HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 17: Compiling Objects

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

Contains content from lecture notes by Steve Zdancewic and Greg Morrisett


https://www.seas.harvard.edu/courses/cs153

Announcements

e HW4: Oat v.1
e Due Today

e H\W5: Oat v.2

eReleased today!

eDue in 3 weeks

eFiles have much of solution to HW4

e HW4 last late day is Friday

*So the files will be released on Canvas Saturday 12am

eIf you have submitted HW4 and want HW5 files now,
email cs153-staff@seas.harvard.edu

* We will email you a link to the files


mailto:cs153-staff@seas.harvard.edu

e Overview of HW5

* Object Oriented programming
*What is it
* Dynamic dispatch

Stephen Chong, Harvard University 3



What Is Object-Oriented Programming?

* Programming based on concept of objects, which are data
plus code

e OOP can be an effective approach to writing large systems

e Objects naturally model entities
* OO languages typically support

» information hiding (aka encapsulation) to support modularity
* inheritance to support code reuse

e Several families of OO languages:
* Prototype-based (e.g. Javascript, Lua)
*Class-based (e.g. C++, Java, C#)

*\We focus on the compilation of class-based OO languages



Briet Incomplete History of OO

e (Early 60’s) Key concepts emerge in various languages/
programs: sketchpad (Sutherland), SIMSCRIPT (Hoare), and
probably many others.

*(1967) Simula 67 (Dahl, Nygaard) crystalizes many ideas
(class, object, subclass, dispatch) into a coherent OO
language

(1972) Smalltalk (Kay) introduces the concept of object-
oriented programming

*(1978) Modula-2 (Wirth)
*(1985) Eiffel (Meyer)

*(1990’s) OO programming becomes mainstream: C++, Java,
C#, ...




Classes

*\What'’s the difference between a class and an object?

* A class is a blueprint for objects

e Class typically contains
e Declared fields / instance variables

* Values may differ from object to object
» Usually mutable

e Methods
* Shared by all objects of a class

* Inherited from superclasses
» Usually immutable

* Methods can be overridden, fields (typically) can not



Example Java Code

class Vehicle extends Object {
int position = 0;
void move(int x) { this.position += x; }

}

class Car extends Vehicle {
int passengers = 0;
volid await(Vehicle v) {
if (v.position < this.position) {
v.move(this.position - v.position);
} else { this.move(1l0); }

}

class Truck extends Vehicle {
void move(int x) { if (x < 55) this.position += Xx;}

}
°Every Vehicle is an Object

°Every Car is a Vehicle, every Truck is a Vehicle
*Every Vehicle (and thus every Car and Truck) have a position field and a move method

*Every Car also has a passengers field and an await method



Example Java Code

class Vehicle extends Object {
int position = 0;
void move(int x) { this.position += x; }

}

class Car extends Vehicle {
int passengers = 0;
volid await(Vehicle v) {
if (v.position < this.position) {
v.move(this.position - v.position);
} else { this.move(1l0); }

}

class Truck extends Vehicle {
void move(int x) { if (x < 55) this.position += Xx;}

}
* A Car can be used anywhere a Vehicle is expected (because a Car is a Vehicle!)

¢ Class Truck overrides the move method of Vehicle

Invoking method o.move (i) will invoke Truck’s move method if o’s class at run time is
Truck



Code Generation for Objects

* Methods

* How do we generate method body code?

e How do we invoke methods (dispatching)

e Challenge: handling inheritance

efFields

* Memory layout
* Alignment

e Challenge: handling inheritance



Need for Dynamic Dispatch

e Methods look like functions. Can they be treated the same?
ava code: Same interface implemented by multiple classes

interface IntSet {
public IntSet insert(int 1);
public boolean has(int 1);
public int size();

 Consider the following

J

}
class IntSetl implements IntSet { class IntSet2 implements IntSet ({
private List<Integer> rep; private Tree rep;
public IntSetl() { private int size;
rep = new LinkedList<Integer>();} public IntSet2() {

rep = new Leaf(); size = 0;}
public IntSetl insert(int i) {

rep.add(new Integer(i)); public IntSet2 insert(int i) {
return this;} Tree nrep = rep.insert(i);
if (nrep != rep) {
public boolean has(int i) ({ rep = nrep; size += 1;
return rep.contains(new Integer(i));} }

return this;}

public int size() {return rep.size();}
} public boolean has(int i) {

return rep.find(i);}

public int size() {return size;}

}




Need for Dynamic Dispatch

interface IntSet {
public IntSet insert(int 1);
public boolean has(int 1);
public int size();

}

e Suppose a client uses the IntSet interface

IntSet set = foo();
int x = set.size();

e \Which code to call?
eTntSetl.size?! IntSet2.size?

e Client code doesn’t know which code! Could be either at runtime.
e Objects must “know” which code to call
eInvocation of method must indirect through object



Dynamic Dispatch Solution

*So we need some way at of class Intset1

run time to figure out
which code to invoke

e Solution: dispatch table
(aka virtual method
table, vtable)

eEach class has table (array)
of function pointers

e Fach method of class is at
a known index of table

set
IntSet set = foo();

int x = set.size();

Object o

class_ptr @

Dispatch vector

... more stuff for
the representation
of an object ...

/

insert
has o
size o

... more stuff for the
representation of class
IntSet]...

o —

Code for
IntSetl.insert

class_ptr @1 [insert

... more stuff for
the representation
of an object ...

has

size




