a non-terminal and expand

until you reach the sentence
•Start from the terminals and replace phrases with non-terminals

13

S

S S;

id := E

num

id := E

(,)S

id := E

E +

num

E

num

E

E +

id

E

id

Stephen Chong, Harvard University

How to Build a Parse Tree/  
Find a Derivation

14

S

S

S

;id :=

E

num id :=

E

(,)

S

id :=

E

E

+num

E

num

E

E

+id

E

id

•Conceptually, two possible ways:
•Start from start symbol, choose a non-terminal and expand

until you reach the sentence
•Start from the terminals and replace phrases with non-terminals

Stephen Chong, Harvard University

Ambiguous Grammar

•A grammar is ambiguous if it can derive a sentence with two
different parse trees

•E.g.,

•Ambiguity is usual bad: different parse trees often have different
meaning!

•But we can usually eliminate ambiguity by transforming the
grammar

15

E → id
E → num
E → E * E
E → E / E
E → E + E
E → E - E
E → (E)

E

- EE

E - E 8

6 7

E

- EE

6 - EE

7 8

Stephen Chong, Harvard University

Fixing Ambiguity Example

•We would like * to bind higher than +  
 (aka, * to have higher precedence than +)

•So 1+2*3 means 1+(2*3) instead of (1+2)*3

•We would like each operator to associate to the left
•So 6-7-8 means (6-7)-8 instead of 6-(7-8)

•Symbol E for expression, T for term, F for factor

16

E → E + T
E → E - T
E → T

T → T * F
T → T / F
T → F

F → id
F → num
F → (E)

Stephen Chong, Harvard University

How to Parse

•Manual, (recursive descent)
•Easy to write
•Good error messages
•Tedious, hard to maintain

•Parsing Combinators
•Encode grammars as higher-order functions
•Essentially, functions generate a recursive descent parser

•Antlr http://www.antlr.org/
•Yacc
•...

17

Top down

Bottom up

http://www.antlr.org/

Stephen Chong, Harvard University

Recursive Descent

•See file recdesc-a.ml
•Try the following:

•exp_parse “32”
•exp_parse “let foo = 7 in 42”
•exp_parse “let foo = 7 let bar”

18

Stephen Chong, Harvard University

Recursive Descent

•See file recdesc-b.ml
•More direct implementation of grammar

•Each non-terminal is a function

19

E → E + T
E → E - T
E → T

T → T * F
T → T / F
T → F

F → id
F → num
F → (E)

Stephen Chong, Harvard University

Left Recursion

•Recursive descent parsing doesn’t handle left recursion well!
•We can refactor grammar to avoid left recursion
•E.g., transform left recursive grammar 
 
 
 
 to 
 
 
 

20

E → T E’
E’ → + T E’
E’ → - T E’
E’ →

T → F T'
T’ →* F T’
T’ →/ F T’
T’ →

F → id
F → num
F → (E)

E → E + T
E → E - T
E → T

T → T * F
T → T / F
T → F

F → id
F → num
F → (E)

Stephen Chong, Harvard University

Left Recursion

•See file recdesc-c.ml
•Try the following:

•exp_parse "6 - 7 - 8”;; Observe the left associativity

21

Stephen Chong, Harvard University

Parser Combinators

•Parser combinators are an elegant functional-
programming technique for parsing
•Higher-order functions that accept parsers as input and

returns a new parser as output

•That’s what our code already is!

22

