
CS153: Compilers
Lecture 15: Subtyping

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Contains content from lecture notes by Steve Zdancewic

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Announcements

•HW4 Oat v1 out
•Due Tuesday Oct 29 (7 days)

•Reference solns
•Will be released on Canvas
•HW2 later today
•HW3 later this week

2

Stephen Chong, Harvard University

Today

•Types as sets of values
•Subtyping

•Subsumption
•Downcasting
•Functions
•Records
•References

3

Stephen Chong, Harvard University

What are types, anyway?

•A type is just a predicate on the set of values in a system.
•For example, the type “int” can be thought of as a boolean function that returns

“true” on integers and “false” otherwise.
•Equivalently, we can think of a type as just a subset of all values.

•For efficiency and tractability, the predicates are usually taken to be very
simple.

•Types are an abstraction mechanism

•We can easily add new types that distinguish different subsets of values:  
type tp =  
 | IntT (* type of integers *)  
 | PosT | NegT | ZeroT (* refinements of ints *)  
 | BoolT (* type of booleans *)  
 | TrueT | FalseT (* subsets of booleans *)  
 | AnyT (* any value *)

4

Stephen Chong, Harvard University

Modifying the typing rules

•We need to refine the typing rules too…
•Some easy cases:

•Just split up the integers into their more refined cases:

•Same for booleans:

5

i > 0

E ⊢ i : Pos

P-INT

i < 0

E ⊢ i : Neg

N-INT ZERO

E ⊢ 0 : Zero

TRUE

E ⊢ true : True

FALSE

E ⊢ false : False

Stephen Chong, Harvard University

What about “if”?

•Two cases are easy:

•What if we don’t know statically which branch will be taken?
•Consider the typechecking problem: 
 
 x:bool ⊢ if (x) 3 else -1 : ???

•The true branch has type Pos and the false branch has type Neg.
•What should be the result type of the whole if?

6

E ⊢ e1 : True E ⊢ e2 : T

E ⊢ if (e1) e2 else e3 : T

IF-T E ⊢ e1 : False E ⊢ e3 : T

E ⊢ if (e1) e2 else e3 : T

IF-F

Stephen Chong, Harvard University

Subtyping and Upper Bounds

•If we think of types as sets of values, we have a natural inclusion relation: 
 Pos ⊆ Int

•This subset relation gives rise to a subtype relation: Pos <: Int

•Such inclusions give rise to a subtyping hierarchy:

•Given any two types T1 and T2, we can calculate their least upper bound
(LUB) according to the hierarchy.

•Example: LUB(True, False) = Bool, LUB(Int, Bool) = Any
•Note: might want to add types for “NonZero”, “NonNegative”, and “NonPositive” so

that set union on values corresponds to taking LUBs on types.
7

Any

Int

Neg Zero Pos

Bool

True False

<:

<: <:

:>

:> :>:>

Stephen Chong, Harvard University

“If” Typing Rule Revisited

•For statically unknown conditionals, we want the return value to
be the LUB of the types of the branches:

•Note: LUB(T1, T2) is the most precise type (according to the
hierarchy) that describes any value with either type T1 or type T2

•Math notation: LUB(T1, T2) is sometimes written T1 ⋁ T2 or T1 ⊔
T2
•LUB is also called the join operation.

8

E ⊢ e1 : bool E ⊢ e2 : T1 E ⊢ e3 : T2

E ⊢ if (e1) e2 else e3 : LUB(T1,T2)

IF-BOOL

Stephen Chong, Harvard University

Subtyping Hierarchy

•A subtyping hierarchy:

•The subtyping relation is a partial order:
•Reflexive: T <: T for any type T
•Transitive: T1 <: T2 and T2 <: T3 then T1 <: T3
•Antisymmetric: T1 <: T2 and T2 <: T1 then T1 = T2

9

Any

Int

Neg Zero Pos

Bool

True False

<:

<: <:

:>

:> :>:>

Stephen Chong, Harvard University

Soundness of Subtyping Relations

•We don’t have to treat every subset of the integers as a type.
•e.g., we left out the type NonNeg

•A subtyping relation T1 <: T2 is sound if it approximates the
underlying semantic subset relation

•Formally: write ⟦T⟧ for the subset of (closed) values of type T
•i.e., ⟦T⟧ = {v | ⊢ v : T}

•e.g., ⟦Zero⟧ = {0}, ⟦Pos⟧ = {1, 2, 3, …}

•If T1 <: T2 implies ⟦T1⟧ ⊆ ⟦T2⟧, then T1 <: T2 is sound.
•e.g., Pos <: Int is sound, since {1,2,3,…} ⊆ {…,-3,-2,-1,0,1,2,3,...}

•e.g., Int <: Pos is not sound, since it is not the case that
{…,-3,-2,-1,0,1,2,3,...}⊆ {1,2,3,…}

10

Stephen Chong, Harvard University

Soundness of LUBs

•Whenever you have a sound subtyping relation, it follows that: 
 ⟦T1⟧ ∪ ⟦T2⟧ ⊆ ⟦LUB(T1, T2)⟧

•Note that the LUB is an over approximation of the “semantic union”

•Example: ⟦Zero⟧ ∪ ⟦Pos⟧ = {0} ∪ {1,2,3,…}  
 = {0,1,2,3,…} 
 ⊆ {...,-3,-2,-1,0,1,2,3,…} 
 = ⟦Int⟧ = ⟦LUB(Zero, Pos)⟧

•Using LUBs in the typing rules yields sound approximations of the
program behavior (as in the IF-B rule).

11

E ⊢ e1 : bool E ⊢ e2 : T1 E ⊢ e3 : T2
E ⊢ if (e1) e2 else e3 : T1 ∨ T2

IF-BOOL

Stephen Chong, Harvard University

Subsumption Rule

•When we add subtyping judgments of the form T <: S we can
uniformly integrate it into the type system generically:

•Subsumption allows any value of type T to be treated as an S
whenever T <: S.

•Adding this rule makes the search for typing derivations more
difficult – this rule can be applied anywhere, since T <: T.
•But careful engineering of the typing system can incorporate the

subsumption rule into a deterministic algorithm.

12

E ⊢ e : T T <: S
E ⊢ e : S

SUBSUMPTION

Stephen Chong, Harvard University

Downcasting

•What happens if we have an Int but need something of type Pos?
•At compile time, we don’t know whether the Int is greater than zero.
•At run time, we do.

•Add a “checked downcast”

•At runtime, ifPos checks whether e1 is > 0. If so, branches to e2 and
otherwise branches to e3

•Inside expression e2, x is e1’s value, which is known to be strictly
positive because of the dynamic check.

•Note that such rules force the programmer to add the appropriate checks
•We could give integer division the type: Int -> NonZero -> Int

13

E ⊢ e1 : Int E, x : Pos ⊢ e2 : T2 E ⊢ e3 : T3
E ⊢ ifPos (x = e1) e2 else e3 : T2 ⋁ T3

Stephen Chong, Harvard University

Extending Subtyping to Other Types

•What about subtyping for tuples?
•When a program expects a value of type S1 * S2, when is

sound to give it a T1 * T2?

•Example: (Pos * Neg) <: (Int * Int)

•What about functions?
•When is T1 -> T2 <: S1 -> S2 ?
•When a program expects a function of type S1 -> S2, when can

we give it a function of type T1 -> T2 ?
14

T1 <: S1 T2 <: S2

(T1 * T2) <: (S1 * S2)

Stephen Chong, Harvard University

Subtyping for Function Types

•One way to see it:

•Need to convert an S1 to a T1 and T2 to S2, so
the argument type is contravariant and the
output type is covariant.

15

Expected function

Actual functionS1 S2T1 T2

S1 <: T1 T2 <: S2

(T1 -> T2) <: (S1 -> S2)

Stephen Chong, Harvard University

Immutable Records

•Record type: {lab1:T1; lab2:T2; … ; labn:Tn}
•Each labi is a label drawn from a set of identifiers.

16

E ⊢ e1 : T1 E ⊢ e2 : T2 … E ⊢ en : Tn

E ⊢ {lab1 = e1; lab2 = e2; … ; labn = en} : {lab1:T1; lab2:T2; … ; labn:Tn}

RECORD

E ⊢ e : {lab1:T1; lab2:T2; … ; labn:Tn}

E ⊢ e.labi : Ti

PROJECTION

Stephen Chong, Harvard University

Immutable Record Subtyping

•Depth subtyping:
•Corresponding fields may be subtypes

•Width subtyping:
•Subtype record may have more fields:

17

T1 <: U1 T2 <: U2 … Tn <: Un
{lab1:T1; lab2:T2; … ; labn:Tn} <: {lab1:U1; lab2:U2; … ; labn:Un}

DEPTH

m ≤ n
{lab1:T1; lab2:T2; … ; labn:Tn} <: {lab1:T1; lab2:T2; … ; labm:Tm}

WIDTH

Stephen Chong, Harvard University

Depth & Width Subtyping vs.
Layout

•Width subtyping (without depth) is compatible with “inlined”
record representation as with C structs:

•The layout and underlying field indices for x and y are identical.
•The z field is just ignored

•Depth subtyping (without width) is similarly compatible,
assuming that the space used by A is the same as the space
used by B whenever A <: B

•But… they don't mix. Why?
18

x y z x y

{x:int; y:int; z:int} <: {x:int; y:int} [Width Subtyping]

Stephen Chong, Harvard University

Immutable Record Subtyping
(cont’d)

•Width subtyping assumes an implementation in which order
of fields in a record matters: 
 {x:int; y:int} ≠ {y:int; x:int} 
But: {x:int; y:int; z:int} <: {x:int; y:int}
•Implementation: a record is a struct, subtypes just add fields at the

end of the struct.

•Alternative: allow permutation of record fields: 
 {x:int; y:int} = {y:int; x:int}
•Implementation: compiler sorts the fields before code generation.
•Need to know all of the fields to generate the code

•Permutation is not directly compatible with width subtyping: 
 {x:int; z:int; y:int} = {x:int; y:int; z:int} </: {y:int; z:int}

19

Stephen Chong, Harvard University

If you want both:

•If you want permutability & dropping, you need
to either copy (to rearrange the fields) or use a
dictionary like this:

20

p = {x=42; y=55; z=66}:{x:int; y:int; z:int}

q : {y:int; z:int} = p

x y z

42 55 66

y z

dictionary

dictionary

Stephen Chong, Harvard University

Mutability and Subtyping

•What about when we add mutable locations?
•References, arrays, ...

21

Stephen Chong, Harvard University

NULL

•What is the type of null?

•Consider:
•int[] a = null; // OK?
•int x = null; // not OK?

•string s = null; // OK?

•Null has any reference type
•Null is generic

•What about type safety?
•Requires defined behavior when dereferencing null
• e.g., Java's NullPointerException

•Requires a safety check for every dereference operation 
(typically implemented using low-level hardware "trap" mechanisms.)

22

NULL

E ⊢ null : r

Stephen Chong, Harvard University

Subtyping and References

•What is the proper subtyping relationship for references
and arrays?

•Suppose we have NonZero as a type and the division
operation has type: Int -> NonZero -> Int
•Recall that NonZero <: Int

•Should (NonZero ref) <: (Int ref) ?
•Consider this program:

23

Int bad(NonZero ref r) {
 Int ref a = r; (* OK because (NonZero ref <: Int ref*)
 a := 0; (* OK because 0 : Zero <: Int *)
 return (42 / !r) (* OK because !r has type NonZero *)
}

Stephen Chong, Harvard University

Mutable Structures are Invariant

•Covariant reference types are unsound
•As demonstrated in the previous example

• Contravariant reference types are also unsound
•i.e. If T1 <: T2 then ref T2 <: ref T1 is also unsound
•Exercise: construct a program that breaks contravariant references.

•Moral: Mutable structures are invariant:  
 T1 ref <: T2 ref implies T1 = T2

•Same holds for arrays, mutable records, object fields, etc.
•Note: Java and C# get this wrong. They allows covariant array

subtyping, but then compensate by adding a dynamic check on
every array update!

24

Stephen Chong, Harvard University

Another Way to See It

•We can think of a reference cell as an immutable record (object) with two
functions (methods) and some hidden state: 
 T ref ≃ {get: unit -> T; set: T -> unit}

•get returns the value hidden in the state.
•set updates the value hidden in the state.

•When is T ref <: S ref?
•Records are like tuples: subtyping extends pointwise over each component.
•{get: unit -> T; set: T -> unit} <: {get: unit -> S; set: S -> unit}

•get components are subtypes: unit -> T <: unit -> S
•set components are subtypes: T -> unit <: S -> unit

•From get, we must have T <: S (covariant return)
•From set, we must have S <: T (contravariant arg.)

•From T <: S and S <: T we conclude T = S.

25

Stephen Chong, Harvard University

Structural vs. Nominal Typing

•Is type equality / subsumption defined by the structure of the data or the name of the data?
•Example 1: type abbreviations (OCaml) vs. “newtypes” (a la Haskell)

•Type abbreviations are treated “structurally”
•Newtypes are treated “by name”

26

(* OCaml: *)
type cents = int (* cents = int in this scope *)
type age = int

let foo (x:cents) (y:age) = x + y

(* Haskell: *)
newtype Cents = Cents Integer (* Integer and Cents are  
 isomorphic, not identical. *)
newtype Age = Age Integer

foo :: Cents -> Age -> Int
foo x y = x + y (* Ill typed! *)

Stephen Chong, Harvard University

Nominal Subtyping in Java

•In Java, Classes and Interfaces must be named and their relationships explicitly
declared

•Similarly for inheritance: programmers must declare the subclass relation via
the “extends” keyword.

•Typechecker still checks that the classes are structurally compatible

27

(* Java: *)
interface Foo {
 int foo();
}

class C { /* Does not implement the Foo interface */
 int foo() {return 2;}
}

class D implements Foo {
 int foo() {return 42;}
}

