
CS153: Compilers
Lecture 13:  
Compiling functions

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Contains content from lecture notes by Steve Zdancewic and Greg Morrisett

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Mid-course Eval

•Most effective:
•Homeworks
•Lectures
•Piazza/OH

2

•Least effective:
•Looking at code in class (too much, too little!)
•Lecture material not relevant to current

assignment
•OH for extension

Stephen Chong, Harvard University

Mid-course Eval

•Suggestions
•Homework solutions
•Idiomatic OCaml code
•Go faster
•“Stop using ocaml, it gets in the way of learning about

compilers”, “This is not supposed to be an ocaml
course, it's supposed to be a compilers course”

•More type annotations in homework stub code
•Long time to get OCaml set up
•...

3

Stephen Chong, Harvard University

Workload

4

[1
.5,

 4.
5]

(4
.5,

 7.
5]

(7
.5,

 10
.5]

(1
0.5

, 1
3.5

]
(1

3.5
, 1

6.5
]

(1
6.5

, 1
9.5

]
(1

9.5
, 2

2.5
]

(2
2.5

, 2
5.5

]
(2

5.5
, 2

8.5
]

(2
8.5

, 3
1.5

]
(3

1.5
, 3

4.5
]

(3
4.5

, 3
7.5

]
(3

7.5
, 4

0.5
]

0

1

2

3

4

5

6

7

HW1 hours

[8
, 1

1]
(1

1,
 1

4]
(1

4,
 1

7]
(1

7,
 2

0]
(2

0,
 2

3]
(2

3,
 2

6]
(2

6,
 2

9]
(2

9,
 3

2]
(3

2,
 3

5]
(3

5,
 3

8]
(3

8,
 4

1]
(4

1,
 4

4]
(4

4,
 4

7]
(4

7,
 5

0]
(5

0,
 5

3]
(5

3,
 5

6]
(5

6,
 5

9]
(5

9,
 6

2]
(6

2,
 6

5]
(6

5,
 6

8]
(6

8,
 7

1]
(7

1,
 7

4]
(7

4,
 7

7]
(7

7,
 8

0]
(8

0,
 8

3]
(8

3,
 8

6]
(8

6,
 8

9]
(8

9,
 9

2]
(9

2,
 9

5]
(9

5,
 9

8]
(9

8,
 1

01
]0

1

2

3

4

5

6

7

HW2 hours

[0
, 3

]
(3

, 6
]

(6
, 9

]
(9

, 1
2]

(1
2,

15
]

(1
5,

18
]

(1
8,

21
]

(2
1,

24
]

(2
4,

27
]

(2
7,

30
]

(3
0,

33
]

(3
3,

36
]

(3
6,

39
]

(3
9,

42
]

(4
2,

45
]

(4
5,

48
]

(4
8,

51
]

(5
1,

54
]

(5
4,

57
]

(5
7,

60
]

0

0.5

1

1.5

2
2.5

3

3.5

4

4.5

HW3 hours

Stephen Chong, Harvard University

Mid-course Eval: Actions

•Concrete actions course staff:
•More type annotations in future HWs
•Will release reference solutions
•Lectures will be same pace or a bit faster (but will still have lots of

time for questions)

•Concrete actions students:
•Contact course staff re OH frequency/timing; we will try to adjust
•Contact for additional info/feedback on graded HWs
•Start HW early, reach out early and often for help

•Notes:
•Implementation course: coding/coding style is important
•Pedagogical decision to release HWs only after material is covered

5

Stephen Chong, Harvard University

Today

•Closure conversion
•Implementing environments and variables

•DeBruijn indices
•Nested environments vs flat environments

6

Stephen Chong, Harvard University

Closures

•Instead of doing substitution on nested functions when we reach
the lambda, we can instead make a promise to finish the
substitution if the nested function is ever applied

•Instead of  
 | Lambda(x,e’) -> Lambda(x,subst env e’) 
we will have, in essence, 
 | Lambda(x,e’) -> Promise(env, Lambda(x, e’))
•Called a closure

•Need to modify rule for application to expect environment

7

Stephen Chong, Harvard University

Closure-based Semantics

8

type value = Int_v of int
 | Closure_v of {env:env, body:var*exp}
and env = (string * value) list

let rec eval (e:exp) (env:env) : value =
 match e with
 | Int i -> Int_v i
 | Var x -> lookup env x
 | Lambda(x,e) -> Closure_v{env=env, body=(x,e)}
 | App(e1,e2) ->
 (match eval e1 env, eval e2 env with
 | Closure_v{env=cenv, body=(x,e’)}, v ->  
 eval e’ ((x,v)::cenv))

Stephen Chong, Harvard University

Inference rules

9

i ⇓ i Γ ⊢ x ⇓ v Γ ⊢

Γ(x) = v

e1 + e2 ⇓ i

e1⇓ i1 e2⇓ i2 i = i1 + i2

Γ ⊢

Γ ⊢ Γ ⊢

fun x -> e ⇓ (Γ, fun x -> e)Γ ⊢

e1 e2 ⇓ w

e1⇓ (Γc, fun x -> e) e2⇓ v e ⇓ w

Γ ⊢

Γ ⊢ Γ ⊢ Γc[x↦v] ⊢

Stephen Chong, Harvard University

So, How Do We Compile Closures?

•Represent function values (i.e., closures) as a pair of  
function pointer and environment

•Make all functions take environment as an  
additional argument

•Access variables using environment

•Can then move all function declarations to  
top level (i.e., no more nested functions!)

•E.g., fun x -> (fun y -> y+x) becomes, in C-like code:

10

closure *f1(env *env, int x) {  
 env *e1 = extend(env,“x”,x);  
 closure *c =
 malloc(sizeof(closure));  
 c->env = e1; c->fn = &f2;  
 return c;  
}

int f2(env *env, int y) {  
 env *e1 = extend(env,“y”,y);  
 return lookup(e1, “y”)
 + lookup(e1, “x”);  
}

Closure conversion

Lambda lifting

Stephen Chong, Harvard University

Where Do Variables Live

•Variables used in outer function may be needed for nested
function
•e.g., variable x in example on previous slide

•So variables used by nested functions can’t live on stack...
•Allocate record for all variables on heap
•This will be similar to objects (which we will see in a few

lectures)
•Object = struct for field values, plus pointer(s) to methods
•Closure = environment plus pointer to code

11

Stephen Chong, Harvard University

Closure Conversion

•Converting function values into closures
•Make all functions take explicit environment argument
•Represent function values as pairs of environments and lambda terms
•Access variables via environment

•E.g.,  
fun x -> (fun y -> y+x)  
becomes 
fun env x ->  
 let e’ = extend env “x” x in  
 (e’, fun env y ->  
 let e’ = extend env “y” y in  
 (lookup e’ “y”)+(lookup e’ “x”))

12

Stephen Chong, Harvard University

Lambda Lifting

•E.g., 
 
 
 
 
 
becomes 
 
 
 
 
 
 

13

 fun env x ->  
 let e’ = extend env “x” x in  
 (e’, fun env y ->  
 let e’ = extend env “y” y in  
 (lookup e’ “y”)+(lookup e’ “x”)) 

 let f2 = fun env y ->  
 let e’ = extend env “y” y in  
 (lookup e’ “y”)+(lookup e’ “x”) 
 fun env x ->  
 let e’ = extend env “x” x in  
 (e’, f2)

•After closure conversion, nested functions do not directly use variables from
enclosing scope

•Can “lift” the lambda terms to top level functions!

Stephen Chong, Harvard University

Lambda Lifting
•E.g., 
 
 
 
 
 
becomes 
 
 
 
 
 
 

14

 fun env x ->  
 let e’ = extend env “x” x in  
 (e’, fun env y ->  
 let e’ = extend env “y” y in  
 (lookup e’ “y”)+(lookup e’ “x”)) 

 let f2 = fun env y ->  
 let e’ = extend env “y” y in  
 (lookup e’ “y”)+(lookup e’ “x”) 
 fun env x ->  
 let e’ = extend env “x” x in  
 (e’, f2)

closure *f1(env *env, int x) {  
 env *e1 = extend(env,“x”,x);  
 closure *c =
 malloc(sizeof(closure));  
 c->env = e1; c->fn = &f2;  
 return c;  
}

int f2(env *env, int y) {  
 env *e1 = extend(env,“y”,y);  
 return lookup(e1, “y”)
 + lookup(e1, “x”);  
}

Stephen Chong, Harvard University

How Do We Compile Closures Efficiently?

•Don’t need to heap allocate all variables
•Just the ones that “escape”, i.e., might be used by

nested functions

•Implementation of environment and variables

15

Stephen Chong, Harvard University

DeBruijn Indices

•In our interpreter, we represented environments as
lists of pairs of variables names and values

•Expensive string comparison when looking up
variable! lookup env x

•Instead of using strings to represent variables, we
can use natural numbers
•Number indicates lexical depth of variable

16

let rec lookup env x =
 match env with
 | ((y,v)::rest) ->
 if y = x then v else lookup rest  
 | [] -> error “unbound variable”

Stephen Chong, Harvard University

DeBruijn Indices

•Original program

•Conceptually, can rename program variables

•Don’t bother with variable names at all!

•Number of variable indicates lexical depth, 0 is
innermost binder

17

fun x -> fun y -> fun z -> x + y + z

fun x2 -> fun x1 -> fun x0 -> x2 + x1 + x0

fun -> fun -> fun -> Var 2 + Var 1 + Var 0

type exp = Int of int | Var of int
 | Lambda of exp | App of exp*exp

Stephen Chong, Harvard University

Converting to DeBruijn Indices

18

let rec cvt (e:exp) (env:var->int): D.exp =
 match e with
 | Int i -> D.Int i
 | Var x -> D.Var (env x)
 | App(e1,e2) ->
 D.App(cvt e1 env,cvt e2 env)
 | Lambda(x,e) =>
 let new_env(y) =
 if y = x then 0 else (env y)+1
 in
 Lambda(cvt e new_env)

type exp = Int of int | Var of int
 | Lambda of exp | App of exp*exp

Stephen Chong, Harvard University

New Interpreter

19

type value = Int_v of int
 | Closure_v of {env:env, body:exp}
and env = value list

let rec eval (e:exp) (env:env) : value =
 match e with
 | Int i -> Int_v i
 | Var x -> List.nth env x
 | Lambda e -> Closure_v{env=env, body=e}
 | App(e1,e2) ->
 (match eval e1 env, eval e2 env with
 | Closure_v{env=cenv, body=(x,e’)}, v ->  
 eval e’ v::cenv)

Stephen Chong, Harvard University

Representing Environments

20

 fun -> fun -> fun -> Var 2 + Var 1 + Var 0 () 21 () 17() 4

env

•Linked list (nested environments)

21

Stephen Chong, Harvard University

Representing Environments

21

 fun -> fun -> fun -> Var 2 + Var 1 + Var 0 () 21 () 17() 4

env

•Linked list (nested environments)

21
17

Stephen Chong, Harvard University

Representing Environments

22

 fun -> fun -> fun -> Var 2 + Var 1 + Var 0 () 21 () 17() 4

21
17

4

env

•Linked list (nested environments)

Stephen Chong, Harvard University

Representing Environments

•Linked list (nested environments)
•Array (flat environment)

23

 fun -> fun -> fun -> Var 2 + Var 1 + Var 0 () 21 () 17() 4

env

21
17

4

env

21

Stephen Chong, Harvard University

Representing Environments

•Linked list (nested environments)
•Array (flat environment)

24

 fun -> fun -> fun -> Var 2 + Var 1 + Var 0 () 21 () 17() 4

env

21

17 21

21
17

4

env

Stephen Chong, Harvard University

Representing Environments

•Linked list (nested environments)
•Array (flat environment)

25

 fun -> fun -> fun -> Var 2 + Var 1 + Var 0 () 21 () 17() 4

21

env

17 21

17 214

21
17

4

env

Stephen Chong, Harvard University

Multiple Arguments

•Can extend DeBruijn indices to allow multiple
arguments

•Nested environments might then be

26

fun x y z -> fun m n -> x + z + n

fun -> fun-> Var(1,0) + Var(1,2) + Var(0,1)

x y znil

m nnext

Stephen Chong, Harvard University

Array-based Closures with N-ary
Functions

(fun (x y z) -> (fun (m n) -> (fun p -> (fun q -> m + z) x)

27

x,y,z

n,m
p

Closure B
Closure A

Closure B

Closure A

fun 2
fun 1

fun 0

fun q

2,21,0

+

app

1,0

Note how free
variables are
“addressed”
relative to the
closure due to
shared env.

“follow 1 next 
 ptr then look 
 up index 0”

“follow 2 next 
 ptrs then look  
 up index 2”

m nnext

x ynil z

pnext

&codeenv

&codeenv

Stephen Chong, Harvard University 28

Basic Architecture

Parsing

Source Code

Elaboration

Lowering

Optimization

Code Generation

Target Code

Back end

Front end

Stephen Chong, Harvard University 29

Elaboration

Untyped Abstract
Syntax Trees

Typed Abstract
Syntax Trees

Stephen Chong, Harvard University

Undefined Programs

•After parsing, we have AST

•We can interpret AST, or compile it and execute
•But: not all programs are well defined

•E.g., 3/0, “hello” - 7, 42(19), using a variable that isn’t in
scope, ...

•Types allow us to rule out many of these undefined behaviors
•Types can be thought of as an approximation of a computation
•E.g., if expression e has type int, then it means that e will evaluate to

some integer value

•E.g., we can ensure we never treat an integer value as if it were a function

30

Stephen Chong, Harvard University

Type Soundness

•Key idea: a well-typed program when executed does not attempt
any undefined operation

•Make a model of the source language
•i.e., an interpreter, or other semantics
•This tells us which operations are partial
•Partiality is different for different languages
• E.g., “Hi” + “ world” and “na”*16 may be meaningful in some languages

•Construct a function to check types: tc : AST -> bool
•AST includes types (or type annotations)
•If tc e returns true, then interpreting e will not result in an undefined

operation

•Prove that tc is correct

31

Stephen Chong, Harvard University

Simple Language

32

type exp =
 Var of var | Int of int
| Plus_i of exp*exp
| Lambda of var * tipe * exp
| App of exp*exp
| Pair of exp * exp
| Fst of exp | Snd of exp

type tipe =
 Int_t
| Arrow_t of tipe*tipe
| Pair_t of tipe*tipe

Note: function
arguments have
type annotation

Stephen Chong, Harvard University

Interpreter

33

let rec interp (env:var->value)(e:exp) =
 match e with
 | Var x -> env x
 | Int i -> Int_v i
 | Plus_i(e1,e2) ->
 (match interp env e1, interp env e2 of
 | Int_v i, Int_v j -> Int_v(i+j)
 | _,_ -> failwith “Bad operands!”)
 | Lambda(x,t,e) -> Closure_v{env=env,code=(x,e)}
 | App(e1,e2) ->
 (match (interp env e1, interp env e2) with
 | Closure_v{env=cenv,code=(x,e)},v ->
 interp (extend cenv x v) e
 | _,_ -> failwith “Bad operands!”)

Stephen Chong, Harvard University

Type Checker

34

let rec tc (env:var->tipe) (e:exp) =
 match e with
 | Var x -> env x
 | Int _ -> Int_t
 | Plus_i(e1,e2) ->
 (match tc env e1, tc env e with
 | Int_t, Int_t -> Int_t
 | _,_ -> failwith “...”)
 | Lambda(x,t,e) -> Arrow_t(t,tc (extend env x t) e)
 | App(e1,e2) ->
 (match (tc env e1, tc env e2) with
 | Arrow_t(t1,t2), t ->
 if (t1 != t) then failwith “...” else t2
 | _,_ -> failwith “...”)

Stephen Chong, Harvard University

Notes

•Type checker is almost like an approximation of the
interpreter!
•But interpreter evaluates function body only when function

applied
•Type checker always checks body of function

•We needed to assume the input of a function had some
type t1, and reflect this in type of function (t1->t2)

•At call site (e1 e2), we don’t know what closure e1 will
evaluate to, but can calculate type of e1 and check that
e2 has type of argument

35

Stephen Chong, Harvard University

Growing the Language

•Adding booleans...

36

type tipe = ... | Bool_t

type exp = ... | True | False | If of exp*exp*exp

let rec interp env e = ...
| True -> True_v
| False -> False_v
| If(e1,e2,e3) -> (match interp env e1 with
 True_v -> interp env e2
 | False_v -> interp env e3
 | _ -> failwith “...”)

Stephen Chong, Harvard University

Type Checking

37

let rec tc (env:var->tipe) (e:exp) =
 match e with  
 ...  
 | True -> Bool_t
 | False -> Bool_t
 | If(e1,e2,e3) ->
 (let (t1,t2,t3) = (tc env e1,tc env e2,tc env e3)
 in
 match t1 with
 | Bool_t ->
 if (t2 != t3) then error() else t2
 | _ -> failwith “...”)

Stephen Chong, Harvard University

Type Safety

•“Well typed programs do not go wrong.” 
 – Robin Milner, 1978

•Note: this is a very strong property.
•Well-typed programs cannot “go wrong” by trying to execute

undefined code (such as 3 + (fun x -> 2))
•Simply-typed lambda calculus is guaranteed to terminate! (i.e. it

isn't Turing complete)

•Depending on language, will not rule out all possible
undefined behavior
•E.g., 3/0, *NULL, ...
•More sophisticated type systems can rule out more kinds of

possible runtime errors
38

Stephen Chong, Harvard University

Judgements and Inference Rules

•We saw type checking algorithm in code
•Can express type-checking rules compactly and

clearly using a type judgment and inference
rules

39

Stephen Chong, Harvard University

Type Judgments

•In the judgment: E ⊢ e : t
•E is a typing environment or a type context
•E maps variables to types. It is just a set of bindings of the form:  

x1 : t1, x2 : t2, …, xn : tn

•If E ⊢ e : t then expression e has type t under typing environment E
•E ⊢ e : t can be thought of as a set or relation

•For example: 
 x : int, b : bool ⊢ if (b) 3 else x : int

•What do we need to know to decide whether “if (b) 3 else x” has type int
in the environment x : int, b : bool?

•b must be a bool i.e. x : int, b : bool ⊢ b : bool

•3 must be an int i.e. x : int, b : bool ⊢ 3 : int

•x must be an int i.e. x : int, b : bool ⊢ x : int
40

Stephen Chong, Harvard University

Why Inference Rules?

•Compact, precise way of specifying language properties.
•E.g. ~20 pages for full Java vs. 100’s of pages of prose Java Language Spec.

•Inference rules correspond closely to the recursive AST traversal that
implements them

•Type checking (and type inference) is nothing more than attempting to prove
a different judgment (E ⊢ e : t) by searching backwards through the rules.

•Compiling in a context is nothing more than a collection of inference rules
specifying yet a different judgment (G ⊢ src ⇒ target)

•Moreover, the compilation rules are very similar in structure to the typechecking rules

•Strong mathematical foundations
•The “Curry-Howard correspondence”: Programming Language ~ Logic,  

Program ~ Proof, Type ~ Proposition

•See CS152 if you’re interested in type systems!

41

Stephen Chong, Harvard University

Inference Rules

• For Oat, we will split environment E into global variables G and local variables L
• Judgment G;L ⊢ e : t “expression e is well typed and has type t”
• Judgment G;L ⊢ s “statement s is well formed”

• Equivalently: For any environment G; L, expression e, and statements s1, s2. 
  
 G;L ⊢ if (e) s1 else s2  
 
holds if G ;L⊢ e : bool and G;L⊢ s1 and G;L ⊢ s2 all hold.

• This rule can be used for any substitution of the syntactic metavariables G, L e, s1
and s2

42

G;L	⊢	e	:	bool		 	 	G;L ⊢	s1		 			 G;L ⊢	s2		

G;L ⊢	if	(e)	s1	else	s2	

Premises

Conclusion

Stephen Chong, Harvard University

Simply-typed Lambda Calculus

•Note how these rules correspond to the code.
43

E ⊢ i : int

E ⊢ e1 : int E ⊢ e2 : int

E ⊢ e1 + e2 : int

x : T ∈ E

E ⊢ x : T

E, x : T ⊢ e : S

E ⊢ fun (x:T) -> e : T -> S

E ⊢ e1 : T -> S E ⊢ e2 : T

E ⊢ e1 e2 : S

INT VAR ADD

FUN APP

Stephen Chong, Harvard University

Type Checking Derivations

•A derivation or proof tree is a tree where nodes are
instantiations of inference rules and edges connect a
premise to a conclusion

•Leaves of the tree are axioms (i.e. rules with no
premises)
•E.g., the INT rule is an axiom

•Goal of the typechecker: verify that such a tree exists.
•Example: Find a tree for the following program using

the inference rules on the previous slide:  
 ⊢ (fun (x:int) -> x + 3) 5 : int

44

Stephen Chong, Harvard University

Example Derivation Tree

•Note: the OCaml function typecheck verifies the existence of this tree. The
structure of the recursive calls when running tc is same shape as this tree!

•Note that x : int ∈ E is implemented by the function env

45

⊢ (fun (x:int) -> x + 3) 5 : int

⊢ (fun (x:int) -> x + 3) : int -> int ⊢ 5 : int

x : int ⊢ x + 3 : int

x : int ⊢ x : int x : int ⊢ 3 : int

x : int ∈ x : int

APP

INT

INTVAR

ADD

FUN

Stephen Chong, Harvard University

Type Safety Revisited

46

Theorem: (simply typed lambda calculus with integers)
 
 If ⊢ e : t then there exists a value v such that e ⇓ v .

Stephen Chong, Harvard University

Arrays

•Array constructs are not hard
•First: add a new type constructor: T[]

47

E ⊢ e1 : int E ⊢ e2 : T
E ⊢ new T[e1](e2) : T[]

NEW

e1 is the size of the newly
allocated array. e2
initializes the elements of
the array.

E ⊢ e1 : T[] E ⊢ e2 : int
E ⊢ e1[e2] : T

INDEX
Note: These rules don’t
ensure that the array index is
in bounds – that should be
checked dynamically.

E ⊢ e1 : T[] E ⊢ e2 : int E ⊢ e3 : T
E ⊢ e1[e2] = e3 ok

UPDATE

Stephen Chong, Harvard University

Tuples

•ML-style tuples with statically known number of
products:

•First: add a new type constructor: T1 * … * Tn

48

E ⊢ e1 : T1 … E ⊢ en : Tn
E ⊢ (e1, …, en) : T1 * … * Tn

TUPLE

E ⊢ e : T1 * … * Tn 1 ≤ i ≤ n
E ⊢ #i e : Ti

PROJ

Stephen Chong, Harvard University

References

•ML-style references (note that ML uses only expressions)
•First, add a new type constructor: T ref

49

E ⊢ e : T
E ⊢ ref e : T ref

REF

E ⊢ e : T ref
E ⊢ !e : T

DEREF

Note the similarity with the rules
for arrays…

E ⊢ e1 : T ref E ⊢ e2 : T
E ⊢ e1 := e2 : unit

ASSIGN

Stephen Chong, Harvard University

Oat Type Checking

•For HW5 we will add typechecking to Oat
•And some other features

•XXX typing rules for Oat
•Example derivation

50

var x1 = 0;
var x2 = x1 + x1;
x1 = x1 – x2;
return(x1);

Stephen Chong, Harvard University

Example Derivation

51

var x1 = 0;
var x2 = x1 + x1;
x1 = x1 – x2;
return(x1);

Stephen Chong, Harvard University

Example Derivation

52

Stephen Chong, Harvard University

Example Derivation

53

Stephen Chong, Harvard University

Type Safety For General Languages

•Well-defined termination could include:
•halting with a return value
•raising an exception

•Type safety rules out undefined behaviors:
•abusing “unsafe” casts: converting pointers to integers, etc.
•treating non-code values as code (and vice-versa)
•breaking the type abstractions of the language

•What is “defined” depends on the language semantics…
54

Theorem: (Type Safety)
 
 If ⊢ P : t is a well-typed program, then either:
 (a) the program terminates in a well-defined way, or
 (b) the program continues computing forever

Stephen Chong, Harvard University

Compilation As Translating Judgments

•Consider the source typing judgment for source expressions:  
 
 C ⊢ e : t

•How do we interpret this information in the target language?  
 ⟦C ⊢ e : t⟧ = ?

•⟦C⟧ translates contexts
•⟦t⟧ is a target type

•⟦e⟧ translates to a (potentially empty) stream of instructions, that, when run,
computes the result into some operand

•INVARIANT: if ⟦C ⊢ e : t ⟧ = ty, operand , stream  
 then the type (at the target level) of the operand is ty=⟦t⟧

55

Stephen Chong, Harvard University

Example

• C ⊢ 37 + 5 : int what is ⟦ C ⊢ 37 + 5 : int⟧ ?  

 

⟦ ⊢ 37 : int ⟧ = (i64, Const 37, []) ⟦⊢ 5 : int⟧ = (i64, Const 5, [])  

-- ---------------------------------------  
⟦C ⊢ 37 : int⟧ = (i64, Const 37, []) ⟦C ⊢ 5 : int⟧ = (i64, Const 5, [])  

--
⟦C ⊢ 37 + 5 : int⟧ = (i64, %tmp, [%tmp = add i64 (Const 37) (Const 5)])

56

Stephen Chong, Harvard University

What about the Context?

•What is ⟦C⟧?

•Source level C has bindings like: x:int, y:bool
•We think of it as a finite map from identifiers to types

•What is the interpretation of C at the target level?

•⟦C⟧ maps source identifiers, “x” to source types and ⟦x⟧

•What is the interpretation of a variable ⟦x⟧ at the target
level?

•How are the variables used in the type system?

57

as expressions  
(which denote values)

as addresses  
(which can be assigned)

Stephen Chong, Harvard University

Interpretation of Contexts

•⟦C⟧ = a map from source identifiers to types and target
identifiers

•INVARIANT: 
 x:t ∈ C means that

  
 (1) lookup ⟦C⟧ x = (t, %id_x)  
 (2) the (target) type of %id_x is ⟦t⟧* (a
pointer to ⟦t⟧) 

58

Stephen Chong, Harvard University

Interpretation of Variables

•Establish invariant for expressions: 
 
 
 = (%tmp, [%tmp = load i64* %id_x])  
  
 where (i64, %id_x) = lookup ⟦L⟧ x

•What about statements? 
 
 
 
 = stream @  
 [store ⟦t⟧ opn, ⟦t⟧* %id_x]

 where (t, %id_x) = lookup ⟦L⟧ x  
 and ⟦G;L ⊢ exp : t⟧ = (⟦t⟧, opn, stream)

59

as expressions  
(which denote values)

as addresses  
(which can be assigned)

Stephen Chong, Harvard University

Other Judgments?

•Statement: 
⟦C; rt ⊢ stmt ⇒ C’⟧ = ⟦C’⟧ , stream

•Declaration: 
⟦G;L ⊢ t x = exp ⇒ G;L,x:t ⟧ = ⟦G;L,x:t⟧, stream 
 
INVARIANT: stream is of the form: 
 stream’ @  

[%id_x = alloca ⟦t⟧;  
 store ⟦t⟧ opn, ⟦t⟧* %id_x]  
 
and ⟦G;L ⊢ exp : t ⟧ = (⟦t⟧, opn, stream’) 

•Rest follow similarly  
 
 

60

Stephen Chong, Harvard University

Compiling Control

61

Stephen Chong, Harvard University

Translating while

•Consider translating “while(e) s”:
•Test the conditional, if true jump to the body, else jump to the label after the body.

⟦C;rt ⊢ while(e) s ⇒ C’⟧ = ⟦C’⟧,

•Note: writing opn = ⟦C ⊢ e : bool⟧ is pun
•translating ⟦C ⊢ e : bool⟧ generates code that puts the result into opn
•In this notation there is implicit collection of the code

62

lpre:
opn = ⟦C ⊢ e : bool⟧
%test = icmp eq i1 opn, 0
br %test, label %lpost, label %lbody

lbody:
 ⟦C;rt ⊢ s ⇒ C’⟧

 br %lpre
lpost:

Stephen Chong, Harvard University

Translating if-then-else

•Similar to while except that code is slightly more
complicated because if-then-else must reach a
merge and the else branch is optional.  
 
⟦C;rt ⊢ if (e1) s1 else s2 ⇒ C’⟧ =

⟦C’⟧

63

opn = ⟦C ⊢ e : bool⟧
%test = icmp eq i1 opn, 0
br %test, label %else, label %then

then:
 ⟦C;rt ⊢ s1 ⇒ C’⟧

 br %merge
else:

⟦C; rt s2 ⇒ C’⟧

 br %merge
merge:

Stephen Chong, Harvard University

Connecting this to Code

•Instruction streams:
•Must include labels, terminators, and “hoisted” global constants

•Must post-process the stream into a control-flow-
graph

•See frontend.ml from HW4

64

