John A. Paulson
School of Engineering and Applied Sciences

CS153: Compilers Lecture 13: Compiling functions

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

Mid-course Eval

Please rate your learning experience in the class so far 17 responses

- Most effective:
- Homeworks
- Lectures
- Piazza/OH
- Least effective:
-Looking at code in class (too much, too little!)
- Lecture material not relevant to current assignment
-OH for extension

Mid-course Eval

- Suggestions
- Homework solutions
- Idiomatic OCaml code
- Go faster
-"Stop using ocaml, it gets in the way of learning about compilers", "This is not supposed to be an ocaml course, it's supposed to be a compilers course"
- More type annotations in homework stub code
- Long time to get OCaml set up

Workload

HW1 hours

Mid-course Eval: Actions

- Concrete actions course staff:
- More type annotations in future HWs
-Will release reference solutions
- Lectures will be same pace or a bit faster (but will still have lots of time for questions)
- Concrete actions students:
- Contact course staff re OH frequency/timing; we will try to adjust
- Contact for additional info/feedback on graded HWs
- Start HW early, reach out early and often for help
- Notes:
- Implementation course: coding/coding style is important
- Pedagogical decision to release HWs only after material is covered

Today

- Closure conversion
- Implementing environments and variables
- DeBruijn indices
- Nested environments vs flat environments

Closures

- Instead of doing substitution on nested functions when we reach the lambda, we can instead make a promise to finish the substitution if the nested function is ever applied
- Instead of
| Lambda(x, $\left.e^{\prime}\right)$-> Lambda(x, subst env $\left.e^{\prime}\right)$ we will have, in essence,
| Lambda(x, e') -> Promise(env, Lambda(x, $\left.e^{\prime}\right)$)
- Called a closure
- Need to modify rule for application to expect environment

Closure-based Semantics

```
type value = Int_v of int
    Closure_v of {env:env, body:var*exp}
and env = (string * value) list
let rec eval (e:exp) (env:env) : value =
    match e with
        Int i -> Int_v i
        Var x -> lookup env x
        Lambda(x,e) -> Closure_v{env=env, body=(x,e)}
        App(e1,e2) ->
            (match eval e1 env, eval e2 env with
                | Closure_v{env=cenv, body=(x,e')}, v ->
                        eval e' ((x,v)::cenv))
```


Inference rules

$$
\begin{aligned}
& \frac{\Gamma(x)=v}{\Gamma \vdash \mathrm{i} \Downarrow \mathrm{i}} \quad \frac{\Gamma \vdash \mathrm{e} 1 \Downarrow \mathrm{i} 1 \quad \Gamma \vdash \mathrm{e} 2 \Downarrow \mathrm{i} 2}{\Gamma \vdash \mathrm{e} 1+\mathrm{e} 2 \Downarrow \mathrm{i}} \quad \\
& \frac{\mathrm{i}=\mathrm{i} 1+\mathrm{i} 2}{\Gamma \vdash \text { fun } x->\mathrm{e} \Downarrow(\Gamma, \text { fun } x->e)}
\end{aligned}
$$

$$
\frac{\Gamma \vdash \mathrm{e} 1 \Downarrow\left(\Gamma_{\mathrm{c},} \text { fun } \mathrm{x}->\mathrm{e}\right) \quad \Gamma \vdash \mathrm{e} 2 \Downarrow \mathrm{v} \quad \Gamma_{\mathrm{c}}[\mathrm{x} \mapsto \mathrm{v}] \vdash \mathrm{e} \Downarrow \mathrm{w}}{\Gamma \vdash \mathrm{e} 1 \mathrm{e} 2 \Downarrow \mathrm{w}}
$$

So, How Do We Compile Closures?

- Represent function values (i.e., closures) as a pair of function pointer and environment
- Make all functions take environment as an additional argument
- Access variables using environment
- Can then move all function declarations to top level (i.e., no more nested functions!)

```
-E.g., fun \(x\)-> (fun \(y ~->~ y+x)\) becomes, in C-like code:
```

```
closure *f1(env *env, int x) {
int f2(env *env, int y) {
```

 env *e1 = extend(env,"x",x);
 env *e1 = extend(env,"y",y);
 closure *c =
 malloc(sizeof(closure));
 c->env = e1; c->fn = \&f2;
 \}
return c;
\}

Where Do Variables Live

- Variables used in outer function may be needed for nested function
-e.g., variable x in example on previous slide
- So variables used by nested functions can't live on stack...
- Allocate record for all variables on heap
- This will be similar to objects (which we will see in a few lectures)
- Object = struct for field values, plus pointer(s) to methods
- Closure $=$ environment plus pointer to code

Closure Conversion

- Converting function values into closures
- Make all functions take explicit environment argument
- Represent function values as pairs of environments and lambda terms
- Access variables via environment
- E.g.,
fun $x \rightarrow$ (fun $y ~->~ y+x)$
becomes
fun env x->
let $e^{\prime}=$ extend env "x" x in
(e', fun env y ->
let $e^{\prime}=$ extend env "y" y in
(lookup e' "y")+(lookup e' "x"))

Lambda Lifting

- After closure conversion, nested functions do not directly use variables from enclosing scope
-Can "lift" the lambda terms to top level functions!
-E.g., fun env x ->

```
                        let e' = extend env "x" x in
```

 (e', fun env y ->
 let e' = extend env "y" y in
 (lookup e' "y")+(lookup e' "x"))
 becomes

$$
\begin{aligned}
& \text { let } f 2 \text { = fun env y -> } \\
& \text { let e' = extend env "y" y in } \\
& \text { (lookup e' "y")+(lookup e' "x") }
\end{aligned}
$$

Lambda Lifting

- E.g., fun env x ->

$$
\begin{aligned}
& \text { let } e^{\prime}=\text { extend env "x" } x \text { in } \\
& \left(e^{\prime}, \text { fun env } y ~->~\right. \\
& \quad \text { let e' = extend env "y" } y \text { in } \\
& \quad(l o o k u p ~ e ' " y ")+(l o o k u p ~ e ' " x "))
\end{aligned}
$$

becomes

```
let \(f 2=\) fun env \(y\)->
                                    let \(e^{\prime}=\) extend env "y" \(y\) in
``` (lookup e' "y")+(lookup e' "x")
```

fun env x ->
let e" = extend env "x" x in
(e', f2)

```
```

closure *f1(env *env, int x) {
env *el = extend(env,"x",x);
closure *c =
malloc(sizeof(closure));
c->env = e1; c->fn = \&f2;
return c;

```
```

int f2(env *env, int y) {
env *e1 = extend(env,"y",y);
return lookup(e1, "y")
+ lookup(e1, "x");
}

```

\section*{How Do We Compile Closures Efficiently?}
- Don't need to heap allocate all variables
-Just the ones that "escape", i.e., might be used by nested functions
- Implementation of environment and variables

\section*{DeBruijn Indices}
- In our interpreter, we represented environments as lists of pairs of variables names and values
- Expensive string comparison when looking up variable! lookup env \(x\)
```

let rec lookup env x =
match env with
| ((y,v)::rest) ->
if y = x then v else lookup rest
| [] -> error "unbound variable"

```
- Instead of using strings to represent variables, we can use natural numbers
- Number indicates lexical depth of variable

\section*{DeBruijn Indices}
type exp \(=\) Int of int | Var of int Lambda of exp | App of exp*exp
- Original program fun \(x\)-> fun \(y ~->~ f u n ~ z ~->~ x ~+~ y ~+~ z ~\)
- Conceptually, can rename program variables fun \(x 2\)-> fun \(x 1->\) fun \(x 0->x 2+x 1+x 0\)
- Don't bother with variable names at all! fun -> fun -> fun \(->\) Var \(2+\operatorname{Var} 1+\operatorname{Var} 0\)
- Number of variable indicates lexical depth, 0 is innermost binder

\section*{Converting to DeBruijn Indices}
type exp \(=\) Int of int | Var of int Lambda of exp | App of exp*exp
let rec cvt (e:exp) (env:var->int): D.exp = match e with

Int i -> D.Int i
Var \(x\)-> D.Var (env x)
App(e1,e2) ->
D.App(cvt e1 env,cvt e2 env)

Lambda (x,e) =>
let new_env(y) =
\[
\text { if } y=x \text { then } 0 \text { else (env } y)+1
\]
in
Lambda(cvt e new_env)

\section*{New Interpreter}
```

type value = Int_v of int
| Closure_v of {env:env, body:exp}
and env = value list
let rec eval (e:exp) (env:env) : value =
match e with
Int i -> Int_v i
Var x -> List.nth env x
Lambda e -> Closure_v{env=env, body=e}
App(e1,e2) ->
(match eval e1 env, eval e2 env with
| Closure_v{env=cenv, body=(x,e')}, v ->
eval e' v::cenv)

```

\section*{Representing Environments}
```

(((fun -> fun -> fun -> Var 2 + Var 1 + Var 0) 21) 17) 4

```

- Linked list (nested environments)

\section*{Representing Environments}
((fun -> fun -> fun -> Var \(2+\operatorname{Var} 1+\operatorname{Var} 0) 21) 17) 4\)

- Linked list (nested environments)

\section*{Representing Environments}
(((fun -> fun -> fun -> Var \(2+\operatorname{Var} 1+\operatorname{Var} 0) 21) 17) 4\)

- Linked list (nested environments)

\section*{Representing Environments}
```

(((fun -> fun -> fun -> Var 2 + Var 1 + Var 0) 21) 17) 4

```

- Linked list (nested environments)
- Array (flat environment)

\section*{Representing Environments}
(((fun -> fun -> fun -> Var \(2+\operatorname{Var} 1+\operatorname{Var} 0) 21) 17) 4\)

- Linked list (nested environments)
- Array (flat environment)

\section*{Representing Environments}
(((fun -> fun -> fun -> Var \(2+\operatorname{Var} 1+\operatorname{Var} 0) 21) 17) 4\)

- Linked list (nested environments)
- Array (flat environment)

\section*{Multiple Arguments}
- Can extend DeBruijn indices to allow multiple arguments
```

                fun \(x y z->\) fun \(m n->x+z+n\)
    fun -> fun-> $\operatorname{Var}(1,0)+\operatorname{Var}(1,2)+\operatorname{Var}(0,1)$

```
- Nested environments might then be

\section*{Array-based Closures with N-ary}

\section*{Functions}

\section*{Basic Architecture}

\section*{Source Code}

\section*{Parsing}

\section*{Undefined Programs}
- After parsing, we have AST
- We can interpret AST, or compile it and execute
- But: not all programs are well defined
-E.g., 3/0, "hello" - 7, 42(19), using a variable that isn't in scope, ...
- Types allow us to rule out many of these undefined behaviors
-Types can be thought of as an approximation of a computation
- E.g., if expression e has type int, then it means that e will evaluate to some integer value
- E.g., we can ensure we never treat an integer value as if it were a function

\section*{Type Soundness}
- Key idea: a well-typed program when executed does not attempt any undefined operation
- Make a model of the source language
-i.e., an interpreter, or other semantics
-This tells us which operations are partial
- Partiality is different for different languages
-E.g., "Hi" + " world" and "na"*16 may be meaningful in some languages
- Construct a function to check types: tc : AST -> bool
- AST includes types (or type annotations)
- If tc e returns true, then interpreting e will not result in an undefined operation
- Prove that tc is correct

\section*{Simple Language}

> type tipe =

Int_t
Arrow_t of tipe*tipe Pair_t of tipe*tipe
type exp =
Var of var | Int of int
Plus_i of exp*exp Lamb̄̄a of var * tipe * exp App of exp*exp

Note: function arguments have type annotation Pair of exp * exp Fst of exp | Snd of exp

\section*{Interpreter}
let rec interp (env:var->value)(e:exp) = match e with

Var \(x\)-> env x
Int i -> Int_v i
Plus_i(e1,e2) ->
(match interp env e1, interp env e2 of Int_v i, Int_v j -> Int_v(i+j)
' -> failwith "Bad operands!")
Lambda(x,t,e) -> Closure_v\{env=env,code=(x,e)\} App(e1,e2) ->
(match (interp env e1, interp env e2) with
Closure_v\{env=cenv, code=(x,e)\},v ->
interp (extend cenv \(x\) v) e
| _'_ -> failwith "Bad operands!")

\section*{Type Checker}
let rec tc (env:var->tipe) (e:exp) = match e with

Var x -> env x
Int _ -> Int_t
Plus_i(e1,e2) ->
(match tc env el, tc env e with
Int_t, Int_t -> Int_t
' -> failwith "...")
Lambda(x,t,e) -> Arrow_t(t,tc (extend env x t) e) App(e1,e2) ->
(match (tc env e1, tc env e2) with
Arrow_t(t1,t2), t ->
if (t1 != t) then failwith "..." else t2
| _'_ -> failwith "...")

\section*{Notes}
- Type checker is almost like an approximation of the interpreter!
- But interpreter evaluates function body only when function applied
- Type checker always checks body of function
- We needed to assume the input of a function had some type \(t_{1}\), and reflect this in type of function \(\left(t_{1}->t_{2}\right)\)
- At call site (\(e_{1} e_{2}\)), we don't know what closure \(e_{1}\) will evaluate to, but can calculate type of \(\mathbf{e}_{1}\) and check that \(\mathbf{e}_{2}\) has type of argument

\section*{Growing the Language}
- Adding booleans...
type tipe = ... | Bool_t
type exp = ... | True | False | If of exp*exp*exp
let rec interp env e = ...
True -> True_v
False -> False_v
If(e1,e2,e3) -> (match interp env e1 with True_v -> interp env e2 False_v -> interp env e3
_ -> failwith "...")

\section*{Type Checking}
let rec tc (env:var->tipe) (e:exp) = match e with

True -> Bool_t
False -> Bool_t
If(e1,e2,e3) ->
(let (t1,t2,t3) = (tc env e1,tc env e2,tc env e3) in
\[
\begin{aligned}
& \text { match t1 with } \\
& \begin{array}{l}
\text { Bool_t -> } \\
\text { if (t2 }!=\text { t3) then error() else t2 } \\
\mid \quad->\text { failwith "...") }
\end{array}
\end{aligned}
\]

\section*{Type Safety}
-"Well typed programs do not go wrong."
- Robin Milner, 1978
- Note: this is a very strong property.
- Well-typed programs cannot "go wrong" by trying to execute undefined code (such as \(3+(\) fun \(x->2)\))
- Simply-typed lambda calculus is guaranteed to terminate! (i.e. it isn't Turing complete)
- Depending on language, will not rule out all possible undefined behavior
- E.g., 3/0, *NULL, ...
- More sophisticated type systems can rule out more kinds of possible runtime errors

\section*{Judgements and Inference Rules}
-We saw type checking algorithm in code
- Can express type-checking rules compactly and clearly using a type judgment and inference rules

\section*{Type Judgments}
- In the judgment: E \(\vdash\) e : t
- E is a typing environment or a type context
- E maps variables to types. It is just a set of bindings of the form: x1: t1, x2: t2, ..., xn : tn
- If \(E \vdash e: t\) then expression \(e\) has type \(t\) under typing environment \(E\)
\(-E \vdash \mathrm{e}: \mathrm{t}\) can be thought of as a set or relation
- For example:
\[
x: \text { int, b: bool } \vdash \text { if (b) } 3 \text { else } x \text { : int }
\]
-What do we need to know to decide whether "if (b) 3 else x" has type int in the environment \(\mathrm{x}:\) int, \(\mathrm{b}:\) bool?
-b must be a bool
i.e. \(\quad x\) : int, \(b\) : bool \(\vdash \mathrm{b}\) : bool
\(\bullet 3\) must be an int i.e. \(x:\) int, \(b:\) bool \(\vdash 3\) : int
\(\bullet x\) must be an int i.e. \(\quad x:\) int, \(b:\) bool \(\vdash x\) : int

\section*{Why Inference Rules?}
- Compact, precise way of specifying language properties.
-E.g. ~20 pages for full Java vs. 100's of pages of prose Java Language Spec.
- Inference rules correspond closely to the recursive AST traversal that implements them
- Type checking (and type inference) is nothing more than attempting to prove a different judgment (\(\mathrm{E} \vdash \mathrm{e}: \mathrm{t}\)) by searching backwards through the rules.
- Compiling in a context is nothing more than a collection of inference rules specifying yet a different judgment (\(\mathrm{G} \vdash\) src \(\Rightarrow\) target)
- Moreover, the compilation rules are very similar in structure to the typechecking rules
- Strong mathematical foundations
- The "Curry-Howard correspondence": Programming Language ~ Logic, Program ~ Proof, Type ~ Proposition
- See CS152 if you're interested in type systems!

\section*{Inference Rules}
- For Oat, we will split environment E into global variables G and local variables L
- Judgment G ; \(\mathrm{L} \vdash \mathrm{e}: \mathrm{t} \quad\) "expression e is well typed and has type t "
- Judgment G ;L \(\vdash \mathrm{s}\) "statement s is well formed"
\begin{tabular}{|c|c|c|c|}
\hline Premises & G ; L \(\vdash \mathrm{e}\) : bool & G; L \(\vdash \mathrm{S}_{1}\) & G; L \(\vdash \mathrm{S}_{2}\) \\
\hline Conclusion & \multicolumn{3}{|c|}{G ; L \(\vdash\) if (e) \(\mathrm{S}_{1}\) else \(\mathrm{S}_{2}\)} \\
\hline
\end{tabular}
- Equivalently: For any environment G; L, expression e, and statements \(\mathrm{s}_{1}, \mathrm{~s}_{2}\).
\[
\mathrm{G} \text {;L } \vdash \text { if (e) } \mathrm{s}_{1} \text { else } \mathrm{s}_{2}
\]
holds if G ;L \(\vdash \mathrm{e}\) : bool and G ; L \(\vdash \mathrm{S}_{1}\) and \(\mathrm{G} ; \mathrm{L} \vdash \mathrm{s}_{2}\) all hold.
- This rule can be used for any substitution of the syntactic metavariables \(\mathrm{G}, \mathrm{L} \mathrm{e}, \mathrm{s}_{1}\) and \(\mathrm{s}_{2}\)

\section*{Simply-typed Lambda Calculus}

INT

\section*{FUN}
\(\mathrm{E} \vdash \mathrm{i}\) : int
\[
\mathrm{E}, \mathrm{x}: T \vdash \mathrm{e}: \mathrm{S}
\]
\(\mathrm{E} \vdash \mathrm{x}: T\)
\[
\mathrm{E} \vdash \mathrm{e}_{1}: \mathrm{T}->\mathrm{S} \quad \mathrm{E} \vdash \mathrm{e}_{2}: \mathrm{T}
\]

E \(\vdash\) fun (\(\mathrm{x}: \mathrm{T}\)) -> e :T->S
\(\mathrm{E} \vdash \mathrm{e}_{1} \mathrm{e}_{2}: \mathrm{S}\)
- Note how these rules correspond to the code.

\section*{Type Checking Derivations}
- A derivation or proof tree is a tree where nodes are instantiations of inference rules and edges connect a premise to a conclusion
- Leaves of the tree are axioms (i.e. rules with no premises)
- E.g., the INT rule is an axiom
- Goal of the typechecker: verify that such a tree exists.
- Example: Find a tree for the following program using the inference rules on the previous slide:
\[
\vdash(\text { fun }(x: i n t)->x+3) 5: \text { int }
\]

\section*{Example Derivation Tree}

- Note: the OCaml function typecheck verifies the existence of this tree. The structure of the recursive calls when running tc is same shape as this tree!
- Note that \(x\) : int \(\in E\) is implemented by the function env

\section*{Type Safety Revisited}

Theorem: (simply typed lambda calculus with integers)
If \(\vdash \mathrm{e}: \mathrm{t}\) then there exists a value v such that \(\mathrm{e} \Downarrow v\).

\section*{Arrays}
- Array constructs are not hard
- First: add a new type constructor: T[]

NEW Eト \(\mathrm{e}_{1}:\) int \(\mathrm{E} \vdash \mathrm{e}_{2}: T\)
\[
\mathrm{E} \vdash \text { new } \mathrm{T}\left[\mathrm{e}_{1}\right]\left(\mathrm{e}_{2}\right): \mathrm{T}[]
\]

INDEX
\[
\frac{\mathrm{E} \vdash \mathrm{e}_{1}: \mathrm{T}[] \quad \mathrm{E} \vdash \mathrm{e}_{2}: \mathrm{int}}{\mathrm{E} \vdash \mathrm{e}_{1}\left[\mathrm{e}_{2}\right]: \mathrm{T}}
\]
\(e_{1}\) is the size of the newly allocated array. \(\mathrm{e}_{2}\) initializes the elements of the array.

Note: These rules don't ensure that the array index is in bounds - that should be checked dynamically.

UPDATE
\[
\frac{\mathrm{E} \vdash \mathrm{e}_{1}: T[] \quad \mathrm{E} \vdash \mathrm{e}_{2}: \text { int } \mathrm{E} \vdash \mathrm{e}_{3}: T}{\mathrm{E} \vdash \mathrm{e}_{1}\left[\mathrm{e}_{2}\right]=\mathrm{e}_{3} \mathrm{ok}}
\]

\section*{Tuples}
- ML-style tuples with statically known number of products:
- First: add a new type constructor: \(\mathrm{T}_{1} * \ldots{ }^{*} \mathrm{~T}_{\mathrm{n}}\)
```

TUPLE

```
\[
\frac{E \vdash e_{1}: T_{1} \quad \ldots \quad E \vdash e_{n}: T_{n}}{E \vdash\left(e_{1}, \ldots, e_{n}\right): T_{1} * \ldots * T_{n}}
\]

PROJ
\[
\frac{\mathrm{E} \vdash \mathrm{e}: \mathrm{T}_{1} * \ldots * \mathrm{~T}_{\mathrm{n}} \quad 1 \leq \mathrm{i} \leq \mathrm{n}}{\mathrm{E} \vdash \# \mathrm{i} e: \mathrm{T}_{\mathrm{i}}}
\]

\section*{References}
- ML-style references (note that ML uses only expressions)
- First, add a new type constructor: T ref

REF
\[
\frac{\mathrm{E} \vdash \mathrm{e}: \mathrm{T}}{\mathrm{E} \vdash \operatorname{ref} \mathrm{e}: \mathrm{T} \text { ref }}
\]

DEREF
\[
\frac{\mathrm{E} \vdash \mathrm{e}: \mathrm{T} \text { ref }}{\mathrm{E} \vdash!\mathrm{e}: \mathrm{T}}
\]

ASSIGN
\[
\frac{E \vdash e_{1}: T \text { ref } \quad E \vdash e_{2}: T}{E \vdash e_{1}:=e_{2}: \text { unit }}
\]

Note the similarity with the rules for arrays...

\section*{Oat Type Checking}
- For HW5 we will add typechecking to Oat
- And some other features
- XXX typing rules for Oat
- Example derivation
```

var x1 = 0;
var x2 = x1 + x1;
x1 = x1 - x2;
return(x1);

```

\section*{Example Derivation}
```

var x1 = 0;
var x2 = x1 + x1;
x1 = x1 - x2;
return(x1);

```
\(\frac{\mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{3} \mathcal{D}_{4}}{\frac{G_{0} ; \cdot ; \text { int } \vdash \operatorname{var} x_{1}=0 ; \operatorname{var} x_{2}=x_{1}+x_{1} ; x_{1}=x_{1}-x_{2} ; \text { return } x_{1} ; \Rightarrow \cdot, x_{1}: \text { int }, x_{2}: \text { int }}{\vdash \operatorname{var} x_{1}=0 ; \operatorname{var} x_{2}=x_{1}+x_{1} ; x_{1}=x_{1}-x_{2} ; \text { return } x_{1} ;}[\mathrm{STMTS}]}[\mathrm{PROG}]\)

\section*{Example Derivation}
\[
\begin{gathered}
\frac{\frac{G_{0} ; \cdot \vdash 0: \mathrm{int}}{G_{0} ; \cdot \vdash 0: \mathrm{int}}[\mathrm{INT}]}{[\mathrm{CONST}]}[\mathrm{DECL}] \\
\mathcal{D}_{1}=\frac{\mathrm{G}_{0} ; \cdot \vdash \operatorname{var} x_{1}=0 \Rightarrow \cdot x_{1}: \mathrm{int}}{G_{0} ; \cdot ; \text { int } \vdash \operatorname{var} x_{1}=0 ; \Rightarrow \cdot, x_{1}: \text { int }}[\mathrm{SDECL}]
\end{gathered}
\]
\[
\frac{\frac{\vdash+:(\text { int,int }) \rightarrow \text { int }}{\vdash}[\mathrm{ADD}] \frac{x_{1}: \text { int } \in \cdot, x_{1}: \text { int }}{G_{0} ; \cdot, x_{1}: \text { int } \vdash x_{1}: \text { int }}[\mathrm{VAR}] \frac{x_{1}: \text { int } \in \cdot, x_{1}: \text { int }}{G_{0} ; \cdot, x_{1}: \text { int } \vdash x_{1}: \text { int }}[\mathrm{VAR}]}{G_{0} ; \cdot, x_{1}: \text { int } \vdash x_{1}+x_{1}: \text { int }}[\mathrm{BOR}]
\]
\[
\mathcal{D}_{2}=
\]
\[
\left.\frac{\frac{G_{0} ; \cdot, x_{1}: \text { int } ; \text { int } \vdash \operatorname{var} x_{2}=x_{1}+x_{1} ; \Rightarrow \cdot, x_{1}: \text { int }, x_{2}: \text { int }}{G_{0} ; \cdot, x_{1}: \operatorname{int} ; \operatorname{int} \vdash \operatorname{var} x_{2}=x_{1}+x_{1} ; \Rightarrow \cdot, x_{1}: \text { int }, x_{2}: \text { int }}}{[\mathrm{DECL}]}\right]
\]

\section*{Example Derivation}
\[
x_{1}: \text { int } \in \cdot, x_{1}: \text { int }, x_{2}: \text { int }
\]
\[
\begin{aligned}
& \mathcal{D}_{3}
\end{aligned}
\]
\[
\mathcal{D}_{4}=\frac{\frac{x_{1}: \text { int } \in, x_{1}: \text { int, } x_{2}: \text { int }}{G_{0} ; \cdot, x_{1}: \text { int, } x_{2}: \text { int } \vdash x_{1}: \text { int }}[\mathrm{VAR}]}{G_{0} ; \cdot, x_{1}: \text { int, } x_{2}: \text { int } ; \text { int } \vdash \text { return } x_{1} ; \Rightarrow, x_{1}: \text { int }, x_{2}: \text { int }}[\mathrm{RET}]
\]

\section*{Type Safety For General Languages}

\section*{Theorem: (Type Safety)}

If \(\vdash \mathrm{P}: \mathrm{t}\) is a well-typed program, then either:
(a) the program terminates in a well-defined way, or (b) the program continues computing forever
-Well-defined termination could include:
-halting with a return value
- raising an exception
- Type safety rules out undefined behaviors:
- abusing "unsafe" casts: converting pointers to integers, etc.
-treating non-code values as code (and vice-versa)
-breaking the type abstractions of the language
-What is "defined" depends on the language semantics...

\section*{Compilation As Translating Judgments}
- Consider the source typing judgment for source expressions:
\[
C \vdash e: t
\]
-How do we interpret this information in the target language?
\[
\llbracket C \vdash \mathrm{e}: \mathrm{t} \rrbracket=?
\]
\(\bullet \llbracket C \rrbracket\) translates contexts
\(\bullet \llbracket t \rrbracket\) is a target type
\(\bullet \llbracket \rrbracket \rrbracket\) translates to a (potentially empty) stream of instructions, that, when run, computes the result into some operand
-INVARIANT: if \(\mathbb{C C} \vdash \mathrm{e}: \mathrm{t} \rrbracket=\mathrm{ty}\), operand, stream then the type (at the target level) of the operand is ty=\(=\llbracket \rrbracket \rrbracket\)

\section*{Example}
－C \(\vdash 37+5:\) int what is 【Cト \(\mathbf{C} 7+5:\) int】？
\(\llbracket \vdash 37:\) int \(\rrbracket=(\mathrm{i} 64\), Const \(37,[1)\)
\(\llbracket C \vdash 37:\) int \(\rrbracket=(\mathrm{i} 64\), const \(37,[\mathrm{j})\)
\(\llbracket \subset \vdash 5:\) int \(\rrbracket=(\) i64，const 5，［］\()\)
\(\llbracket C \vdash 37+5:\) int \(\rrbracket=(\) i \(64, \%\) tmp，\([\% t m p=\operatorname{add} i 64(\) Const 37\()(\) Const 5\()])\)

\section*{What about the Context?}
-What is \(\llbracket C \rrbracket\) ?
- Source level C has bindings like: x:int, y:bool
-We think of it as a finite map from identifiers to types
-What is the interpretation of \(C\) at the target level?
\(\bullet \llbracket C \rrbracket\) maps source identifiers, " \(x\) " to source types and \(\llbracket x \rrbracket\)
\[
x: t \in L \quad x: t \in L \quad G ; L \vdash \exp : t
\]
 level \({ }_{\text {which }}^{\text {as expenste values) }}\)
- How are the variables used in the type system?
as addresses
(which can be assigned)

\section*{Interpretation of Contexts}
\(\bullet \llbracket C \rrbracket=\) a map from source identifiers to types and target identifiers
－INVARIANT：
\(\mathrm{x}: \mathrm{t} \in \mathrm{C} \quad\) means that
（1）lookup \(\mathbb{C} \rrbracket x=\left(t, \% i d _x\right)\)
（2）the（target）type of \％id＿x is 【t】＊
（a
pointer to 【t】）

\section*{Interpretation of Variables}
- Establishenkariant for expressions:
\(\overline{G ; L \vdash x: t} \quad\) TYP_VAR
as expressions
(which denote values)
```

(%tmp, [%tmp = load i64* %id_x])

```
where \((\) i64, \%id_x) \(=\) lookup \(\llbracket L \rrbracket x\)
\[
\left[\begin{array}{c}
\text { What about statements? } \\
x: t \in L \quad G ; L \vdash \exp : t \\
\hline G ; L ; r t \vdash x=\exp ; \Rightarrow L \\
\text { as addresses } \\
\text { (which can be assigned) }
\end{array}\right.
\]
where \((\mathrm{t}, \% \mathrm{id} \mathrm{x}\)) \(=\) lookup \(\llbracket \mathrm{L} \rrbracket \mathrm{x}\)
and \(\llbracket \mathrm{G} ; \mathrm{L} \vdash \exp : \mathrm{t} \rrbracket=(\llbracket \mathrm{t} \rrbracket\), opn, stream \()\)

\section*{Other Judgments?}
- Statement:
\(\llbracket C ; \mathrm{rt} \vdash \mathrm{stmt} \Rightarrow \mathrm{C}^{\prime} \rrbracket=\quad \llbracket \mathrm{C}^{\prime} \rrbracket\), stream
- Declaration:
\(\llbracket G ; L \vdash t x=\exp \Rightarrow G ; L, x: t \rrbracket=\llbracket G ; L, x: t \rrbracket\), stream

INVARIANT: stream is of the form:
```

stream' @
[ %id_x = alloca \llbrackett\rrbracket;
store \llbrackett\rrbracket opn, \llbrackett\rrbracket* %id_x ]

```
and \(\llbracket \mathrm{G} ; \mathrm{L} \vdash \exp : \mathrm{t} \rrbracket=(\llbracket \mathrm{t} \rrbracket\), opn, stream' \()\)
- Rest follow similarly

\section*{Compiling Control}

\section*{Translating while}
-Consider translating "while(e) s":
- Test the conditional, if true jump to the body, else jump to the label after the body.
```

|C;rt \vdashwhile(e) s = C'| = |C'|,
lpre:
opn = \llbracketC \vdash e : bool\rrbracket
%test = icmp eq il opn, 0
br %test, label %lpost, label %lbody
lbody:
|C;rt \vdash s = C'\rrbracket
br %lpre
lpost:

```
- Note: writing opn \(=\llbracket C \vdash \mathrm{e}\) : bool】 is pun
\(\bullet\) translating \(\llbracket \subset \vdash \mathrm{e}:\) bool】 generates code that puts the result into opn
- In this notation there is implicit collection of the code

\section*{Translating if-then-else}
- Similar to while except that code is slightly more complicated herause if-then-else must reach a merge \(\quad \begin{aligned} & \text { opn }=\llbracket c \vdash e \text { : bool】 } \\ & \text { \%test }=\text { icmp eq il opn, } 0\end{aligned}\) br \%test, label \%else, label \%then

\section*{then:}

br \%merge
\(\llbracket C^{\prime} \rrbracket \quad \begin{aligned} & \text { else: } \\ & \llbracket C ; \text { rt } s_{2} \Rightarrow C^{\prime} \rrbracket\end{aligned}\)
br \%merge
merge:

\section*{Connecting this to Code}
- Instruction streams:
- Must include labels, terminators, and "hoisted" global constants
- Must post-process the stream into a control-flowgraph
- See frontend.ml from HW4```

