
CS153: Compilers
Lecture 17: Compiling Objects

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Contains content from lecture notes by Steve Zdancewic and Greg Morrisett

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Announcements

•HW4: Oat v.1
•Due Today

•HW5: Oat v.2
•Released today!
•Due in 3 weeks
•Files have much of solution to HW4
•HW4 last late day is Friday
•So the files will be released on Canvas Saturday 12am
•If you have submitted HW4 and want HW5 files now,

email cs153-staff@seas.harvard.edu
•We will email you a link to the files

2

mailto:cs153-staff@seas.harvard.edu

Stephen Chong, Harvard University

Today

•Overview of HW5
•Object Oriented programming

•What is it
•Dynamic dispatch

3

Stephen Chong, Harvard University

What Is Object-Oriented Programming?

•Programming based on concept of objects, which are data
plus code

•OOP can be an effective approach to writing large systems
•Objects naturally model entities
•OO languages typically support
• information hiding (aka encapsulation) to support modularity
• inheritance to support code reuse

•Several families of OO languages:
•Prototype-based (e.g. Javascript, Lua)
•Class-based (e.g. C++, Java, C#)

•We focus on the compilation of class-based OO languages

4

Stephen Chong, Harvard University

Brief Incomplete History of OO

•(Early 60’s) Key concepts emerge in various languages/
programs: sketchpad (Sutherland), SIMSCRIPT (Hoare), and
probably many others.

•(1967) Simula 67 (Dahl, Nygaard) crystalizes many ideas
(class, object, subclass, dispatch) into a coherent OO
language

•(1972) Smalltalk (Kay) introduces the concept of object-
oriented programming

•(1978) Modula-2 (Wirth)
•(1985) Eiffel (Meyer)
•(1990’s) OO programming becomes mainstream: C++, Java,

C#, …
5

Stephen Chong, Harvard University

Classes

•What’s the difference between a class and an object?
•A class is a blueprint for objects
•Class typically contains

•Declared fields / instance variables
•Values may differ from object to object

•Usually mutable

•Methods
• Shared by all objects of a class
• Inherited from superclasses

•Usually immutable

•Methods can be overridden, fields (typically) can not
6

Stephen Chong, Harvard University

Example Java Code

•Every Vehicle is an Object

•Every Car is a Vehicle, every Truck is a Vehicle

•Every Vehicle (and thus every Car and Truck) have a position field and a move method

•Every Car also has a passengers field and an await method

7

class Vehicle extends Object {
 int position = 0;
 void move(int x) { this.position += x; }
}

class Car extends Vehicle {
 int passengers = 0;
 void await(Vehicle v) {
 if (v.position < this.position) {
 v.move(this.position - v.position);
 } else { this.move(10); }
 }
}

class Truck extends Vehicle {
 void move(int x) { if (x < 55) this.position += x;}
}

Stephen Chong, Harvard University

Example Java Code

•A Car can be used anywhere a Vehicle is expected (because a Car is a Vehicle!)

•Class Truck overrides the move method of Vehicle
•Invoking method o.move(i) will invoke Truck’s move method if o’s class at run time is
Truck

8

class Vehicle extends Object {
 int position = 0;
 void move(int x) { this.position += x; }
}

class Car extends Vehicle {
 int passengers = 0;
 void await(Vehicle v) {
 if (v.position < this.position) {
 v.move(this.position - v.position);
 } else { this.move(10); }
 }
}

class Truck extends Vehicle {
 void move(int x) { if (x < 55) this.position += x;}
}

Stephen Chong, Harvard University

Code Generation for Objects

•Methods
•How do we generate method body code?
•How do we invoke methods (dispatching)
•Challenge: handling inheritance

•Fields
•Memory layout
•Alignment
•Challenge: handling inheritance

9

Stephen Chong, Harvard University

Need for Dynamic Dispatch

•Methods look like functions. Can they be treated the same?
•Consider the following Java code: Same interface implemented by multiple classes

interface IntSet {
 public IntSet insert(int i);
 public boolean has(int i);
 public int size();
}

10

class IntSet1 implements IntSet {
 private List<Integer> rep;
 public IntSet1() {
 rep = new LinkedList<Integer>();}

 public IntSet1 insert(int i) {
rep.add(new Integer(i));

 return this;}

 public boolean has(int i) {
 return rep.contains(new Integer(i));}

 public int size() {return rep.size();}
}

class IntSet2 implements IntSet {
 private Tree rep;
 private int size;
 public IntSet2() {
 rep = new Leaf(); size = 0;}

 public IntSet2 insert(int i) {
Tree nrep = rep.insert(i);

 if (nrep != rep) {
 rep = nrep; size += 1;
 }

return this;}

 public boolean has(int i) {
return rep.find(i);}

 public int size() {return size;}
}

Stephen Chong, Harvard University

Need for Dynamic Dispatch

•Suppose a client uses the IntSet interface

•Which code to call?
•IntSet1.size? IntSet2.size?

•Client code doesn’t know which code! Could be either at runtime.
•Objects must “know” which code to call
•Invocation of method must indirect through object

interface IntSet {
 public IntSet insert(int i);
 public boolean has(int i);
 public int size();
}

11

IntSet set = foo();
int x = set.size();

Stephen Chong, Harvard University

Dynamic Dispatch Solution

•So we need some way at
run time to figure out
which code to invoke

•Solution: dispatch table
(aka virtual method
table, vtable)
•Each class has table (array)

of function pointers

•Each method of class is at
a known index of table

12

Object o  
of class IntSet1

class_ptr

... more stuff for
the representation
of an object ...

Code for
IntSet1.insert

... more stuff for the
representation of class
IntSet1...

insert
has

⋮
size

Dispatch vector

IntSet set = foo();
int x = set.size();

insert
has

⋮
size

set
class_ptr

... more stuff for
the representation
of an object ...

