HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 14: Type Checking

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

Contains content from lecture notes by Steve Zdancewic and Greg Morrisett

https://www.seas.harvard.edu/courses/cs153

Annc

* HW4 Oat v1 out
e Due Tuesday Oct 29 (12 days)

Stephen Chong, Harvard University 2

* Type checking
eJudgments and inference rules

Stephen Chong, Harvard University 3

Basic Architecture

(Source CodeJ
Y

[Parsing }

A

A
[Optimization

A o
s [Code Generation}
W

e { Target CodeJ

[Elaboration j)

-

~

Untyped Abstract

-

Syntax Trees
/

Typed Abstract
Syntax Trees

~

v

Undetfined Programs

o After parsing, we have AST
*\We can interpret AST, or compile it and execute

eBut: not all programs are well defined

°E.g., 3/0, “hello” - 7,42(19), usinga variable thatisn’tin
SCOpE, ...

*Types allow us to rule out many of these undefined behaviors

e Types can be thought of as an approximation of a computation
yp 8 PP P

°E.g., if expression e has type int, then it means that e will evaluate to
some integer value

°E.g., we can ensure we never treat an integer value as if it were a function

Type Soundness

*Key idea: a well-typed program when executed does not attempt
any undefined operation

* Make a model of the source language
*i.e., an interpreter, or other semantics
eThis tells us which operations are partial
e Partiality is different for different languages
*E.g., “Hi” + “ world” and “na”*16 may be meaningful in some languages
* Construct a function to check types: tc : AST -> bool

e AST includes types (or type annotations)

°lf tc e returns true, then interpreting e will not result in an undefined
operation

e Prove that tc is correct

Simple Language

type tipe =

Int t

Arrow t of tipe*tipe
Pair t of tipe*tipe

type exp =

Var of var | Int of int
Plus 1 of exp*exp

Lambda of var * tipe * exp

Note: function

arguments have

App of exp*exp type annotation

Pair of exp * exp
Fst of exp | Snd of exp

Interpreter

let rec interp (env:var->value) (e:exp) =
match e with
Var X =-> env X
Int i -=> Int v 1
Plus i(el,e2) ->
(match interp env el, interp env e2 of
| Int v i, Int v j => Int v(i+])
| , -> failwith “Bad operands!”)
| Lambda(x,t,e) -> Closure v{env=env,code=(x,e)}
| App(el,e2) ->
(match (interp env el, interp env e2) with
\ Closure v{env=cenv,code=(x,e)},v =->
interp (extend cenv x v) e
| , -> failwith “Bad operands!”)

Type Chec

let rec tc (env:var->tipe) (e:exp) =
match e with
Var x =-> env X
Int -> Int t
Plus i(el,e2) ->
(match tc env el, tc env e with
| Int t, Int t -> Int t
| , => failwith “...")
| Lambda(x,t,e) -> Arrow t(t,tc (extend env x t) e)
| App(el,e2) ->
(match (tc env el, tc env e2) with
| Arrow t(tl,t2), t ->
1if (t1l != t) then failwith “...” else t2
| , => failwith “...")

Stephen Chong, Harvard University 10

Notes

e Type checker is almost like an approximation of the
Interpreter!

e But interpreter evaluates function body only when function

ap
oTy

o \\Ve

nlied

e checker always checks body of function

needed to assume the input of a function had some

type t1, and reflect this in type of functio

N (t1->t)2)

o At call site (e1 e3z), we don’t know what closure e; will
evaluate to, but can calculate type of e1 and check that
e has type of argument

Growing the Language

* Adding booleans...

type tipe = ... | Bool t

type exp = ... | True | False | If of exp*exp*exp

let rec interp env e =

True -> True v

False -> False v

If(el,e2,e3) -> (match interp env el with
True v -> 1nterp env e2
False v -> interp env e3
-> failwith “...")

Type C

let rec tc (env:var->tipe) (e:exp) =
match e with
True -> Bool t
False -> Bool t
If(el,e2,e3) ->
(let (tl,t2,t3) = (tc env el,tc env e2,tc env e3)
in
match tl1 with
| Bool t ->
1if (t2 != t3) then error() else t2
| => failwith “...")

Stephen Chong, Harvard University 13

Type Inference

* Type checking is great if we already have enough
type annotations

 For our simple functional language, sufficient to have type
annotations for function arguments

e But what about if we tried to infer types?
e Reduce programmer burden!

e Efficient algorithms to do this: Hindley-Milner

Essentially build constraints based on how expressions are
used and try to solve constraints

e Error messages for non-well-typed programs can be
challenging!

Polymorphism and Type Inference

* Polymorphism is the ability of code to be used on values of different
types.

*E.g., polymorphic function can be invoked with arguments of different types
* Polymorph means “many forms”

e OCaml has polymorphic types
°e.g.,val swap : 'a ref -> 'a -> ‘a = ...

e But type inference for full polymorphic types is undecidable...

e OCaml has restricted form of polymorphism that allows type
inference: let-polymorphism aka prenex polymorphism
e Allow let expressions to be typed polymorphically, i.e., used at many types
e Doesn’t require copying of let expressions

eRequires clear distinction between polymorphic types and non-
polymorphic types...

Type Safety

* “Well typed programs do not go wrong.”
— Robin Milner, 1978

e Note: this is a very strong property.

* Well-typed programs cannot “go wrong” by trying to execute
undefined code (such as 3 + (fun x -> 2))

e Simply-typed lambda calculus is guaranteed to terminate! (i.e. it
isn't Turing complete)
e Depending on language, will not rule out all possible
undefined behavior
*E.g., 3/0, *NULL, ...

* More sophisticated type systems can rule out more kinds of
possible runtime errors

Judgements and Inference Rules

*\We saw type checking algorithm in code

e Can express type-checking rules compactly and
clearly using a type judgment and inference
rules

Type Judgments

°|n the judgment: Ere:t

*E Is a typing environment or a type context

*E maps variables to types. It is just a set of bindings of the form:
xT :t1, x2 :t2, ..., xn : tn

olf E - e:t then expression e has type t under typing environment E

°F - e : t can be thought of as a set or relation

* For example:
x :int, b : bool + if (b) 3 else x : int

e \What do we need to know to decide whether “if (b) 3 else x” has
type int in the environment x : int, b : bool?

b must be a bool l.e. X :int, b : bool + b : bool
*3 must be an int l.e. X :int, b : bool + 3 : int
ex must be an int l.e. X :int, b : bool + x : int

Recall Inferen

A ell funx ->e e2l v e{v/x} U w
> el e2 Uw

Axom -

*|nference rule
e|If the premises are true, then the conclusion is true
* An axiom is a rule with no premises

e Inference rules can be instantiated by replacing
metavariables (e, el, €2, x, i, ...) with expressions, program
variables, integers, as appropriate.

Stephen Chong, Harvard University 19

Why Inference Rules?

e Compact, precise way of specifying language properties.
eE.g. ~20 pages for full Java vs. 100’s of pages of prose Java Language Spec.
e Inference rules correspond closely to the recursive AST traversal that
implements them

e Type checking (and type inference) is nothing more than attempting to prove
a different judgment (E -~ e : t) by searching backwards through the rules.

e Compiling in a context is nothing more than a collection of inference rules
specifying yet a different judgment (E - src = target)

* Moreover, the compilation rules are very similar in structure to the typechecking rules

e Strong mathematical foundations

*The “Curry-Howard correspondence”: Programming Language ~ Logic,
Program ~ Proof, Type ~ Proposition

eSee CS152 if you're interested in type systems!

Simply-typed La

INT VAR ADD
T e E E~e :int ErRe,:Int
FHi:int E=x:T EH~e +e,:iInt
FUN APP
E, x:THe:S EFe, :T->S Ere,:T
E - fun (x:T) ->e :T->S Fre e, :S

* Note how these rules correspond to the code.

Stephen Chong, Harvard University 21

Type Checking Derivations

* A derivation or proof tree is a tree where nodes are
instantiations of inference rules and edges connect a
premise to a conclusion

o | eaves of the tree are axioms (i.e. rules with no
premises)

e Goal of the typechecker: verity that such a tree exists.

e Example: Find a tree for the following program using
the inference rules on the previous slide:

— (fun (x:int) -> x4+ 3) 5 :int

Example Der

X:Int € x:iInt

VAR INT
X:int x :int X:int—3 :int
ADD : :
X:Int— x4+ 3:iInt
FUN ° . ° INT °
— (fun (x:int) -> x + 3) : int -> int — 5 :int
APP : :
— (fun (x:int) ->x+3) 5 :int
INT VAR ADD
x:T ek E-e :int EFe,:int
E1:int E-x:T - e, +e,:Int
FUN APP
E,x:TrHe:S§ E-e, :T->S E-e,:T

F - fun (x:T)->e :T->8S

Stephen Chong, Harvard University

E-e e, : S

23

Example Deriv

X:Int € x:iInt

VAR INT
X:intk x :int X:int— 3 :int
ADD
X:int—Xx+3:int
FUN INT
— (fun (x:int) -> x + 3) : int -> int — 5 :int
APP
— (fun (x:int) ->x+3) 5 :int

e Note: the OCaml function typecheck verifies the existence of this tree. The
structure of the recursive calls when running tc is same shape as this tree!

e Note that x : int € E is implemented by the function Lookup

Stephen Chong, Harvard University

24

Stephen Chong, Harvard University 25

Arr

* Array constructs are not hard
e First: add a new type constructor: T[]

NEW E~e, :int ErRe,: T
E = new Tleql(e,) : Tl

INDEX

EHe;: T[] E~e,:iInt
EHeqle,] T

UPDATE
E~e T[] Ere,:int Eey: T
E I 61[62] :eg Ok

Stephen Chong, Harvard University

e, is the size of the newly
allocated array. e,

initializes the elements of
the array.

Note: These rules don’t
ensure that the array index is
in bounds — that should be
checked dynamically.

26

Tu

* ML-style tuples with statically known number of
products

eFirst: add a new type constructor: Ty * ... * T,

TUPLE

E~e, :T; ... Ere,:T,
E-(eq, ...,e) Ty * ... *%T,

PROJ

EFe:T;*...*T
F+ fie : T,

Stephen Chong, Harvard University 27

Refe

* ML-style references (note that ML uses only expressions)

*First, add a new type constructor: T ref

REF

DEREF

ASSIGN

F—e:T
F-refe:Tref

Fe:Tref
EF-le : T

Note the similarity with the rules
for arrays...

E-e :Tref Ere,:T

E-e :=e, :unit

Stephen Chong, Harvard University 28

Oat Type Checking

e For HW5 we will add typechecking to Oat

e And some other features

e Some of Oat’s features

mperative (update variables, like references)

Distinction

* More comp

* Return
* While, For,

petween statements and expressions

icated control flow

*\What does a type system look like for Oat?

Some Oat Judgments

*Split environment E into Globals and Locals

e Expression e has type t under context G;L
oG LHe:t

o Statement s is well typed under context G;L. If it returns, it
returns a value of type rt. After s, the local context is L.

G Lirts="L

e\Where does G come from?

eProgram is a list of global variable declarations and function
declarations

e Use judgment to gather up global variable declarations
°o prog = G

Examp

var x1 = 0;

var x2 = x1 + x1;
X1l = x1 — x2;
return(xl);

Dy Dy D3 Dy

Go; - ;int Fvar x; =0; var xp = X1 + X1; X1 = X1 - Xp; return x1; = -, X1:int,xp:int

= var x; =0; var xp = x1 + X1; X1 = X1 - Xp; return xq;

Stephen Chong, Harvard University

[STMTS)|
[PROG]

31

Example D

var x1 = 0;
var x2 = x1 + x1; -INT]
return(xl); Go;-F0:int -
— |DECL]
Go;-Hvarx; =0= -, x1:int | |
SDECL
D1 = Gg;-;intkFvarx; =0; = -, xq:int
X1:int € -, x7:int X1:int € -, x1:int
-+ : (int,int) — int [ApD) Gp;-,x1:int F x1 : int [VAR] Go;-,x1:int F xq : int {VAR}
BOP

Stephen Chong, Harvard University

GO;-,xlzint = X1 + X1 :int
Gpo;+,X1:int;int - var xp = x; + x1; = -, X1:int,xy:int
Gpo;:,X1:int;int - var xp = x; + x1; = -, X1:int,xy:int

[DECL]
[SDECL|

32

Exampl

var x1 = 0;
var x2 = x1 + x1;
x1l = x1 — x2;

return(xl);

F -:(int,int) — int
p, _ F -l

[ADD]

X1:int € -, x7:int, x> :int

Go;-,x1:int,xp:int - x7 : int

[VAR|

Xp:int € -, xq:1int, x> :int

Go;:,x1:int, xp:int F xp : int

Go;-,x1:int, xp:int F x1 -xp : int

Go;-,Xx1:int, xp:int;int Fx; = X1 -x2; = -, x7:int,xp:int

Dy =

Stephen Chong, Harvard University

Xy:int € -, xp:int, x7:int

Gp;-, X1:int, x2:int I xq : int

[VAR]

[ASSN]

Gp;.Xy:int, xp:int;int - return x;; = -, Xj!int, X7 int

ReT]

[VAR]
[BOP|

33

Type Satety For General Languages

Theorem: (Type Safety)

If Pis a well-typed program, then either:
(@) the program terminates in a well-defined way, or
(b) the program continues computing forever

*\Well-defined termination could include:
e halting with a return value
eraising an exception
* Type safety rules out undefined behaviors:

eabusing “unsafe” casts: converting pointers to integers, etc.
etreating non-code values as code (and vice-versa)
*breaking the type abstractions of the language

*What is “defined” depends on the language semantics...

Compilation As Translating Judgments

e Consider the source typing judgment for source expressions:

CrHe:t

e How do we interpret this information in the target language?

[CHe:t]= !¢
[C] translates contexts

[t] 1s a target type

[e] translates to a (potentially empty) stream of instructions, that,

when run, computes the result into some operand

e INVARIANT: if [CF e:t]=ty, operand, stream

then the type (at the target level) of the operand is ty=[t]

e C 37 +5:Int
eWhatis [CH37+5:int] ¢

[CH 37 :iInt] = (i64, const 37, []) [CH5:iInt] = (i64, const 5, [])

[CH37+5:Int] = (i64, %tmp, [%tmp = add i64 (Const 37) (Const 5)])

Stephen Chong, Harvard University 36

What about the Context?

e\What is [C]?

*Source level C has bindings like: x:int, y:bool

e \We thin
e\What is t

 [C] maps source identifiers,

ne interpreta

< of it as a finite map from identifiers to types

ion of C at the target level?

1,7

x”, to target types and [x]

*\What is the interpretation of a variable [x] at the target level?

e How are the variables used in the type system?

x:1€E

L
TYP_VAR

G:LFx:t
as expressions
(which denote values)

x:tel G;LFexrp:t
G:L:rt-xz=exp;,= L

as addresses
(which can be assigned)

TYP_ASSN

Interpretatio

*[C] = a map from source identifiers to types and target identifiers

o INVARIANT:
x:t € C means that

(1) lookup [C] x = ([t]*, $id_x)
(2) the (target) type of $id_x is [t]* (a pointer to [t])

Stephen Chong, Harvard University 38

Interpretation of Variables

e Establish invariant for expressions:

IB r-tel] = ($tmp, [%tmp = load 164* %id x])
' TYP_VAR
G:LFx:t where (164, $id_x) = lookup [L] x
as expressions
(which denote values)

——— ——

e \What about statements?

— —

x:tel G;LFexrp:t

G; L; rt - x = exrp; = L where ([t], $id_x) = lookup [L] x

as addresses and [G;L + exp : t] = ([t], opn, stream)
L (which can be assigned) 1

= stream @ [store [t] opn, [t]* %id x]
TYP_ASSN

