HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 15: Subtyping

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

Contains content from lecture notes by Steve Zdancewic

https://www.seas.harvard.edu/courses/cs153

Annou

* HW4 Oat v1 out
* Due Tuesday Oct 29 (7 days)

e Reference solns

o \Will be released on Canvas
e HW?2 later today

e HW3 later this week

Stephen Chong, Harvard University 2

e Types as sets of values
* Subtyping

e Subsumption
* Downcasting
e Functions

e Records

e References

Stephen Chong, Harvard University 3

What are types, anyway?

A type is just a predicate on the set of values in a system.

e For example, the type “int” can be thought of as a boolean function that returns
“true” on integers and “false” otherwise.

e Equivalently, we can think of a type as just a subset of all values.

e For efficiency and tractability, the predicates are usually taken to be very
simple.
* Types are an abstraction mechanism

*We can easily add new types that distinguish different subsets of values:

type tp =
IntT (* type of integers *)
PosT | NegT | ZeroT (* refinements of ints *)
BoolT (* type of booleans *)
TrueT | FalseT (* subsets of booleans *)
AnyT (* any value *)

Moditfying th

*\We need to refine the typing rules too...

*Some easy cases:
eJust split up the integers into their more refined cases:

P-INT N-INT ZERO
1 >0 1< 0

E~1: Pos E+1:Neg E+0: Zero

e Same for booleans:

TRUE FALSE

E - true : True F - false : False

Stephen Chong, Harvard University 5

What about “

* [wo cases are easy:
FT| E+e;:True Er+e,:T [/ Ere :False Ere;:T

EHif(e;)e,elseey: T E-if(e;)e,elseeq: T

e \What if we don’t know statically which branch will be taken?

* Consider the typechecking problem:

x:bool ~ if (x) 3 else -1 : 22?2

e The true branch has type Pos and the false branch has type Neg.
*\What should be the result type of the whole if?

Stephen Chong, Harvard University 6

Subtyping and Upper Bounds

e|f we think of types as sets of values, we have a natural inclusion relation:
Pos C Int

*This subset relation gives rise to a subtype relation: Pos <: Int
eSuch inclusions give rise to a subtyping hierarchy:
~ Any
B
Int Bool
e VN
Neg Zero Pos True False

e Given any two types T1 and T2, we can calculate their least upper bound
(LUB) according to the hierarchy.
eExample: LUB(True, False) = Bool, LUB(Int, Bool) = Any

e Note: might want to add types for “NonZero”, “NonNegative”, and “NonPositive” so
that set union on values corresponds to taking LUBs on types.

“It” Typing Rule Revisited

e For statically unknown conditionals, we want the return value to
be the LUB of the types of the branches:

IF-BOOL

EHe;:

bool Er+e,:T, E-e,: T,

E

if (e;) e, else e; : LUB(T,,T,)

e Note: LUB(T1, T2) is the most precise type (according to the

hierarchy) that descri

oes any value with either type T1 or type T2

e Math notation: LUB(
12

e UB is also called the

1, T2) 1s sometimes written T1T v T2 or T1 U

join operation.

Subtyping Hie

* A subtyping hierarchy:

~Any -«
4’/"\
Bool

Neg Zero Pos True False

e The subtyping relation is a partial order:
e Reflexive: T<:T foranytypeT
* Transitive: T1 <:T2 and T2 <: T3 then T1 <: T3
e Antisymmetric: T1 <:T2 andT2 <:T1thenT1 =T2

Stephen Chong, Harvard University 9

Soundness of Subtyping Relations

*\We don't have to treat every subset of the integers as a type.

ee.g., we left out the type NonNeg

* A subtyping relation T1 <: T2 is sound if it approximates the
underlying semantic subset relation

e Formally: write [T] for the subset of (closed) values of type T

eie., [TI={v|F v:

°e.g., [Zero] = {0},
olf TT <: T2 implies

1}

[T1]

[Pos] =11, 2, 3, ...}

C [T21, then T1 <: T2 is sound.

ee.g., Pos <: Intis sound, since {1,2,3,...} ¢ {...,-3,-2,-1,0,1,2,3,...}

ee.g., Int <: Pos is not sound, since it is not the case that
{...,-3,-2,-1,0,1,2,3,...}€ {1,2,3,...}

Soundness of LUBs

*\Whenever you have a sound subtyping relation, it follows that:
[TT]u [T2] € [LUB(TT, T2)]
e Note that the LUB is an over approximation of the “semantic union”
eExample: [Zero] u[Pos] ={0}u{1,2,3,...}
=10,1,2,3,...}
ci...-3,-2,-1,0,1,2,3,...}
= [Int] = [LUB(Zero, Pos)]

e Using LUBs in the typing rules yields sound approximations of the
program behavior (as in the IF-B rule).

IF-BOOL

E-e, :bool Ere,:T, Et-e;: T,
E+if (e;)e,elsee; : T, v T,

Subsumption Rule

*\WWhen we add subtyping judgments of the form T <: S we can
uniformly integrate it into the type system generically:

SUBSUMPTION

Fe:T T<:S

F—e:S

e Subsumption allows any value of type T to be treated as an S

whenever T <: S.

* Adding this rule makes the search for typing derivations more
difficult — this rule can be applied anywhere, since T <: T.

eBut careful engineering of the typing system can incorporate the
subsumption rule into a deterministic algorithm.

Downcasting

e What happens if we have an Int but need something of type Pos?

e At compile time, we don’t know whether the Int is greater than zero.
e At run time, we do.

e Add a “checked downcast”

E~e, :Int E x:Poske,:T, EFe;: 1,
E+— ifPos (x =e;) e, elsee; : T, VT,

e At runtime, ifPos checks whether el is > 0. If so, branches to e2 and
otherwise branches to e3

*Inside expression €2, x is el’s value, which is known to be strictly
positive because of the dynamic check.

* Note that such rules force the programmer to add the appropriate checks
*We could give integer division the type: Int -> NonZero -> Int

Extending Subtyping to Other Types

*\What about subtyping for tuples?

*When a program expects a value of type S1 * S2, when is
sound to give ita T1 *T2¢

(T *T,) <t (54 *S,)

eExample: (Pos * Neg) <: (Int * Int)
e\\hat about functions?
e\WWhenis T1 ->T1T2 <: ST->S52 ¢

*\When a program expects a function of type S1 -> S2, when can
we give it a function of type T1 -> T2 ?¢

Subtyping for Functi

*One way to see It:

Expected function

S. T, T, |S,

> > > >

e Need to convertan STtoaT1 and T2 to S2, so
the argument type is contravariant and the

output type is covariant.
S;<:Ty T,<:5,
(T; >T,) < (54 ->9,)

Stephen Chong, Harvard University 15

Immutable

eRecord type: {lab1:T1; lab2:T2; ... ; labn:Tn]}

eFach labi is a label drawn from a set of identifiers.

RECORD

T

n []

EHe: T, E~e,: 1, ... Ere

n

E - {lab, =e;; lab, =e,; ... ; lab, = e } : {lab,:T;; lab,:T,; ... ; lab.:T }

PROJECTIONT E e : {lab;:Ty; laby:T,; ... ; lab,:T.}

E+elab : T

Stephen Chong, Harvard University 16

Immutable Recor

* Depth subtyping:
e Corresponding fields may be subtypes

DEPTH

I,< U, T,< U, ... T,< U,
{lab,:T;; lab,:T,; ... ; lab,:T} <: {lab;:U;; lab,:U,; ... ; lab,:U_}

e Width subtyping:

e Subtype record may have more fields:

WIDTH

m<n
{lab;:T,; lab,:T,; ... ; lab,:T} <: {lab,:T,; lab,:T,; ... ; lab:T .}

Stephen Chong, Harvard University 17

Depth & Width Subtypin

o \Width su
record re

Layout

otyping (without depth) is compatible with “inlined”

bresentation as with C structs:

x|y |z x|y

{x:int; y:int; z:int} < {x:int; y:int} [Width Subtyping]

*The layout and underlying field indices for x and y are identical.

eThe z field is just ignored

e Depth subtyping (without width) is similarly compatible,

assuming that the space used by A is the same as the space
used by B whenever A <: B

eBut... they don't mix. Why?

18

Immutable Record Subtyping
(cont’d)

e Width subtyping assumes an implementation in which order
of fields in a record matters:
{x:int; y:inty # {y:int; x:intj
But: {x:Int; y:Int; z:int} <: {x:Int; y:Int}
eImplementation: a record is a struct, subtypes just add fields at the
end of the struct.

e Alternative: allow permutation of record fields:
{x:int; y:nt} = {y:int; x:int}
eImplementation: compiler sorts the fields before code generation.
*Need to know all of the fields to generate the code

e Permutation is not directly compatible with width subtyping:
{x:int; z:int; y:nt} = {x:int; y:int; z:int} </: {y:int; z:int}

If you wa

e|f you want permutability & dropping, you need
to either copy (to rearrange the fields) or use a
dictionary like this:

dictionary

< P = {x=42; y=55; z=66}:{x:Int; y:Int; z:Int}

g :{y:int; zzint} = p

dictionary
Stephen Chong, Harvard University 20

Mutability

*\What about when we add mutable locations?
e References, arrays, ...

Stephen Chong, Harvard University 21

NU

*What is the type of null?

e Consider:
int[] a = null; // OK? ~ULL
°*int x = null; // not OK¢
estring s = null; // OK? E-null:r

e Null has any reference type

e Null is generic

*\What about type safety?

eRequires defined behavior when dereferencing null
*e.g., Java's NullPointerException

eRequires a safety check for every dereference operation
(typically implemented using low-level hardware "trap" mechanisms.)

Stephen Chong, Harvard University 22

Subtyping and References

*\What is the proper subtyping relationship for references
and arrays?

e Suppose we have NonZero as a type and the division
operation has type: Int-> NonZero -> Int

eReca

e Shoulc

e Consia

| that NonZero <: Int

(NonZero ref) <: (Int ref) ?
er this program:
Int bad(NonZero ref r) ({
Int ref a = r; (* OK because (NonZero ref <: Int ref*)
a := 0; (* OK because 0 : Zero <: Int ¥*)

}

return (42 / !r) (* OK because !r has type NonZero *)

Mutable Structures are Invariant

e Covariant reference types are unsound

* As demonstrated in the previous example

e Contravariant reference types are also unsound
eie. If T1 <: T2 then ref T2 <: ref T1 is also unsound

e Exercise: construct a program that breaks contravariant references.

e Moral: Mutable structures are invariant:

T

e Same ho

rel

ds

F<: T2 ref implies T1 =T2

for arrays, mutable records, object fields, etc.

*Note: Java and C# get this wrong. They allows covariant array
subtyping, but then compensate by adding a dynamic check on
every array update!

Another Way to See It

*\We can think of a reference cell as an immutable record (object) with two
functions (methods) and some hidden state:
T ref {get: unit ->T; set: T -> unit}

eget returns the value hidden in the state.

R

eset updates the value hidden in the state.
eWhen is T ref <: S ref?
e Records are like tuples: subtyping extends pointwise over each component.
o {get: unit ->T; set: T -> unit} <: {get: unit -> §; set: S -> unit}

eget components are subtypes: unit->T <: unit->S

eset components are subtypes: T ->unit <: S -> unit

* From get, we must have T <: S (covariant return)
e From set, we must have S <: T (contravariant arg.)

eFromT <:Sand S <: T we concludeT =S.

Structural vs. Nominal Typing

*|s type equality / subsumption defined by the structure of the data or the name of the data?
eExample 1: type abbreviations (OCaml) vs. “newtypes” (a la Haskell)

(* OCaml: *)

type cents = int (* cents = int in this scope *)
type age = int

let foo (xX:cents) (y:age) = xXx + y

(* Haskell: ¥*)
newtype Cents = Cents Integer (* Integer and Cents are

isomorphic, not identical. *)
newtype Age = Age Integer

foo :: Cents -> Age -> Int
foo xy=x+vy (* I1ll typed! *)

* Type abbreviations are treated “structurally”
e Newtypes are treated “by name”

Nominal Subtyping in Java

*|n Java, Classes and Interfaces must be named and their relationships explicitly
declared

(* Java: *)
interface Foo {
int foo();

}

class C { /* Does not implement the Foo interface */
int foo() {return 2;}

}

class D implements Foo {
int foo() {return 42;}

}

eSimilarly for inheritance: programmers must declare the subclass relation via
the “extends” keyword.

e Typechecker still checks that the classes are structurally compatible

