John A. Paulson
School of Engineering and Applied Sciences

CS153: Compilers Lecture 11: LR Parsing

Stephen Chong
 https://www.seas.harvard.edu/courses/cs153
 Contains content from lecture notes by Greg Morrisett and Steve Zdancewic

Announcements

- Reminder: CS Nights, Tuesdays 8pm
-With pizza!
- HW3 LLVMlite out
- Due Tuesday Oct 15 (1 week)
- HW4 Oat v1 will be released today
- Due Tuesday Oct 29 (3 weeks)
- Simple C-like Imperative Language
- supports 64-bit integers, arrays, strings
- top-level, mutually recursive procedures
- scoped local, imperative variables
- Compile to LLVMlite

Today

- Oat overview
- LR Parsing
-Constructing a DFA and LR parsing table - Using Menhir

HW4: Oat v1

- Oat is a simple C-like imperative language
- supports 64-bit integers, arrays, strings
- top-level, mutually recursive procedures
- scoped local, imperative variables
- See examples in hw04/at1 programs directory
- You will:
- Finish implementing lexer and parser
- Compile from Oat v1 to LLVMlite
- You can use your backend.ml from HW3 to compile from LLVMlite to X86!
- HW5 will extend Oat with more features...

Derivation expands the rightmost non-terminal
(Constructs derivation in reverse order!)

$\operatorname{LR}(k)$

- Basic idea: LR parser has a stack and input
- Given contents of stack and k tokens look-ahead parser does one of following operations:
- Shift: move first input token to top of stack
- Reduce: top of stack matches rule, e.g., $X \rightarrow A B C$
- Pop C, pop B, pop A, and push X

Example

$$
\begin{aligned}
& E \rightarrow \text { int } \\
& E \rightarrow(E) \\
& E \rightarrow E+E
\end{aligned}
$$

Stack
Input

$$
(3+4)+(5+6)
$$

Shift (on to stack

Example

$$
\begin{aligned}
& E \rightarrow \text { int } \\
& E \rightarrow(E) \\
& E \rightarrow E+E
\end{aligned}
$$

Stack
Input (

$$
3+4)+(5+6)
$$

Shift (on to stack Shift 3 on to stack

Example

$$
\begin{aligned}
& E \rightarrow \text { int } \\
& E \rightarrow(E) \\
& E \rightarrow E+E
\end{aligned}
$$

Stack
(3

Input
$+4)+(5+6)$

Shift (on to stack Shift 3 on to stack Reduce using rule $E \rightarrow$ int

Example

$$
\begin{aligned}
& E \rightarrow \text { int } \\
& E \rightarrow(E) \\
& E \rightarrow E+E
\end{aligned}
$$

Stack
(E

Input
$+4)+(5+6)$

Shift (on to stack Shift 3 on to stack Reduce using rule $E \rightarrow$ int Shift + on to stack

Example

$$
\begin{aligned}
& E \rightarrow \text { int } \\
& E \rightarrow(E) \\
& E \rightarrow E+E
\end{aligned}
$$

Stack ($E+$

Input
$4)+(5+6)$

Shift (on to stack Shift 3 on to stack Reduce using rule $E \rightarrow$ int Shift + on to stack Shift 4 on to stack

Example

$$
\begin{aligned}
& E \rightarrow \text { int } \\
& E \rightarrow(E) \\
& E \rightarrow E+E
\end{aligned}
$$

Stack
Input

$$
(E+4
$$

$$
)+(5+6)
$$

Shift (on to stack Shift 3 on to stack
Reduce using rule $E \rightarrow$ int
Shift + on to stack
Shift 4 on to stack
Reduce using rule $E \rightarrow$ int

Example

$$
\begin{aligned}
& E \rightarrow \text { int } \\
& E \rightarrow(E) \\
& E \rightarrow E+E
\end{aligned}
$$

Stack
Input
($E+E$

$$
)+(5+6)
$$

Shift (on to stack Shift 3 on to stack Reduce using rule $E \rightarrow$ int Shift + on to stack Shift 4 on to stack Reduce using rule $E \rightarrow$ int Reduce using rule $E \rightarrow E+E$

Example

$$
\begin{aligned}
& E \rightarrow \text { int } \\
& E \rightarrow(E) \\
& E \rightarrow E+E
\end{aligned}
$$

Stack
Input
(E
) $+(5+6)$
Reduce using rule $E \rightarrow E+E$ Shift) on to stack

Example

$$
\begin{aligned}
& E \rightarrow \text { int } \\
& E \rightarrow(E) \\
& E \rightarrow E+E
\end{aligned}
$$

Stack
(E)

Input
$+(5+6)$
Reduce using rule $E \rightarrow E+E$
Shift) on to stack
Reduce using rule $E \rightarrow(E)$

Example

$$
\begin{aligned}
& E \rightarrow \text { int } \\
& E \rightarrow(E) \\
& E \rightarrow E+E
\end{aligned}
$$

Stack
Input
E
$+(5+6)$
Reduce using rule $E \rightarrow E+E$
Shift) on to stack
Reduce using rule $E \rightarrow(E)$
Shift + on to stack

Example

$$
\begin{aligned}
& E \rightarrow \text { int } \\
& E \rightarrow(E) \\
& E \rightarrow E+E
\end{aligned}
$$

Stack

$$
E+
$$

Input
(5+6)
Reduce using rule $E \rightarrow E+E$
Shift) on to stack
Reduce using rule $E \rightarrow(E)$
Shift + on to stack
... and so on ...

Example

$$
\begin{aligned}
& E \rightarrow \text { int } \\
& E \rightarrow(E) \\
& E \rightarrow E+E
\end{aligned}
$$

Stack
Input

$$
E+(E
$$

$$
+6)
$$

Reduce using rule $E \rightarrow E+E$
Shift) on to stack
Reduce using rule $E \rightarrow(E)$
Shift + on to stack
... and so on ...

Example

$$
\begin{aligned}
& E \rightarrow \text { int } \\
& E \rightarrow(E) \\
& E \rightarrow E+E
\end{aligned}
$$

Stack
Input

$$
E+(E+E
$$

)

Reduce using rule $E \rightarrow E+E$
Shift) on to stack
Reduce using rule $E \rightarrow(E)$
Shift + on to stack
... and so on ...

Example

$$
\begin{aligned}
& E \rightarrow \text { int } \\
& E \rightarrow(E) \\
& E \rightarrow E+E
\end{aligned}
$$

Stack
Input

$$
E+(E
$$

)

Reduce using rule $E \rightarrow E+E$
Shift) on to stack
Reduce using rule $E \rightarrow(E)$
Shift + on to stack
... and so on ...

Example

$$
\begin{aligned}
& E \rightarrow \text { int } \\
& E \rightarrow(E) \\
& E \rightarrow E+E
\end{aligned}
$$

Stack
Input

$$
E+E
$$

Reduce using rule $E \rightarrow E+E$
Shift) on to stack
Reduce using rule $E \rightarrow(E)$
Shift + on to stack
... and so on ...

Example

$$
\begin{aligned}
& E \rightarrow \text { int } \\
& E \rightarrow(E) \\
& E \rightarrow E+E
\end{aligned}
$$

Stack
Input
E

Reduce using rule $E \rightarrow E+E$
Shift) on to stack
Reduce using rule $E \rightarrow(E)$
Shift + on to stack
... and so on ...

Rightmost derivation

-LR parsers produce a rightmost derivation

- But do reductions in reverse order

What Action to Take?

- How does the LR(k) parser know when to shift and to reduce?
- Uses a DFA
- At each step, parser runs DFA using symbols on stack as input
- Input is sequence of terminals and non-terminals from bottom to top
- Current state of DFA plus next k tokens indicate whether to shift or reduce

Building the DFA for LR parsing

- Sketch only. For details, see Appel
- States of DFA are sets of items
- An item is a production with an indication of current position of parser
- E.g., Item $E \rightarrow E .+E$ means that for production $E \rightarrow E+$ E, we have parsed first expression E have yet to parse + token
- In general, item $X \rightarrow \gamma$. δ means γ is at the top of the stack, and at the head of the input there is a string derivable from δ

Example: LR(0)

Add new start symbol with production to indicate end-of-file

First item of first state: at the start of input
State 1: item is about to parse S : add productions for S
From state 1 , can take x , moving us to state 2
From state 1, can take (, moving us to state 3
State 3: item is about to parse L : add productions for L
Stephen State 3: item is about to parse S : add productions for S

Example: LR(0)

$$
\begin{aligned}
& S^{\prime} \rightarrow S \text { eof } \\
& S \rightarrow(L) \\
& S \rightarrow \mathrm{x} \\
& L \rightarrow S \\
& L \rightarrow L, S
\end{aligned}
$$

State 1: can take S, moving us to state 4
State 4 is an accepting state (if at end of input)

Example: LR(0)

Continue to add states based on next symbol in item

Example LR(0)

- Build action table
- If state contains item $X \rightarrow \gamma$.eof then accept
- If state contains item $X \rightarrow \gamma$. then reduce $X \rightarrow \gamma$

State	Action
1	shift
2	reduce $S \rightarrow \mathrm{x}$
3	shift
4	accept
5	shift
6	reduce $S \rightarrow(L)$
7	reduce $L \rightarrow S$
8	shift
9	reduce $L \rightarrow L, S$

- If state i has edge to j with terminal then shift

Using the DFA \& Action Table

- At each step, parser runs DFA using symbols on stack as input
- Input is sequence of terminals and non-terminals from bottom to top
- Current state of DFA and action table indicate whether to shift or reduce

Example Revisited

$$
\begin{aligned}
& S^{\prime} \rightarrow S \text { eof } \\
& S \rightarrow(L) \\
& S \rightarrow \mathrm{x} \\
& L \rightarrow S
\end{aligned}
$$

Stack $L \rightarrow L, S$

Shift (on to stack

State	Action
1	shift
2	reduce $S \rightarrow \mathrm{x}$
3	shift
4	accept
5	shift
6	reduce $S \rightarrow(L$)
7	reduce $L \rightarrow S$
8	shift
9	reduce $L \rightarrow L, S$

Shift (on to stack Shift x on to stack

State	Action
1	shift
2	reduce $S \rightarrow \mathrm{x}$
3	shift
4	accept
5	shift
6	reduce $S \rightarrow(L$)
7	reduce $L \rightarrow S$
8	shift
9	reduce $L \rightarrow L, S$

Example Revisited
 $$
\begin{aligned} & S^{\prime} \rightarrow S \text { eof } \\ & S \rightarrow(L) \\ & S \rightarrow \mathrm{x} \\ & L \rightarrow S \end{aligned}
$$
 Stack
 $L \rightarrow L, S$
 (x

 $S \rightarrow(L)$ Input
 , x)

Shift (on to stack Shift x on to stack
Reduce $S \rightarrow \mathbf{x}$

State	Action
1	shift
2	reduce $S \rightarrow \mathrm{x}$
3	shift
4	accept
5	shift
6	reduce $S \rightarrow(L)$
7	reduce $L \rightarrow S$
8	shift
9	reduce $L \rightarrow L, S$

Example Revisited
 $$
\begin{aligned} & S^{\prime} \rightarrow S \text { eof } \\ & S \rightarrow(L) \\ & S \rightarrow \mathrm{x} \\ & L \rightarrow S \end{aligned}
$$
 Stack $L \rightarrow L, S$

 (S

State	Action
1	shift
2	reduce $S \rightarrow \mathrm{x}$
3	shift
4	accept
5	shift
6	reduce $S \rightarrow(L$)
7	reduce $L \rightarrow S$
8	shift
9	reduce $L \rightarrow L, S$

Example Revisited
 $$
\begin{aligned} & S^{\prime} \rightarrow S \text { eof } \\ & S \rightarrow(L) \\ & S \rightarrow \mathrm{x} \\ & L \rightarrow S \end{aligned}
$$
 Stack
 $L \rightarrow L, S$
 (L
 $$
L \rightarrow S .
$$

 , x)

Shift (on to stack Shift x on to stack
Reduce $S \rightarrow \mathbf{x}$
Reduce $L \rightarrow S$
Shift, on to stack

State	Action
1	shift
2	reduce $S \rightarrow \mathrm{x}$
3	shift
4	accept
5	shift
6	reduce $S \rightarrow(L$)
7	reduce $L \rightarrow S$
8	shift
9	reduce $L \rightarrow L, S$

Example Revisited
 $$
\begin{aligned} & S^{\prime} \rightarrow S \text { eof } \\ & S \rightarrow(L) \\ & S \rightarrow \mathrm{x} \\ & L \rightarrow S \end{aligned}
$$
 Stack
 $L \rightarrow L, S$
 (L,

Shift (on to stack Shift x on to stack
Reduce $S \rightarrow \mathbf{x}$
Reduce $L \rightarrow S$
Shift, on to stack
Shift x on to stack

State	Action
1	shift
2	reduce $S \rightarrow \mathrm{x}$
3	shift
4	accept
5	shift
6	reduce $S \rightarrow(L$)
7	reduce $L \rightarrow S$
8	shift
9	reduce $L \rightarrow L, S$

Example Revisited
 $$
\begin{aligned} & S^{\prime} \rightarrow S \text { eof } \\ & S \rightarrow(L) \\ & S \rightarrow \mathrm{x} \\ & L \rightarrow S \end{aligned}
$$
 Stack

Shift (on to stack Shift x on to stack
Reduce $S \rightarrow \mathbf{x}$
Reduce $L \rightarrow S$
Shift, on to stack
Shift x on to stack Reduce $S \rightarrow \mathbf{x}$

State	Action
1	shift
2	reduce $S \rightarrow \mathrm{x}$
3	shift
4	accept
5	shift
6	reduce $S \rightarrow(L$)
7	reduce $L \rightarrow S$
8	shift
9	reduce $L \rightarrow L, S$

Example Revisited
 $$
\begin{aligned} & S^{\prime} \rightarrow S \text { eof } \\ & S \rightarrow(L) \\ & S \rightarrow \mathrm{x} \\ & L \rightarrow S \end{aligned}
$$
 Stack
 $L \rightarrow L, S$
 $$
(L, S
$$

Shift (on to stack Shift x on to stack
Reduce $S \rightarrow \mathbf{x}$
Reduce $L \rightarrow S$
Shift, on to stack
Shift x on to stack Reduce $S \rightarrow \mathbf{x}$

State	Action
1	shift
2	reduce $S \rightarrow \mathrm{x}$
3	shift
4	accept
5	shift
6	reduce $S \rightarrow(L)$
7	reduce $L \rightarrow S$
8	shift
9	reduce $L \rightarrow L, S$

Example
 $$
\begin{aligned} & S^{\prime} \rightarrow S \text { eof } \\ & S \rightarrow(L) \\ & S \rightarrow \mathrm{x} \\ & L \rightarrow S \end{aligned}
$$

 RevisitedStack $L \rightarrow L, S$
(LIS

Reduce $S \rightarrow \mathrm{x}$
Reduce $L \rightarrow L$, S

State	Action
1	shift
2	reduce $S \rightarrow \mathrm{x}$
3	shift
4	accept
5	shift
6	reduce $S \rightarrow(L$)
7	reduce $L \rightarrow S$
8	shift
9	reduce $L \rightarrow L, S$

Example Revisited
 $$
\begin{aligned} & S^{\prime} \rightarrow S \text { eof } \\ & S \rightarrow(L) \\ & S \rightarrow \mathrm{x} \\ & L \rightarrow S \end{aligned}
$$
 Stack $L \rightarrow L, S$
 (L

Reduce $S \rightarrow \mathrm{x}$
Reduce $L \rightarrow L$, S
Shift) on to stack

State	Action
1	shift
2	reduce $S \rightarrow \mathrm{x}$
3	shift
4	accept
5	shift
6	reduce $S \rightarrow(L$)
7	reduce $L \rightarrow S$
8	shift
9	reduce $L \rightarrow L, S$

Example Revisited
 $$
\begin{aligned} & S^{\prime} \rightarrow S \text { eof } \\ & S \rightarrow(L) \\ & S \rightarrow \mathrm{x} \\ & L \rightarrow S \end{aligned}
$$

Stack $L \rightarrow L, S$
(L)

Reduce $S \rightarrow \mathrm{x}$
Reduce $L \rightarrow L$, S
Shift) on to stack
Reduce $S \rightarrow(L)$

State	Action
1	shift
2	reduce $S \rightarrow \mathrm{x}$
3	shift
4	accept
5	shift
6	reduce $S \rightarrow(L)$
7	reduce $L \rightarrow S$
8	shift
9	reduce $L \rightarrow L, S$

Example Revisited

$$
\begin{aligned}
& S^{\prime} \rightarrow S \text { eof } \\
& S \rightarrow(L) \\
& S \rightarrow \mathrm{x} \\
& L \rightarrow S
\end{aligned}
$$

Stack $L \rightarrow L, S$

Reduce $S \rightarrow \mathbf{x}$
Reduce $L \rightarrow L$, S
Shift) on to stack
Reduce $S \rightarrow(L)$
Accept!

State	Action
1	shift
2	reduce $S \rightarrow \mathrm{x}$
3	shift
4	accept
5	shift
6	reduce $S \rightarrow(L)$
7	reduce $L \rightarrow S$
8	shift
9	reduce $L \rightarrow L, S$

Implementation Details

- Optimization: no need to run DFA from start state each time
- Use stack to also record information about which DFA state corresponds to it
- Combine DFA and action table into single lookup table

LR(0) Limitations

- An $\operatorname{LR}(0)$ machine only works if states with reduce actions have a single reduce action.
- In such states, the machine always reduces (ignoring lookahead)
- With more complex grammars, the DFA construction will yield states with shift/reduce and reduce/reduce conflicts:

OK

$$
\binom{S \rightarrow(L)}{L \rightarrow . L, S}
$$

Shift/reduce conflict

$$
\left(\begin{array}{l}
S \rightarrow L, S . \\
S \rightarrow, S .
\end{array}\right.
$$

Reduce/reduce conflict

- Such conflicts can often be resolved by using a look-ahead symbol: LR(1)

LR(1)

- In practice, $\operatorname{LR}(1)$ is used for LR parsing
- not LR(0) or LR(k) for $k>1$
- Item is now pair $(X \rightarrow \gamma . \delta, x)$
- Indicates that γ is at the top of the stack, and at the head of the input there is a string derivable from δx (where x is terminal)
- Algorithm for constructing state transition table and action table adapted. See Appel for details.
- Closure operation when constructing states uses FIRST(), incorporating lookahead token
- Action table columns now terminals (i.e., 1-token lookahead)
- Note: state transition relation and action table typically combined into single table, called parsing table

LR(0) Conflicts

- Consider the left associative and right associative "sum" grammars: left
right

$$
\begin{array}{ll}
S \rightarrow S+E & S \rightarrow E+S \\
S \rightarrow E & S \rightarrow E \\
E \rightarrow \text { num } & E \rightarrow \text { num } \\
E \rightarrow(S) & E \rightarrow(S)
\end{array}
$$

- One is $\operatorname{LR}(0)$ the other isn't... which is which and why?
-What kind of conflict do you get? Shift/reduce or Reduce/reduce?
- Right associative gives a Shift/reduce conflict
- Between items $S \rightarrow E .+S$ and $S \rightarrow E$.
- Ambiguities in associativity/precedence usually lead to shift/reduce conflicts

Dangling Else Problem

- Many language have productions such as

$$
\begin{aligned}
& S \rightarrow \text { if } E \text { then } S \text { else } S \\
& S \rightarrow \text { if } E \text { then } S \\
& S \rightarrow \ldots
\end{aligned}
$$

- Program if a then if b then s1 else s2 could be either if a then $\{$ if b then $s 1$ \} else s2 or if a then $\{i f \quad b$ then $s 1$ else $s 2\}$
- In LR parsing table there will be a shift-reduce conflict
$-S \rightarrow$ if E then S. with lookahead else: reduce
- $S \rightarrow$ if E then S. else S with any lookahead: shift
-Which action corresponds to which interpretation of

$$
\text { if } a \text { then if } b \text { then } s 1 \text { else } s 2 \text { ? }
$$

Resolving Ambiguity

-Could rewrite grammar to avoid ambiguity
-E.g.,

$$
\begin{aligned}
& S \rightarrow O \\
& O \rightarrow V:=E \\
& O \rightarrow \text { if } E \text { then } O \\
& O \rightarrow \text { if } E \text { then } C \text { else } O \\
& C \rightarrow V:=E \\
& C \rightarrow \text { if } E \text { then } C \text { else } C
\end{aligned}
$$

Resolving Ambiguity

- Or tolerate conflicts, indicating how to resolve conflict
-E.g., for dangling else, prefer shift to reduce.
-i.e., for if a then if b then s1 else s2 prefer if a then \{if b then s1 else s2 \} over if a then \{ if b then s1 \} else s2
-i.e., else binds to closest if
- Expression grammars can express operator-precedence by resolution of conflicts
- Use sparingly! Only in well-understood cases
- Most conflicts are indicative of ill-specified grammars

YACC and Menhir

- Yet Another Compiler-Compiler
- Originally developed in early 1970s
- Various versions/reimplimentations
- Berkeley Yacc, Bison, Ocamlyacc, ...
- From a suitable grammar, constructs an LALR(1) parser
- A kind of LR parser, not as powerful as LR(1)
- Most practical LR(1) grammars will be LALR(1) grammars
- Menhir
- "90\% compatible with ocamlyacc"
- Adds some additional features including better explanations of conflicts

Menhir

- Usage: menhir options grammar.mly
- Produces output files
- grammar.ml: OCaml code for a parser
- grammar.mli: interface for parser

Structure of Menhir File

```
% {
    header
% }
    declarations
%%
    rules
%%
trailer
```

- Header and trailer are arbitrary OCaml code, copied to the output file
- Declarations of tokens, start symbols, OCaml types of symbols, associativity and precedence of operators
- Rules are productions for nonterminals, with semantic actions (OCaml expressions that are executed with production is reduced, to produce value for symbol)

Menhir example

- See parser-eg.mll and output files parser-eg.ml
and parser-eg.mli
- Typically, the .mly declares the tokens, and the lexer opens the parser module
- You can get verbose ocamlyacc debugging information by doing: - menhir --explain...
- or, if using ocamlbuild:
ocamlbuild -use-menhir -yaccflag --explain...
- The result is a <basename>.conflicts file that contains a description of the error
- The parser items of each state use the '.' just as described above
- The flag --dump generates a full description of the automaton
- Example: see start-parser.mly

