HARVARD

John A. Paulson
School of Engineering and Applied Sciences

CS153: Compilers Lecture 10: LL Parsing

Stephen Chong

https://www.seas.harvard.edu/courses/cs153
Contains content from lecture notes by Greg Morrisett

Announcements

-HW3 LLVMlite out - Due Oct 15

Today

- LL Parsing
- Nullable, First, Follow sets
- Constructing an LL parsing table

LL(k) Parsing

- Our parser combinators backtrack
-alt p1 p2 = fun cs -> (p1 cs) @ (p2 c2) runs p1 on cs, then backs up and runs p2 on same input!
- Inefficient! Tries all possible parses
- Could we somehow know which production to use?
- Basic idea: look at the next k symbols to predict whether we want p1 or p2
-How do we predict which production to use?

FIRST Sets

- Given string γ of terminal and non-terminal symbols FIRST (γ) is set of all terminal symbols that can start a string derived from γ

$$
\begin{array}{lll}
E \rightarrow T E^{\prime} & T \rightarrow F T^{\prime} & F \rightarrow \text { id } \\
E^{\prime} \rightarrow+T E^{\prime} & T^{\prime} \rightarrow * F T^{\prime} & F \rightarrow \text { num } \\
E^{\prime} \rightarrow-T E^{\prime} & T^{\prime} \rightarrow / F T^{\prime} & F \rightarrow(E) \\
E^{\prime} \rightarrow & T^{\prime} \rightarrow &
\end{array}
$$

-E.g., $\operatorname{FIRST}\left(F T^{\prime}\right)=\{$ id, num, (\}
-We can use FIRST sets to determine which production to use!
-Given nonterminal X, and all its productions

$$
X \rightarrow \gamma_{1}, X \rightarrow \gamma_{2}, \ldots, X \rightarrow \gamma_{n},
$$

if $\operatorname{FIRST}\left(\gamma_{1}\right), \ldots, \operatorname{FIRST}\left(\gamma_{n}\right)$ all mutually disjoint, then next character tells us which production to use

Computing FIRST Sets

- See Appel for algorithm. Intuition here...
- Consider FIRST(X Y Z)
- How do compute it? Do we just need to know FIRST(X)?
-What if X can derive the empty string?
- Then $\operatorname{FIRST}(Y) \subseteq \operatorname{FIRST}(X Y Z)$
-What if Y can also derive the empty string?
- Then $\operatorname{FIRST}(Z) \subseteq \operatorname{FIRST}(X Y Z)$

Computing FIRST, FOLLOW and Nullable

- To compute FIRST sets, we need to compute whether nonterminals can produce empty string
- $\operatorname{FIRST}(\gamma)=$ all terminal symbols that can start a string derived from γ
- $\operatorname{Nullable}(X)=$ true iff X can derive the empty string
-We will also compute:
$\operatorname{FOLLOW}(X)=$ all terminals that can immediately follow X - i.e., $t \in \operatorname{FOLLOW}(X)$ if there is a derivation containing $X t$
- Algorithm iterates computing these until fix point reached
- Note: knowing nullable (X) and $\operatorname{FIRST}(X)$ for all non-terminals X allows us to compute nullable (γ) and FIRST (γ) for arbitrary strings of symbols γ

Example

$S \rightarrow E$ eof
$E \rightarrow T E^{\prime}$
$E^{\prime} \rightarrow+T E^{\prime}$
$E^{\prime} \rightarrow-T E^{\prime}$
$E^{\prime} \rightarrow$
$T \rightarrow F T^{\prime}$
$T^{\prime} \rightarrow * F T^{\prime}$
$T^{\prime} \rightarrow / F T^{\prime}$
$T^{\prime} \rightarrow$
$F \rightarrow$ id
$F \rightarrow$ num
$F \rightarrow(E)$

	nullable	FIRST	FOLLOW
S	\perp		
E	\perp		
E^{\prime}	T		
T	\perp		
T^{\prime}	T		
F	\perp		

X is nullable if there is a production $X \rightarrow \gamma$ where γ is empty, or γ is all nullable nonterminals
T^{\prime} and E^{\prime} are nullable!
And, we've finished nullable. Why?

Example

$S \rightarrow E$ eof
$E \rightarrow T E^{\prime}$
$E^{\prime} \rightarrow+T E^{\prime}$
$E^{\prime} \rightarrow-T E^{\prime}$
$E^{\prime} \rightarrow$
$T \rightarrow F T^{\prime}$
$T^{\prime} \rightarrow * F T^{\prime}$
$T^{\prime} \rightarrow / F T^{\prime}$
$T^{\prime} \rightarrow$
$F \rightarrow$ id
$F \rightarrow$ num
$F \rightarrow(E)$

	nullable	FIRST	FOLLOW
S	\perp		
E	\perp		
E^{\prime}	T	+-	
T	\perp		
T^{\prime}	T	$* /$	
F	\perp	id num $($	

Given production $X \rightarrow t \gamma, t \in \operatorname{FIRST}(X)$

Example

$S \rightarrow E$ eof
$E \rightarrow T E^{\prime}$
$E^{\prime} \rightarrow+T E^{\prime}$
$E^{\prime} \rightarrow-T E^{\prime}$
$E^{\prime} \rightarrow$
$T \rightarrow F T^{\prime}$
$T^{\prime} \rightarrow * F T^{\prime}$
$T^{\prime} \rightarrow / F T^{\prime}$
$T^{\prime} \rightarrow$
$F \rightarrow$ id
$F \rightarrow$ num
$F \rightarrow(E)$

	nullable	FIRST	FOLLOW
S	\perp	id num (
E	\perp	id num (
E^{\prime}	T	+-	
T	\perp	id num (
T^{\prime}	T	* /	
F	\perp	id num (

Given production $X \rightarrow \gamma Y \sigma$, if nullable (γ) then $\operatorname{FIRST}(Y) \subseteq \operatorname{FIRST}(X)$ Repeat until no more changes...

Example

$S \rightarrow E$ eof
$E \rightarrow T E^{\prime}$
$E^{\prime} \rightarrow+T E^{\prime}$
$E^{\prime} \rightarrow-T E^{\prime}$
$E^{\prime} \rightarrow$
$T \rightarrow F T^{\prime}$
$T^{\prime} \rightarrow * F T^{\prime}$
$T^{\prime} \rightarrow / F T^{\prime}$
$T^{\prime} \rightarrow$

	nullable	FIRST	FOLLOW
S	\perp	id num (
E	\perp	id num (eof)
E^{\prime}	T	+-	eof)
T	\perp	id num (+- eof $)$
T^{\prime}	T	* /	+- eof $)$
F	\perp	id num ($* /+-$ eof $)$

Given production $X \rightarrow \gamma Z \delta \sigma$
$\operatorname{FIRST}(\delta) \subseteq \operatorname{FOLLOW}(Z)$
and if δ is nullable then $\operatorname{FIRST}(\sigma) \subseteq \operatorname{FOLLOW}(Z)$ and if $\delta \sigma$ is nullable then $\operatorname{FOLLOW}(X) \subseteq \operatorname{FOLLOW}(Z)$

Predictive Parsing Table

- Make predictive parsing table with rows nonterminals, columns terminals
- Table entries are productions
- When parsing nonterminal X, and next token is t, entry for X and t will tell us which production to use

$$
\begin{aligned}
& S \rightarrow E \text { eof } T \rightarrow F T^{\prime} \\
& E \rightarrow T E^{\prime} \quad T^{\prime} \rightarrow * F T^{\prime} \quad \text { Example } \\
& E^{\prime} \rightarrow+T E^{\prime} T^{\prime} \rightarrow / F T^{\prime} F \rightarrow \text { id } \\
& E^{\prime} \rightarrow-T E^{\prime} T^{\prime} \rightarrow \quad F \rightarrow \text { num } \\
& E^{\prime} \rightarrow \quad F \rightarrow(E)
\end{aligned}
$$

	id	mum	+	-	$*$	$/$	$($	$)$	eof
S	$S \rightarrow E$ oof	$S \rightarrow E$ oof					$S \rightarrow E$ eof		
E	$E \rightarrow T E^{\prime}$	$E \rightarrow T E^{\prime}$					$E \rightarrow T E^{\prime}$		
E^{\prime}			$E^{\prime} \rightarrow+T E^{\prime}$	$E^{\prime} \rightarrow-T E^{\prime}$				$E^{\prime} \rightarrow$	$E^{\prime} \rightarrow$
T	$T \rightarrow F T^{\prime}$	$T \rightarrow F T^{\prime}$					$T \rightarrow F T^{\prime}$		
T^{\prime}			$T^{\prime} \rightarrow$	$T^{\prime} \rightarrow$	$T^{\prime} \rightarrow * F T^{\prime}$	$T^{\prime} \rightarrow / F T^{\prime}$		$T^{\prime} \rightarrow$	$T^{\prime} \rightarrow$
F	$F \rightarrow$ id	$F \rightarrow \mathrm{num}$					$F \rightarrow(E)$		

For $X \rightarrow \gamma$, add $X \rightarrow \gamma$ to row X column t for all $t \in \operatorname{FIRST}(\gamma)$
For $X \rightarrow \gamma$, if γ is nullable, add $X \rightarrow \gamma$ to row X column t for all $t \in \operatorname{FOLLOW}(X)$

Example

	id	num	+	-	$*$	$/$	$($	$)$	eof
S	$S \rightarrow E$ eof	$S \rightarrow E$ eof					$S \rightarrow E$ eof		
E	$E \rightarrow T E^{\prime}$	$E \rightarrow T E^{\prime}$					$E \rightarrow T E^{\prime}$		
E^{\prime}			$E^{\prime} \rightarrow+T E^{\prime}$	$E^{\prime} \rightarrow-T E^{\prime}$				$E^{\prime} \rightarrow$	$E^{\prime} \rightarrow$
T	$T \rightarrow F T^{\prime}$	$T \rightarrow F T^{\prime}$					$T \rightarrow F T^{\prime}$		
T^{\prime}			$T^{\prime} \rightarrow$	$T^{\prime} \rightarrow$	$T^{\prime} \rightarrow * F T^{\prime}$	$T^{\prime} \rightarrow / F T^{\prime}$		$T^{\prime} \rightarrow$	$T^{\prime} \rightarrow$
F	$F \rightarrow$ id	$F \rightarrow \mathrm{num}$					$F \rightarrow(E)$		

- If each cell contains at most one production, parsing is predictive!
- Table tells us exactly which production to apply

Example

	id	mum	+	-	$*$	$/$	$($	$)$	eof
S	$S \rightarrow E$ oof	$S \rightarrow E$ eof					$S \rightarrow E$ eof		
E	$E \rightarrow T E^{\prime}$	$E \rightarrow T E^{\prime}$					$E \rightarrow T E^{\prime}$		
E^{\prime}			$E^{\prime} \rightarrow+T E^{\prime}$	$E^{\prime} \rightarrow-T E^{\prime}$				$E^{\prime} \rightarrow$	$E^{\prime} \rightarrow$
T	$T \rightarrow F T^{\prime}$	$T \rightarrow F T^{\prime}$					$T \rightarrow F T^{\prime}$		
T^{\prime}			$T^{\prime} \rightarrow$	$T^{\prime} \rightarrow$	$T^{\prime} \rightarrow * F T^{\prime}$	$T^{\prime} \rightarrow / F T^{\prime}$		$T^{\prime} \rightarrow$	$T^{\prime} \rightarrow$
F	$F \rightarrow$ id	$F \rightarrow$ mum					$F \rightarrow(E)$		

Parse S, next token is (, use $S \rightarrow E$ oof Parse E, next token is (, use $E \rightarrow T E^{\prime}$ Parse T, next token is (, use $T \rightarrow F T^{\prime}$ Parse F, next token is (, use $F \rightarrow(E)$

$$
1
$$

Example

	id	mum	+	-	$*$	$/$	$($	$)$	eof
S	$S \rightarrow E$ oof	$S \rightarrow E$ oof					$S \rightarrow E$ oof		
E	$E \rightarrow T E^{\prime}$	$E \rightarrow T E^{\prime}$					$E \rightarrow T E^{\prime}$		
E^{\prime}			$E^{\prime} \rightarrow+T E^{\prime}$	$E^{\prime} \rightarrow-T E^{\prime}$				$E^{\prime} \rightarrow$	$E^{\prime} \rightarrow$
T	$T \rightarrow F T^{\prime}$	$T \rightarrow F T^{\prime}$					$T \rightarrow F T^{\prime}$		
T^{\prime}			$T^{\prime} \rightarrow$	$T^{\prime} \rightarrow$	$T^{\prime} \rightarrow * F T^{\prime}$	$T^{\prime} \rightarrow / F T^{\prime}$		$T^{\prime} \rightarrow$	$T^{\prime} \rightarrow$
F	$F \rightarrow$ id	$F \rightarrow$ mum					$F \rightarrow(E)$		

Parse S, next token is (, use $S \rightarrow E$ eof Parse E, next token is (, use $E \rightarrow T E^{\prime}$ Parse T, next token is (, use $T \rightarrow F T^{\prime}$
Parse F, next token is (, use $F \rightarrow(E)$
Parse E, next token is id, use $E \rightarrow T E^{\prime}$
Parse T, next token is id, use $T \rightarrow F T^{\prime}$
Parse F, next token is id, use $F \rightarrow$ id
Parse T, next token is id, use $T \rightarrow F T$
Parse F, next token is id, use $F \rightarrow$ id
$(f o o+7)$ eof

Example

	id	mum	+	-	$*$	$/$	$($	$)$	eof
S	$S \rightarrow E$ eof	$S \rightarrow E$ oof					$S \rightarrow E$ eof		
E	$E \rightarrow T E^{\prime}$	$E \rightarrow T E^{\prime}$					$E \rightarrow T E^{\prime}$		
E^{\prime}			$E^{\prime} \rightarrow+T E^{\prime}$	$E^{\prime} \rightarrow-T E^{\prime}$				$E^{\prime} \rightarrow$	$E^{\prime} \rightarrow$
T	$T \rightarrow F T^{\prime}$	$T \rightarrow F T^{\prime}$					$T \rightarrow F T^{\prime}$		
T^{\prime}			$T^{\prime} \rightarrow$	$T^{\prime} \rightarrow$	$T^{\prime} \rightarrow * F T^{\prime}$	$T^{\prime} \rightarrow / F T^{\prime}$		$T^{\prime} \rightarrow$	$T^{\prime} \rightarrow$
F	$F \rightarrow$ id	$F \rightarrow$ num					$F \rightarrow(E)$		

($\left.F T^{\prime} E^{\prime}\right) T^{\prime} E^{\prime}$ eof (id $\left.T^{\prime} E^{\prime}\right) T^{\prime} E^{\prime}$ oof (id $\left.E^{\prime}\right) T^{\prime} E^{\prime}$ oof (id $\left.+T E^{\prime}\right) T^{\prime} E^{\prime}$ oof (id $\left.+F T^{\prime} E^{\prime}\right) T^{\prime} E^{\prime}$ emf

Parse F, next token is id, use $F \rightarrow$ id
Parse T^{\prime}, next token is + , use $T^{\prime} \rightarrow$
Parse E^{\prime}, next token is + , use $E^{\prime} \rightarrow+T E^{\prime}$
Parse T, next token is nom, use $T \rightarrow F T^{\prime}$
Parse F, next token is num, use $F \rightarrow$ num
$($ foo +7) oof

Example

	id	mum	+	-	$*$	$/$	$($	$)$	eof
S	$S \rightarrow E$ oof	$S \rightarrow E$ oof					$S \rightarrow E$ eof		
E	$E \rightarrow T E^{\prime}$	$E \rightarrow T E^{\prime}$					$E \rightarrow T E^{\prime}$		
E^{\prime}			$E^{\prime} \rightarrow+T E^{\prime}$	$E^{\prime} \rightarrow-T E^{\prime}$				$E^{\prime} \rightarrow$	$E^{\prime} \rightarrow$
T	$T \rightarrow F T^{\prime}$	$T \rightarrow F T^{\prime}$					$T \rightarrow F T^{\prime}$		
T^{\prime}			$T^{\prime} \rightarrow$	$T^{\prime} \rightarrow$	$T^{\prime} \rightarrow \star F T^{\prime}$	$T^{\prime} \rightarrow / F T^{\prime}$		$T^{\prime} \rightarrow$	$T^{\prime} \rightarrow$
F	$F \rightarrow$ id	$F \rightarrow$ mum					$F \rightarrow(E)$		

(id $\left.+F T^{\prime} E^{\prime}\right) T^{\prime} E^{\prime}$ eof Parse F, next token is nom, use $F \rightarrow$ num
$($ foo +7) eof (id $+\operatorname{num} T^{\prime} E^{\prime}$) $T^{\prime} E^{\prime}$ eof Parse T^{\prime}, next token is), use $T^{\prime} \rightarrow$ (id + mum E^{\prime}) $T^{\prime} E^{\prime}$ oof Parse E^{\prime}, next token is), use $E^{\prime} \rightarrow$
(id + numb) $T^{\prime} E^{\prime}$ eof
(id + numb) E^{\prime} eof
(id + numb) eof

Parse T^{\prime}, next token is eof, use $T^{\prime} \rightarrow$
Parse E^{\prime}, next token is eof, use $E^{\prime} \rightarrow$

LL(1), LL(k), LL(*)

- Grammars whose predictive parsing table contain at most one production per cell are called LL(1)

Left-to-right parse
i.e., go through token stream from left to right.
(Almost all parsers do this)

Leftmost derivation

Derivation expands the leftmost non-terminal

1-symbol lookahead

LL(1), $\operatorname{LL}(k), \operatorname{LL}\left({ }^{*}\right)$

- Grammars whose predictive parsing table contain at most one production per cell are called LL(1)
- Can be generalized to LL(2), LL(3), etc.
- Columns of predictive parsing table have k tokens
- FIRST (X) generalized to FIRST-k(X)
- An LL(*) grammar can determine next production using finite (but maybe unbounded) lookahead
- An ambiguous grammar is not $\operatorname{LL}(k)$ for any k, or even LL(*)
-Why?

$\operatorname{LR}(k)$

-What if grammar is unambiguous but not $\operatorname{LL}(k)$?

- $\mathrm{LR}(k)$ parsing is more powerful technique

Rightmost derivation
Derivation expands the rightmost non-terminal
(Constructs derivation in reverse order!)

