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Mid-course Eval

•Most effective: 
•Homeworks 
•Lectures 
•Piazza/OH

2

•Least effective: 
•Looking at code in class (too much, too little!) 
•Lecture material not relevant to current 

assignment 
•OH for extension
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Mid-course Eval

•Suggestions 
•Homework solutions 
•Idiomatic OCaml code 
•Go faster 
•“Stop using ocaml, it gets in the way of learning about 

compilers”, “This is not supposed to be an ocaml 
course, it's supposed to be a compilers course” 

•More type annotations in homework stub code 
•Long time to get OCaml set up 
•...

3
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Workload
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Mid-course Eval: Actions

•Concrete actions course staff: 
•More type annotations in future HWs 
•Will release reference solutions 
•Lectures will be same pace or a bit faster (but will still have lots of 

time for questions) 

•Concrete actions students: 
•Contact course staff re OH frequency/timing; we will try to adjust 
•Contact for additional info/feedback on graded HWs 
•Start HW early, reach out early and often for help 

•Notes: 
•Implementation course: coding/coding style is important 
•Pedagogical decision to release HWs only after material is covered

5
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Today

•Closure conversion 
•Implementing environments and variables 

•DeBruijn indices 
•Nested environments vs flat environments

6
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Closures

•Instead of doing substitution on nested functions when we reach 
the lambda, we can instead make a promise to finish the 
substitution if the nested function is ever applied 

•Instead of    
 | Lambda(x,e’) -> Lambda(x,subst env e’) 
we will have, in essence, 
 | Lambda(x,e’) -> Promise(env, Lambda(x, e’)) 
•Called a closure  

•Need to modify rule for application to expect environment

7
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Closure-based Semantics

8

type value = Int_v of int
           | Closure_v of {env:env, body:var*exp}
and  env = (string * value) list

let rec eval (e:exp) (env:env) : value = 
  match e with
  | Int i -> Int_v i
  | Var x -> lookup env x
  | Lambda(x,e) -> Closure_v{env=env, body=(x,e)}
  | App(e1,e2) -> 
      (match eval e1 env, eval e2 env with
       | Closure_v{env=cenv, body=(x,e’)}, v ->  
                 eval e’ ((x,v)::cenv))
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Inference rules

9

i ⇓ i Γ ⊢ x ⇓ v Γ ⊢

Γ(x) = v

e1 + e2 ⇓ i 

e1⇓ i1 e2⇓ i2 i = i1 + i2 

Γ ⊢

Γ ⊢ Γ ⊢

fun x -> e ⇓ (Γ, fun x -> e)Γ ⊢

e1 e2 ⇓ w 

e1⇓ (Γc, fun x -> e) e2⇓ v e ⇓ w

Γ ⊢

Γ ⊢ Γ ⊢ Γc[x↦v] ⊢
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So, How Do We Compile Closures?

•Represent function values (i.e., closures) as a pair of  
function pointer and environment 

•Make all functions take environment as an  
additional argument 

•Access variables using environment 

•Can then move all function declarations to  
top level (i.e., no more nested functions!) 

•E.g., fun x -> (fun y -> y+x) becomes, in C-like code:

10

closure *f1(env *env, int x) {  
  env *e1 = extend(env,“x”,x);  
  closure *c = 
       malloc(sizeof(closure));  
  c->env = e1; c->fn = &f2;  
  return c;  
} 

int f2(env *env, int y) {  
  env *e1 = extend(env,“y”,y);  
  return lookup(e1, “y”) 
          + lookup(e1, “x”);  
} 

Closure conversion

Lambda lifting
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Where Do Variables Live

•Variables used in outer function may be needed for nested 
function 
•e.g., variable x in example on previous slide 

•So variables used by nested functions can’t live on stack... 
•Allocate record for all variables on heap 
•This will be similar to objects (which we will see in a few 

lectures) 
•Object = struct for field values, plus pointer(s) to methods 
•Closure = environment plus pointer to code

11
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Closure Conversion

•Converting function values into closures 
•Make all functions take explicit environment argument 
•Represent function values as pairs of environments and lambda terms 
•Access variables via environment 

•E.g.,  
fun x -> (fun y -> y+x)  
becomes 
fun env x ->  
      let e’ = extend env “x” x in  
      (e’, fun env y ->  
            let e’ = extend env “y” y in  
            (lookup e’ “y”)+(lookup e’ “x”))

12
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Lambda Lifting

•E.g., 
 
 
 
 
 
becomes 
 
 
 
 
 
 

13

    fun env x ->  
          let e’ = extend env “x” x in  
          (e’, fun env y ->  
                let e’ = extend env “y” y in  
                (lookup e’ “y”)+(lookup e’ “x”)) 

    let f2 = fun env y ->  
                let e’ = extend env “y” y in  
                (lookup e’ “y”)+(lookup e’ “x”) 
    fun env x ->  
          let e’ = extend env “x” x in  
          (e’, f2)

•After closure conversion, nested functions do not directly use variables from 
enclosing scope 

•Can “lift” the lambda terms to top level functions!
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Lambda Lifting
•E.g., 
 
 
 
 
 
becomes 
 
 
 
 
 
 

14

    fun env x ->  
          let e’ = extend env “x” x in  
          (e’, fun env y ->  
                let e’ = extend env “y” y in  
                (lookup e’ “y”)+(lookup e’ “x”)) 

    let f2 = fun env y ->  
                let e’ = extend env “y” y in  
                (lookup e’ “y”)+(lookup e’ “x”) 
    fun env x ->  
          let e’ = extend env “x” x in  
          (e’, f2)

closure *f1(env *env, int x) {  
  env *e1 = extend(env,“x”,x);  
  closure *c = 
       malloc(sizeof(closure));  
  c->env = e1; c->fn = &f2;  
  return c;  
} 

int f2(env *env, int y) {  
  env *e1 = extend(env,“y”,y);  
  return lookup(e1, “y”) 
          + lookup(e1, “x”);  
} 
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How Do We Compile Closures Efficiently?

•Don’t need to heap allocate all variables 
•Just the ones that “escape”, i.e., might be used by 

nested functions 

•Implementation of environment and variables

15
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DeBruijn Indices

•In our interpreter, we represented environments as 
lists of pairs of variables names and values 

•Expensive string comparison when looking up 
variable! lookup env x

•Instead of using strings to represent variables, we 
can use natural numbers 
•Number indicates lexical depth of variable

16

let rec lookup env x = 
  match env with 
  | ((y,v)::rest) -> 
        if y = x then v else lookup rest  
  | [] -> error “unbound variable”
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DeBruijn Indices

•Original program 

•Conceptually, can rename program variables 

•Don’t bother with variable names at all! 

•Number of variable indicates lexical depth, 0 is 
innermost binder

17

fun x -> fun y -> fun z -> x + y + z

fun x2 -> fun x1 -> fun x0 -> x2 + x1 + x0

fun -> fun -> fun -> Var 2 + Var 1 + Var 0

type exp = Int of int | Var of int 
         | Lambda of exp | App of exp*exp 
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Converting to DeBruijn Indices

18

let rec cvt (e:exp) (env:var->int): D.exp = 
  match e with
  | Int i -> D.Int i
  | Var x -> D.Var (env x)
  | App(e1,e2) -> 
      D.App(cvt e1 env,cvt e2 env)
  | Lambda(x,e) =>
      let new_env(y) = 
            if y = x then 0 else (env y)+1
      in
         Lambda(cvt e new_env)

type exp = Int of int | Var of int 
         | Lambda of exp | App of exp*exp 
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New Interpreter

19

type value = Int_v of int
           | Closure_v of {env:env, body:exp}
and  env = value list

let rec eval (e:exp) (env:env) : value = 
  match e with
  | Int i -> Int_v i
  | Var x -> List.nth env x
  | Lambda e -> Closure_v{env=env, body=e}
  | App(e1,e2) -> 
      (match eval e1 env, eval e2 env with
       | Closure_v{env=cenv, body=(x,e’)}, v ->  
                 eval e’ v::cenv)
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Representing Environments

20

   fun -> fun -> fun -> Var 2 + Var 1 + Var 0  (                                          ) 21 (                                               ) 17(                                                    ) 4

env

•Linked list (nested environments)

21
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Representing Environments

21

   fun -> fun -> fun -> Var 2 + Var 1 + Var 0  (                                          ) 21 (                                               ) 17(                                                    ) 4

env

•Linked list (nested environments)

21
17
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Representing Environments

22

   fun -> fun -> fun -> Var 2 + Var 1 + Var 0  (                                          ) 21 (                                               ) 17(                                                    ) 4

21
17

4

env

•Linked list (nested environments)
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Representing Environments

•Linked list (nested environments) 
•Array (flat environment)

23

   fun -> fun -> fun -> Var 2 + Var 1 + Var 0  (                                          ) 21 (                                               ) 17(                                                    ) 4

env

21
17

4

env

21
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Representing Environments

•Linked list (nested environments) 
•Array (flat environment)

24

   fun -> fun -> fun -> Var 2 + Var 1 + Var 0  (                                          ) 21 (                                               ) 17(                                                    ) 4

env

21

17 21

21
17

4

env
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Representing Environments

•Linked list (nested environments) 
•Array (flat environment)

25

   fun -> fun -> fun -> Var 2 + Var 1 + Var 0  (                                          ) 21 (                                               ) 17(                                                    ) 4

21

env

17 21

17 214

21
17

4

env
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Multiple Arguments

•Can extend DeBruijn indices to allow multiple 
arguments 

•Nested environments might then be

26

fun x y z -> fun m n -> x + z + n

fun -> fun-> Var(1,0) + Var(1,2) + Var(0,1)

x y znil

m nnext
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Array-based Closures with N-ary 
Functions

(fun (x y z) -> (fun (m n) -> (fun p -> (fun q -> m + z) x)

27

x,y,z

n,m
p

Closure B
Closure A

Closure B

Closure A

fun 2
fun 1

fun 0

fun q

2,21,0

+

app

1,0

Note how free 
variables are 
“addressed” 
relative to the 
closure due to 
shared env.  

“follow 1 next 
  ptr then look 
  up index 0”

“follow 2 next 
  ptrs then look  
  up index 2”

m nnext

x ynil z

pnext

&codeenv

&codeenv
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Basic Architecture

Parsing

Source Code

Elaboration

Lowering

Optimization

Code Generation

Target Code

Back end

Front end
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Elaboration

Untyped Abstract 
Syntax Trees

Typed Abstract 
Syntax Trees
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Undefined Programs

•After parsing, we have AST 

•We can interpret AST, or compile it and execute 
•But: not all programs are well defined 

•E.g., 3/0, “hello” - 7, 42(19), using a variable that isn’t in 
scope, ...

•Types allow us to rule out many of these undefined behaviors 
•Types can be thought of as an approximation of a computation 
•E.g., if expression e has type int, then it means that e will evaluate to 

some integer value 

•E.g., we can ensure we never treat an integer value as if it were a function

30
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Type Soundness

•Key idea: a well-typed program when executed does not attempt 
any undefined operation 

•Make a model of the source language 
•i.e., an interpreter, or other semantics 
•This tells us which operations are partial 
•Partiality is different for different languages 
• E.g., “Hi” + “ world” and “na”*16 may be meaningful in some languages 

•Construct a function to check types: tc : AST -> bool 
•AST includes types (or type annotations) 
•If tc e returns true, then interpreting e will not result in an undefined 

operation 

•Prove that tc is correct

31
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Simple Language

32

type exp = 
  Var of var | Int of int
| Plus_i of exp*exp
| Lambda of var * tipe * exp 
| App of exp*exp
| Pair of exp * exp 
| Fst of exp | Snd of exp

type tipe = 
  Int_t
| Arrow_t of tipe*tipe 
| Pair_t of tipe*tipe

Note: function 
arguments have 
type annotation
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Interpreter

33

let rec interp (env:var->value)(e:exp) = 
  match e with
  | Var x -> env x
  | Int i -> Int_v i
  | Plus_i(e1,e2) ->
     (match interp env e1, interp env e2 of
       | Int_v i, Int_v j -> Int_v(i+j)
       | _,_ -> failwith “Bad operands!”)
  | Lambda(x,t,e) -> Closure_v{env=env,code=(x,e)}
  | App(e1,e2) -> 
    (match (interp env e1, interp env e2) with
       | Closure_v{env=cenv,code=(x,e)},v -> 
             interp (extend cenv x v) e
       | _,_ -> failwith “Bad operands!”)
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Type Checker

34

let rec tc (env:var->tipe) (e:exp) = 
  match e with
  | Var x -> env x 
  | Int _ -> Int_t
  | Plus_i(e1,e2) ->
     (match tc env e1, tc env e with
       | Int_t, Int_t -> Int_t
       | _,_ -> failwith “...”)
  | Lambda(x,t,e) -> Arrow_t(t,tc (extend env x t) e)
  | App(e1,e2) -> 
    (match (tc env e1, tc env e2) with
       | Arrow_t(t1,t2), t -> 
           if (t1 != t) then failwith “...” else t2
       | _,_ -> failwith “...”)
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Notes

•Type checker is almost like an approximation of the 
interpreter! 
•But interpreter evaluates function body only when function 

applied 
•Type checker always checks body of function 

•We needed to assume the input of a function had some 
type t1, and reflect this in type of function (t1->t2) 

•At call site (e1 e2), we don’t know what closure e1 will 
evaluate to, but can calculate type of e1 and check that 
e2 has type of argument

35
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Growing the Language

•Adding booleans...

36

type tipe = ... | Bool_t

type exp = ... | True | False | If of exp*exp*exp

let rec interp env e = ...
| True -> True_v
| False -> False_v
| If(e1,e2,e3) -> (match interp env e1 with
                      True_v -> interp env e2
                    | False_v -> interp env e3
                    | _ -> failwith “...”)
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Type Checking

37

let rec tc (env:var->tipe) (e:exp) = 
  match e with  
  ...  
  | True -> Bool_t
  | False -> Bool_t
  | If(e1,e2,e3) ->
   (let (t1,t2,t3) = (tc env e1,tc env e2,tc env e3) 
    in
       match t1 with
       | Bool_t -> 
           if (t2 != t3) then error() else t2
       | _ -> failwith “...”)
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Type Safety

•“Well typed programs do not go wrong.” 
                                     – Robin Milner, 1978 

•Note: this is a very strong property. 
•Well-typed programs cannot “go wrong” by trying to execute 

undefined  code (such as    3 + (fun x -> 2)) 
•Simply-typed lambda calculus is guaranteed to terminate! (i.e. it 

isn't Turing complete) 

•Depending on language, will not rule out all possible 
undefined behavior 
•E.g., 3/0, *NULL, ... 
•More sophisticated type systems can rule out more kinds of 

possible runtime errors
38
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Judgements and Inference Rules

•We saw type checking algorithm in code 
•Can express type-checking rules compactly and 

clearly using a type judgment and inference 
rules

39
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Type Judgments

•In the judgment:   E ⊢ e : t   
•E is a typing environment or a type context 
•E maps variables to types.  It is just a set of bindings of the form:    

x1 : t1, x2 : t2, …, xn : tn 

•If E ⊢ e : t  then expression e has type t under typing environment E 
•E ⊢ e : t can be thought of as a set or relation 

•For example: 
             x : int, b : bool ⊢ if (b) 3 else x : int 

•What do we need to know to decide whether “if (b) 3 else x” has type int 
in the environment x : int, b : bool? 

•b must be a bool  i.e.  x : int, b : bool ⊢ b : bool 

•3 must be an int  i.e.  x : int, b : bool ⊢ 3 : int 

•x must be an int  i.e.  x : int, b : bool ⊢ x : int
40
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Why Inference Rules?

•Compact, precise way of specifying language properties. 
•E.g. ~20 pages for full Java vs. 100’s of pages of prose Java Language Spec. 

•Inference rules correspond closely to the recursive AST traversal that 
implements them 

•Type checking (and type inference) is nothing more than attempting to prove 
a different judgment ( E ⊢ e : t ) by searching backwards through the rules. 

•Compiling in a context is nothing more than a collection of inference rules 
specifying yet a different judgment ( G ⊢ src ⇒ target ) 

•Moreover, the compilation rules are very similar in structure to the typechecking rules 

•Strong mathematical foundations 
•The “Curry-Howard correspondence”:  Programming Language ~ Logic,  

Program ~ Proof, Type ~ Proposition 

•See CS152 if you’re interested in type systems!

41
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Inference Rules

• For Oat, we will split environment E into global variables G and local variables L 
• Judgment G;L ⊢ e : t      “expression e is well typed and has type t” 
• Judgment  G;L ⊢ s        “statement s is well formed” 

• Equivalently: For any environment G; L, expression e, and statements s1, s2. 
    
      G;L ⊢ if (e) s1 else s2  
 
holds if    G ;L⊢ e : bool    and    G;L⊢ s1     and  G;L ⊢ s2     all  hold. 

• This rule can be used for any substitution of the syntactic metavariables G, L e, s1 
and s2

42

G;L	⊢	e	:	bool		 	 	G;L ⊢	s1		 			 G;L ⊢	s2		

G;L ⊢	if	(e)	s1	else	s2	

Premises

Conclusion
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Simply-typed Lambda Calculus

•Note how these rules correspond to the code.
43

E ⊢ i : int

E ⊢ e1 : int     E ⊢ e2 : int 

E ⊢ e1 + e2 : int

x : T  ∈  E 

E ⊢ x : T

E, x : T ⊢ e : S 

E ⊢ fun (x:T) -> e  : T -> S

E ⊢ e1 : T -> S  E ⊢ e2 : T  

E ⊢ e1 e2 : S

INT VAR ADD

FUN APP
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Type Checking Derivations

•A derivation or proof tree is a tree where nodes are 
instantiations of inference rules and edges connect a 
premise to a conclusion 

•Leaves of the tree are axioms (i.e. rules with no 
premises) 
•E.g., the INT rule is an axiom 

•Goal of the typechecker: verify that such a tree exists. 
•Example:  Find a tree for the following program using 

the inference rules on the previous slide:  
                     ⊢ (fun (x:int) -> x + 3) 5  : int

44
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Example Derivation Tree 

•Note: the OCaml function typecheck verifies the existence of this tree.  The 
structure of the recursive calls when running tc is same shape as this tree!  

•Note that  x : int  ∈  E is implemented by the function env

45

⊢ (fun (x:int) -> x + 3) 5  : int

⊢ (fun (x:int) -> x + 3) : int -> int ⊢ 5 : int 

x : int ⊢ x + 3 : int

x : int ⊢ x  : int x : int ⊢ 3  : int

x : int  ∈  x : int

APP

INT

INTVAR

ADD

FUN
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Type Safety Revisited

46

Theorem:  (simply typed lambda calculus with integers)    
 
   If   ⊢ e : t  then there exists a value v such that   e  ⇓  v .



Stephen Chong, Harvard University

Arrays

•Array constructs are not hard  
•First: add a new type constructor:  T[]

47

E ⊢ e1 : int    E ⊢ e2 : T 
E ⊢ new T[e1](e2)  : T[] 

NEW

e1 is the size of the newly 
allocated array.  e2  
initializes the elements of 
the array.

E ⊢ e1 : T[]    E ⊢ e2 : int 
E ⊢ e1[e2]  : T 

INDEX
Note:  These rules don’t 
ensure that the array index is 
in bounds – that should be 
checked dynamically.

E ⊢ e1 : T[]    E ⊢ e2 : int   E ⊢ e3 : T 
E ⊢ e1[e2] = e3 ok 

UPDATE
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Tuples

•ML-style tuples with statically known number of 
products: 

•First: add a new type constructor:  T1 * … * Tn

48

E ⊢ e1 : T1    …   E ⊢ en : Tn 
E ⊢ (e1, …, en) : T1 * … * Tn 

TUPLE

E ⊢ e : T1 * … * Tn    1 ≤ i ≤ n 
E ⊢ #i e  :  Ti

PROJ
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References

•ML-style references (note that ML uses only expressions) 
•First, add a new type constructor: T ref

49

E ⊢ e : T 
E ⊢ ref e : T ref 

REF

E ⊢ e : T ref 
E ⊢ !e  : T 

DEREF

Note the similarity with the rules 
for arrays…

E ⊢ e1 : T ref    E ⊢ e2 : T 
E ⊢ e1 := e2  : unit 

ASSIGN
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Oat Type Checking

•For HW5 we will add typechecking to Oat 
•And some other features 

•XXX typing rules for Oat 
•Example derivation
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var x1 = 0;
var x2 = x1 + x1;
x1 = x1 – x2;
return(x1);
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Example Derivation
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var x1 = 0;
var x2 = x1 + x1;
x1 = x1 – x2;
return(x1);
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Example Derivation 
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Example Derivation 
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Type Safety For General Languages

•Well-defined termination could include: 
•halting with a return value 
•raising an exception 

•Type safety rules out undefined behaviors: 
•abusing “unsafe” casts:  converting pointers to integers, etc. 
•treating non-code values as code (and vice-versa) 
•breaking the type abstractions of the language 

•What is “defined” depends on the language semantics…
54

Theorem: (Type Safety) 
 
   If   ⊢ P : t  is a well-typed program, then either: 
     (a)       the program terminates in a well-defined way,  or 
 (b)  the program continues computing forever
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Compilation As Translating Judgments

•Consider the source typing judgment for source expressions:  
 
       C ⊢ e : t 

•How do we interpret this information in the target language?  
                                ⟦C ⊢ e : t⟧ =   ? 

•⟦C⟧ translates contexts 
•⟦t⟧ is a target type 

•⟦e⟧ translates to a (potentially empty) stream of instructions, that, when run, 
computes the result into some operand 

•INVARIANT:  if   ⟦C ⊢ e : t ⟧ = ty, operand , stream      
                     then the type (at the target level) of the operand is ty=⟦t⟧

55



Stephen Chong, Harvard University

Example

• C  ⊢ 37 + 5 : int               what is  ⟦ C ⊢ 37 + 5 : int⟧    ?      

 

⟦ ⊢ 37 : int ⟧ = (i64, Const 37, [])         ⟦⊢ 5 : int⟧ = (i64, Const 5, [])  

----------------------------------------             ---------------------------------------  
⟦C ⊢ 37 : int⟧ = (i64, Const 37, [])        ⟦C ⊢ 5 : int⟧ = (i64, Const  5, [])  

------------------------------------------------------------------------------------------ 
⟦C ⊢ 37 + 5 : int⟧ =   (i64, %tmp, [%tmp = add i64 (Const 37) (Const 5)])
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What about the Context?

•What is ⟦C⟧? 

•Source level C has bindings like:     x:int, y:bool 
•We think of it as a finite map from identifiers to types 

•What is the interpretation of C at the target level? 

•⟦C⟧ maps source identifiers, “x” to source types and ⟦x⟧ 

•What is the interpretation of a variable ⟦x⟧ at the target 
level? 

•How are the variables used in the type system?

57

as expressions  
(which denote values)

as addresses  
(which can be assigned)
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Interpretation of Contexts

•⟦C⟧ = a map from source identifiers to types and target 
identifiers 

•INVARIANT: 
    x:t ∈ C        means that  

    
             (1)     lookup ⟦C⟧ x = (t, %id_x)           
        (2)     the (target) type of %id_x is ⟦t⟧*     (a 
pointer to ⟦t⟧) 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Interpretation of Variables

•Establish invariant for expressions: 
 
 
                                           =    (%tmp,  [%tmp = load i64* %id_x])  
                                            
                                                 where (i64, %id_x) = lookup ⟦L⟧ x 

•What about statements? 
 
 
 
          =   stream @  
                                                                [store ⟦t⟧ opn, ⟦t⟧* %id_x]

                                                     where (t, %id_x) = lookup ⟦L⟧ x  
                                                     and ⟦G;L ⊢ exp : t⟧ = (⟦t⟧, opn, stream)
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as expressions  
(which denote values)

as addresses  
(which can be assigned)
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Other Judgments?

•Statement: 
⟦C; rt ⊢ stmt ⇒ C’⟧  =      ⟦C’⟧ , stream 

•Declaration: 
⟦G;L ⊢ t x = exp ⇒ G;L,x:t ⟧ =   ⟦G;L,x:t⟧, stream 
 
INVARIANT:   stream is of the form: 
   stream’ @  

[ %id_x = alloca ⟦t⟧;  
         store ⟦t⟧ opn, ⟦t⟧* %id_x ]  
 
and     ⟦G;L ⊢ exp : t ⟧ = (⟦t⟧, opn, stream’) 

•Rest follow similarly  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Compiling Control

61
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Translating while

•Consider translating “while(e) s”: 
•Test the conditional, if true jump to the body, else jump to the label after the body. 

⟦C;rt ⊢ while(e) s ⇒ C’⟧   =  ⟦C’⟧, 

•Note: writing   opn = ⟦C ⊢ e : bool⟧    is pun 
•translating  ⟦C ⊢ e : bool⟧ generates code that puts the result into opn
•In this notation there is implicit collection of the code

62

lpre:
opn = ⟦C ⊢ e : bool⟧ 
%test = icmp eq i1 opn, 0
br %test, label %lpost, label %lbody

lbody:
    ⟦C;rt ⊢ s ⇒ C’⟧

    br %lpre
lpost:
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Translating if-then-else

•Similar to while except that code is slightly more 
complicated because  if-then-else must reach a 
merge and the else branch is optional.  
 
⟦C;rt ⊢ if (e1) s1 else s2 ⇒ C’⟧ =  

⟦C’⟧
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opn = ⟦C ⊢ e : bool⟧
%test = icmp eq i1 opn, 0
br %test, label %else, label %then

then:
    ⟦C;rt ⊢ s1 ⇒ C’⟧

    br %merge
else:

⟦C; rt s2 ⇒ C’⟧

    br %merge
merge:
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Connecting this to Code

•Instruction streams: 
•Must include labels, terminators, and “hoisted” global constants 

•Must post-process the stream into a control-flow-
graph 

•See frontend.ml from HW4
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