John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 11: LR Parsing

HARVARD

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

Contains content from lecture notes by Greg Morrisett and Steve Zdancewic

https://www.seas.harvard.edu/courses/cs153

Announcements

eReminder: CS Nights, Tuesdays 8pm
e With pizza!

e HW3 LLVMIite out
e Due Tuesday Oct 15 (1 week)

e HW4 Oat v1 will be released today

°Due
*Simp

e C-

*Sup

'uesday Oct 29 (3 weeks)

ike Imperative Language

ports 64-bit integers, arrays, strings

» top-level, mutually recursive procedures

* scoped local, imperative variables

e Compile to LLVMlite

e Oat overview

* LR Parsing
e Constructing a DFA and LR parsing table
e Using Menhir

Stephen Chong, Harvard University 3

HW4: Oat vl

e(Oat is a simple C-like imperative language
e supports 64-bit integers, arrays, strings
etop-level, mutually recursive procedures

escoped local, imperative variables

*See examples in hw04/at1programs directory
*You will:

e Finish implementing lexer and parser
e Compile from Oat v1 to LLVMlite

* You can use your backend.ml from HW3 to compile from
LLVMlite to X86!

e HW5 will extend Oat with more features...

Left-to-right parse Rightmost derivation

k-symbol lookahead

Derivation expands the
rightmost non-terminal

(Constructs derivation in
reverse order!)

Stephen Chong, Harvard University 5

LR(

eBasic idea: LR parser has a stack and input

e Given contents of stack and k tokens look-ahead
parser does one of following operations:

» Shift: move first input token to top of stack

» Reduce: top of stack matches rule, e.g., X > A B C
» Pop C, pop B, pop A, and push X

Stephen Chong, Harvard University 6

E— int
£ = (F)
E—E+E
Stack Input
(3+4)+(5+6)

Shift (on to stack

Stephen Chong, Harvard University 7

E— int
£ = (F)
E—E+E
Stack Input
(3+4)+(5+6)

Shift (on to stack
Shift 3 on to stack

Stephen Chong, Harvard University 8

E— int
£ = (F)
E—E+E
Stack Input
(3 +4)+(5+6)

Shift (on to stack
Shift 3 on to stack
Reduce using rule E = int

Stephen Chong, Harvard University 9

E— int
E— (F)
E—> E+E
Stack Input
(E +4)+(5+6)

Shift (on to stack
Shift 3 on to stack
Reduce using rule E = int
Shift + on to stack

Stephen Chong, Harvard University 10

E— int
E— (F)
E—> E+E
Stack Input
(E+ 4)+(5+6)

Shift (on to stack
Shift 3 on to stack
Reduce using rule E = int
Shift + on to stack
Shift 4 on to stack

Stephen Chong, Harvard University 11

E— int
E— (F)
F— E+EF

Stack
(E+4

Shift (on to stack
Shift 3 on to stack
Reduce using rule E = int
Shift + on to stack
Shift 4 on to stack
Reduce using rule £ = int

Stephen Chong, Harvard University

Input
)+ (5+6)

12

E— int
E— (F)
F— E+EF

Stack
(E+E

Shift (on to stack

Shift 3 on to stack

Reduce using rule E = int
Shift + on to stack

Shift 4 on to stack

Reduce using rule £ = int
Reduce using rule E = E+ F

Stephen Chong, Harvard University

Input
)+ (5+6)

13

F— int
E— (F)
E— E+E
Stack Input
(E)+ (5+6)

Reduce using rule E = E+ E
Shift) on to stack

Stephen Chong, Harvard University 14

E— int
E— (F)
E— E+E
Stack Input
(£) +(5+6)

Reduce using rule E = E+ E
Shift) on to stack
Reduce using rule £ = (E)

Stephen Chong, Harvard University 15

E— int
E— (F)
F— E+EF

Stack
E

Reduce using rule E = E+ E
Shift) on to stack

Reduce using rule £ = (E)
Shift + on to stack

Stephen Chong, Harvard University

Input
+(5+6)

16

E— int
E— (F)
F— E+EF

Stack
E+

Reduce using rule E = E+ E
Shift) on to stack

Reduce using rule £ = (E)
Shift + on to stack

...and so on ...

Stephen Chong, Harvard University

Input
(5+6)

17

E— int
E— (F)
F— E+EF

Stack
F+(E

Reduce using rule E = E+ E
Shift) on to stack

Reduce using rule £ = (E)
Shift + on to stack

...and so on ...

Stephen Chong, Harvard University

Input
+6)

18

E— int
E— (F)
F— E+EF

Stack
E+(E+E

Reduce using rule E = E+ E
Shift) on to stack

Reduce using rule £ = (E)
Shift + on to stack

...and so on ...

Stephen Chong, Harvard University

Input

19

E— int
E— (F)
F— E+EF

Stack
F+(E

Reduce using rule E = E+ E
Shift) on to stack

Reduce using rule £ = (E)
Shift + on to stack

...and so on ...

Stephen Chong, Harvard University

Input

20

E— int
E— (F)
F— E+EF

Stack
E+E

Reduce using rule E = E+ E
Shift) on to stack

Reduce using rule £ = (E)
Shift + on to stack

...and so on ...

Stephen Chong, Harvard University

Input

21

E— int
E— (F)
F— E+EF

Stack
E

Reduce using rule E = E+ E
Shift) on to stack

Reduce using rule £ = (E)
Shift + on to stack

...and so on ...

Stephen Chong, Harvard University

Input

22

| R parsers produce a rightmost derivation

O,
@E/ \
|
19\

\

0

E
I
) + (5 + 6)

e But do reductions in reverse order

Stephen Chong, Harvard University 23

What Action to Take?

e How does the LR(k) parser know when to shift
and to reduce?

e Uses a DFA

* At each step, parser runs DFA using symbols on stack
as Input
* Input is sequence of terminals and non-terminals from
bottom to top

e Current state of DFA plus next k tokens indicate
whether to shift or reduce

Building the DFA for LR parsing

o Sketch only. For details, see Appel

e States of DFA are sets of items

* An item is a production with an indication of current

°f.g., Item

position of parser

E—FE . + F means that for production E=F +

E, we have parsed first expression E have yet to parse +

token

°[n genera

stack, anc

, item X—Y .0 means Y is at the top of the
at the head of the input there is a string

derivable from 0

Example:

Add new start symbol with production to indicate end-of-file

5" — .S eof <

S—= (L) >(5—>x.)

S x

- J\ -
((5—»(.L)\

[— .S
L—.L,S
S—= (L)
\S*>.x)

First item of first state: at the start of input

State 1: item is about to parse S: add productions for S
From state 1, can take x, moving us to state 2
From state 1, can take (, moving us to state 3
State 3: item is about to parse L: add productions for L

sephen < States3:dtemsis about to parse S: add productions for S

5" — S eof
S5—= (L)
S—=x

[=S
[L—>L,S

26

5" — S eof

S— (L)

State 1: can take S, moving us to state 4

State 4 is an accepting state (if at end of input)

Stephen Chong, Harvard University

5" — S eof
S—= (L)
S—x

[=S
L—L,S

27

Example: LR(0)

8
1 4) S 9
r ~ L—L,.S
5" Seof X 2 X S—= .(L) >[L—»L,S.]
52 .(L) >(5—>x. y S— .x
S— .x S _J
_)\ XT 3 T 5= S eof
sl ((S—>(.L)) © 5 S—= (L)
4 [— .S [) [
5’—>S.eof) L=>.L[,5 52(L.) X
S— (L) L—L.,S [=5

S x _ Y
4 e iy
G_'S‘) [5—»(“.]

Continue to add states based on next symbol in item

5" — S eof

S— (L)

eBuild action table

Example LR(0)

L—L,.S
S—= (L)
S .x
Y,
|- .
4)
S—=(L.)
[—L.,S
_ Y,

*|f state contains item X—Y.eof then accept
*|f state contains item X—Y. then reduce X—y
*|f state / has edge to j with terminal then shift

L—L,S.

State

—

2
3
4
5
6
/
8
9

Action
shift

reduce § = x

shift

accept

shift

reduce S = (L)

reducel = S

shift

reduce L =L ,S

29

Using the DFA & Action Table

* At each step, parser runs DFA using symbols on
stack as input

*|nput is sequence of terminals and non-terminals from
bottom to top

e Current state of DFA and action table indicate whether
to shift or reduce

Example
Revisited

5" = S eof
S—= (L)
S—x
[—S

Stack [~ *L°

State Action
shift

reduce S = x
shift

accept

shift

reduce S = (L)
reducel =& S
shift

reduce L =L ,S

A

Shift (on to stack

2
3
4
5
6
%
8
9

Stephen Chong, Harvard University

31

Example
Revisited

5" = S eof
S—= (L)
S—x
[—S

Stack [~ *L°
(

State Action
shift

reduce S = x
shift

accept

shift

reduce S = (L)
reducel =& S
shift

reduce L =L ,S

A

Shift (on to stack
Shift x on to stack

2
3
4
5
6
%
8
9

Stephen Chong, Harvard University

32

Example
Revisited

5" = S eof
S—= (L)
S—x
[—S

Stack [~ *L°

(X

Shift (on to stack
Shift x on to stack
Reduce § = x

Stephen Chong, Harvard University

2
3
4
5
6
%
8
9

shift

reduce S = x

shift

accept

shift

reduce S = (L)

reducel = S

shift

reduce L =L ,S

33

Example
Revisited

5" = S eof
5= (L)
S—x

L[> S
Stack [~ *L°
(S

Shift (on to stack
Shift x on to stack
Reduce S — x
Reducel = S

Stephen Chong, Harvard University

2
3
4
5
6
%
8
9

shift

reduce S = x

shift

accept

shift

reduce S = (L)

reducel = S

shift

reduce L =L ,S

34

Example

Revisited
5S> S eof
52 (L)
S—2x
[=S
Stack [~ 1Lr°
(L
Action
Shift (on to stack shift
Shift x on to stack :?f‘:ceS ~ X
Reduce § = x —

Reducel = S
Shift , on to stack

shift
reduce S = (L)

reducel = S
shift

reduce L =L ,S

2
3
4
5
6
%
8
9

35

Example

Revisited
5S> S eof
52 (L)
S—2x
[=S
Stack [~ 1Lr°
(L,
Action
Shift (on to stack shift
Shift x on to stack :?:CQS ~ X
Reduce § = x —

Reducel = S
Shift , on to stack
Shift x on to stack

shift

reduce S = (L)
reducel =& S
shift

reduce L =L ,S

2
3
4
5
6
%
8
9

36

Example
Revisited

5" = S eof
S—= (L)
S—x
[—S

Stack [~ *L°
(L, x

State Action
shift

reduce S = x
shift

accept

shift

reduce S = (L)
reducel =& S
shift

reduce L =L ,S

A

Shift (on to stack
Shift x on to stack
Reduce S — x
Reducel = S
Shift , on to stack
Shift x on to stack
Reduce S — x

2
3
4
5
6
%
8
9

37

Example
Revisited

5" = S eof
S—= (L)
S—x
[—S

Stack [~ *L°
(L, S

State Action
shift

reduce S = x
shift

accept

shift

reduce S = (L)
reducel =& S
shift

reduce L =L ,S

A

Shift (on to stack
Shift x on to stack
Reduce S — x
Reducel = S
Shift , on to stack
Shift x on to stack
Reduce S — x

2
3
4
5
6
%
8
9

38

Example
Revisited

S5 — § eof
5= (L)
S—+x
[=S
Stack [~ Lr°
(L, S
Reduce S = x State Action

shift

A

Reducel = L, S

reduce S = x

shift

accept

shift

reduce S = (L)

reducel = S

shift

2
3
4
5
6
%
8
9

reduce L =L ,S

Stephen Chong, Harvard University

39

Example
Revisited

5" = S eof
S—= (L)
S—x
[—S

Stack [~ *L°
(L

Reduce § — x
Reducel = L, S
Shift) on to stack

Stephen Chong, Harvard University

2
3
4
5
6
%
8
9

shift

reduce S = x

shift

accept

shift

reduce S = (L)

reducel = S

shift

reduce L =L ,S

40

Example

Revisited

5" — S eof

S— (L)

S x

[— S
Stack [~ Lr°

(L)
Reduce S — x State Action
Reduce L - L' S : i:cliflzceS—v X
Shift) on to stack o
Reduce § — (l.) accept
shift

reduce S = (L)
reducel = S
shift

reduce L =L ,S

2
3
4
5
6
%
8
9

Stephen Chong, Harvard University

41

Example

Revisited

5" — S eof

S— (L)

S—x

[— S
Stack [~ °L?
S
Reduce S — x State Action
Reduce L - L' S : i:cliflzceS—v X
Shift) on to stack o
Reduce § — (l.) accept

shift

Accept!

reduce S = (L)
reducel = S
shift

reduce L =L ,S
Stephen Chong, Harvard University 49

2
3
4
5
6
%
8
9

Implementation Details

e Optimization: no need to run DFA from start
state each time

e Use stack to also record information about which DFA
state corresponds to it

e Combine DFA and action table into single
lookup table

LR(0) Limitations

e An LR(0) machine only works if states with reduce actions
have a single reduce action.

*|n such states, the machine always reduces (ignoring lookahead)

* With more complex grammars, the DFA construction will
yield states with shift/reduce and reduce/reduce conflicts:

S—=(L). S—1L,S.
CEYTES B T T I (R

OK Shift/reduce conflict Reduce/reduce conflict

 Such conflicts can often be resolved by using a look-ahead
symbol: LR(T)

LR(1)

*|n practice, LR(1) is used for LR parsing
e not LR(0) or LR(k) for k>1

*ltem is now pair (XY . 0, x)

*Indicates that y is at the top of the stack, and at the head of the
input there is a string derivable from dx (where x is terminal)

* Algorithm for constructing state transition table and action table
adapted. See Appel for details.

» Closure operation when constructing states uses FIRST(), incorporating
lookahead token

 Action table columns now terminals (i.e., 1-token lookahead)

* Note: state transition relation and action table typically combined into
single table, called parsing table

LR(0) Contlicts

e Consider the left associative and right associative “sum” grammars:

left right
S—=>S+E S—=>E+S
S—E S—E
£ — num E — num
E— (S) E— (5)

*One is LR(0) the other isn’t... which is which and why?
e What kind of conflict do you get? Shift/reduce or Reduce/reduce?
e Right associative gives a Shift/reduce conflict

eBetween items S @ E. + Sand S — E.

e Ambiguities in associativity/precedence usually lead to shift/reduce
conflicts

Dangling Else Problem

* Many language have productions such as
S— if Fthen Selse$
S— if Fthen$
S ..
°Program if a then if b then sl else s2 couldbe

either if a then { if b then sl } else s2
or 1f a then {i1f b then sl else s2 }

°In LR parsing table there will be a shift-reduce conflict

S = if FthenS. with lookahead else: reduce

G — if Fthen S. else S with any lookahead: shift

*Which action corresponds to which interpretation of
if a then if b then sl else s2 /¢

Resolving

e Could rewrite grammar to avoid ambiguity
°k.g.,
S—=0
OV := [
O—if F then O
O—1if F then C else O
C—V :=F
C— if £ then Celse C

Stephen Chong, Harvard University

48

Resolving Ambiguity

* Or tolerate conflicts, indicating how to resolve
conflict
°E.g., for dangling else, prefer shift to reduce.

°j.e., forif a then if b then sl else s2
prefer if a then {if b then sl else s2 }
over i1f a then { 1f b then sl } else s?2

°j.e., else binds to closest if

e Expression grammars can express operator-precedence
by resolution of conflicts

e Use sparingly! Only in well-understood cases

e Most conflicts are indicative of ill-specified grammars

YACC and Menhir

*Yet Another Compiler-Compiler
*Originally developed in early 1970s

eVarious versions/reimplimentations
* Berkeley Yacc, Bison, Ocamlyacc, ...

eFrom a suitable grammar, constructs an LALR(1) parser

* A kind of LR parser, not as powerful as LR(1)
* Most practical LR(1) grammars will be LALR(1) grammars

e Menhir

*“90% compatible with ocamlyacc”

* Adds some additional features including better
explanations of conflicts

M

*Usage: menhir options grammar.mly
e Produces output files

e grammar.ml: OCaml code for a parser

egrammar.mli: interface for parser

Stephen Chong, Harvard University 51

Structure of Menhir File

header

declarations

rules

trailer

e Header and trailer are arbitrary
OCaml code, copied to the output file

e Declarations of tokens, start symbols,
OCaml types of symbols, associativity
and precedence of operators

eRules are productions for non-
terminals, with semantic actions
(OCaml expressions that are executed
with production is reduced, to
produce value for symbol)

Menhir example

*See parser-eg.mll
and output files parser-eg.ml
and parser-eg.mli

e Typically, the .mly declares the tokens, and the lexer opens the parser
module

*You can get verbose ocamlyacc debugging information by doing:

emenhir --explain...

eor, if using ocamlbuild:
ocamlbuild —use-menhir -yaccflag -—explain...

e The result is a <basename>.conflicts file that contains a description of the error
e The parser items of each state use the ‘" just as described above
*The flag ——dump generates a full description of the automaton

eExample: see start-parser.mly

