HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 9: Recursive Parsing

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

Contains content from lecture notes by Greg Morrisett

https://www.seas.harvard.edu/courses/cs153

Announ

e HW3 LLVMlite out
eDue Oct 15

e New TF! Zach Yedidia

e Some more office hours
will be added soon

Stephen Chong, Harvard University 2

*Parsing
e Context-free grammars
*Derivations
*Parse trees
e Ambiguous grammars
e Recursive descent parsing
* Parser combinators

Stephen Chong, Harvard University 3

Parsing

\d .
. . e 3
. - .
* . . .
. - . N
. . * -
. . . .
. . . .
. . . .
Pd - - -
. . . .
. . M
. .
. . .
. Y g '.
. . . .

. . . -
. - . .
. . . .
. o . 3
. 3 .

. 4
™ .
ol .
o .
o .
. e
.
.
. [‘e
.
. .
. .
. .
. .
. .
. .
. >
A 2
. ‘e
* n n
o .
. .
. .
o .
. .
.
.

if

if

price ‘/////~\\\\\‘
if price>500
then tax=.08 >00 . |

then price| |500 =

tax /\

tax .08

.08

Stephen Chong, Harvard University 4

Parsing

* Two pieces conceptually:
e Recognizing syntactically valid phrases.

e Extracting semantic content from the syntax.

.g., What is the subject of the sentence?

1 [11 [I]

.g., What is the verb phrase?

* E.g., Is the syntax ambiguous? If so, which meaning do we
take?
» “Time flies like an arrow”, “Fruit flies like a banana”
» 2% 3+ 47
» X Ny

*|n practice, solve both problems at the same time.

Specitying the Language

* A language is a set of strings. We need to specify what this
set Is.

e Can we use regular expressions?

°In MLLex, we named regular expressions e.g.,
edigits = [0-9]+
esum = (digits “+"”)* digits
*Defines sums of the form 4893 + 48 + 92

e But what if we wanted to add parentheses to the language?
edigits = [0-9]+
esum = expr “+" expr

eexpr = digits | “(“ sum “)”

Specitying the Language

*|t's impossible for finite automaton to recognize language with
balanced parentheses!

* MLLex just treats digits as an abbreviation of the regex [0-9]+

e This doesn’t add expressive power to the language

* Doesn’t work for example above: try expanding the definition of
sum In expr:
eexpr = digits | “(“ sum “)”
sexpr = digits | “(” expr “+" expr “)”
*But expr is an abbreviation, so we expand it and get

sexpr = digits |
H(M (digits | u(u expr "y expr U)")
"4 n (digitS | U(M expr "4 n expr M)H) U)"
e Uh oh...

Context-Free Grammars

e Additional expressive power of recursion is exactly what we
need!

e Context Free Grammars (CFGs) are regular expressions with
recursion

°(C
o(C

-Gs provide declarative speci

-G has set of productions of t
symbol = symbol symbol

fication of syntactic structure

ne form
... Ssymbol

with zero or more symbols on the right

e Each symbol is either terminal (i.e., token from the alphabet)
or non-terminal (i.e., appears on the LHS of some production)

*No terminal symbols appear on the LHS of productions

CFG example

S—5S: S F— id | =
S—id :=F F — num L= L, E
S—print (L) E—-FE+E

E— (S, E)

eTerminals are: id print num , + () := ;
e Non-terminals are: S, E, L
S is the start symbol

°E.g., one sentence in the language is
1d := num; 1id := (i1d := num+num, 1id+id)

* Source text (before lexical analysis) might have been
a := 7; b := (¢ := 30+5, a+c)

*To show that a sentence is in the language of a grammar, we

Derivati

can perform a derivation

e Start with start symbol, repeatedly replace a non-terminal by its

right hand side

°k.g.,

°5
°SkFS

eid :=F;

S

eid :=|f}id

eid := num;

eid := num;

Stephen Chong, Harvard University

= f

1d

1d

(id

num+num,

S—+5: 5
S—id :=FE

S =2 print (L)

E— id

F — num

F— E+E

E— (S, E)
id+id)L—~ £

L - 1L, E

10

CFGs and Regula

* CFGs are strictly more expressive than regular
expressions

Stephen Chong, Harvard University 11

* A parse tree connects each symbol to the symbol it was

derived from

A derivation is, in essence, a way of constructing a parse tree.
e Two different derivations may have the same parse tree

Stephen Chong, Harvard University

+ num

S5 5
S—id :=E
S = print (L)
E— id
E — num
E—E+E
E— (S, E)
[= E

L =L, E

12

How to Build a Parse Tree/
Find a Derivation

e Conceptually, two possible ways:

e Start from start symbol, choose a non-terminal and expand
until you reach the sentence

o Start from the terminals and replace phrases with non-terminals

How to Build a Parse Tree/
Find a Derivation

e Conceptually, two possible ways:

e Start from start symbol, choose a non-terminal and expand
until you reach the sentence

o Start from the terminals and replace phrases with non-terminals

Ambiguous Grammar

* A grammar is ambiguous if it can derive a sentence with two
different parse trees

B8 £ ; ;
E — num /|\ /I\
F— F*F E -t E - ¢t
E>E/E /l\ | | /‘\
F— E+F £ - B 8 6 bt -
E— (F) 6 7 7 8

e Ambiguity is usual bad: different parse trees often have different
meaning!

e But we can usually eliminate ambiguity by transforming the
grammar

Fixing Ambiguity Example

*We would like * to bind higher than +
(aka, * to have higher precedence than +)

°So 1+2*3 means 1+(2*3) instead of (1+2)*3

*\We would like each operator to associate to the left
*So 6-7-8 means (6-7)-8 instead of 6-(7-8)

*Symbol E for expression, T for term, F for factor

EFo>E+T ToT*F Foid
E—>EFE-T I —=T/F F — num
E— T I —F F— (E)

How to Parse

e Manual, (recursive descent) Top down
*Easy to write
e Good error messages
* Tedious, hard to maintain
e Parsing Combinators
e Encode grammars as higher-order functions

e Essentially, functions generate a recursive descent parser

® A N tl I" http://www.antlr.org/

® Yacc Bottom up

http://www.antlr.org/

Recursiv

*See file recdesc-a.ml
*Try the following:

*exp parse “32"

7 in 42"
7 let bar”

*exp parse “let foo

*exp parse “let foo

Stephen Chong, Harvard University 18

Recursive

*See file recdesc-b.ml
* More direct implementation of grammar

E—= E+ 7T I =T *F F— id
E—>E-T IT—=>T/F F = num
E— T I —=F F— (E)

e Fach non-terminal is a function

Stephen Chong, Harvard University 19

Left Rec

e Recursive descent parsing doesn’t handle left recursion well!
*\We can refactor grammar to avoid left recursion
oE.g., transform left recursive grammar

F—E+T I —=T7T=*F F— id

E—=>E-1T Ir—-T/F F = num

E— T I—=F F— (E)
to

E— TE I = FT F— id

E"—> + TFE ["—=*FT F — num

E'—= - TEF "=/ FT F— (E)

E - T —

Stephen Chong, Harvard University 20

Left

*See file recdesc-c.ml
*Try the following:

*exp parse "6 - 7 = 8";; Observe the left associativity

Stephen Chong, Harvard University 21

Parser Combinators

* Parser combinators are an elegant functional-
programming technique for parsing

e Higher-order functions that accept parsers as input and
returns a new parser as output

e That’s what our code already is!

