John A. Paulson

School of Engineering
and Applied Sciences

HARVARD

CS153: Compilers
Lecture 18:
Compiling Objects ctd.

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

Contains content from lecture notes by Steve Zdancewic and Greg Morrisett

https://www.seas.harvard.edu/courses/cs153

Announcements

* HW5: Oat v.2
e Due Tuesday Nov 19

eFiles will be released on Canvas Saturday 12am

eIf you have submitted HW4 and want HW5 files now,
email cs153-staff@seas.harvard.edu

* We will email you a link to the files

* Guest lecturer Tuesday Nov 5: Eliza Kozyri

°*Steve away

mailto:cs153-staff@seas.harvard.edu

To

* Object Oriented programming ctd.
e Dynamic dispatch
e Code generation for methods and method calls
eFields
* Creating objects
* Extensions
* [ype system

Stephen Chong, Harvard University 3

Need for Dynamic Dispatch

e Methods look like functions. Can they be treated the same?
ava code: Same interface implemented by multiple classes

interface IntSet {
public IntSet insert(int 1);
public boolean has(int 1);
public int size();

 Consider the following

J

}
class IntSetl implements IntSet { class IntSet2 implements IntSet ({
private List<Integer> rep; private Tree rep;
public IntSetl() { private int size;
rep = new LinkedList<Integer>();} public IntSet2() {

rep = new Leaf(); size = 0;}
public IntSetl insert(int i) {

rep.add(new Integer(i)); public IntSet2 insert(int i) {
return this;} Tree nrep = rep.insert(i);
if (nrep != rep) {
public boolean has(int i) ({ rep = nrep; size += 1;
return rep.contains(new Integer(i));} }

return this;}

public int size() {return rep.size();}
} public boolean has(int i) {

return rep.find(i);}

public int size() {return size;}

}

Need for Dynamic Dispatch

interface IntSet {
public IntSet insert(int 1);
public boolean has(int 1);
public int size();

}

e Suppose a client uses the IntSet interface

IntSet set = foo();
int x = set.size();

e \Which code to call?
eTntSetl.size?! IntSet2.size?

e Client code doesn’t know which code! Could be either at runtime.
e Objects must “know” which code to call
eInvocation of method must indirect through object

Dynamic Dispatch Solution

*So we need some way at of class Intset1

run time to figure out
which code to invoke

e Solution: dispatch table
(aka virtual method
table, vtable)

eEach class has table (array)
of function pointers

e Fach method of class is at
a known index of table

set
IntSet set = foo();

int x = set.size();

Object o

class_ptr @

Dispatch vector

... more stuff for
the representation
of an object ...

/

insert
has o
size o

... more stuff for the
representation of class
IntSet]...

o —

Code for
IntSetl.insert

class_ptr @1 [insert

... more stuff for
the representation
of an object ...

has

size

What Offset Into the V1able?

*\Want to make sure that every object of class B has same
layout of dispatch table

*Even if object is actually a subclass of B!

class A {

Biildion (ooy St et n
} c e
class B extends A { :

. void baz() { ... }

@voj._d bar() { ... } @void quux() { ... }

void baz() { ... }

y }

e| ist methods in order

*Ensures that a dispatch table for class C also looks like a
dispatch table for class B, and for class A

Dispatch table

Dispatch Tables

Dispatch table

for class A for class B
&A . foo &A.foo
&B.bar
&B.baz

Dispatch table
for class C

&C. foo

&B.bar

&C .baz

&C.quux

Q—» 0— >

foo

bar,

quux

baz

* Dispatch table for class C looks like a dispatch table for class B

oj.e., adc
add

ado

ress for met
ress for met
ress for met

gleje
N10C

N0C

foo is at inc
bar is at ino

ex O (offset 0 bytes)
ex 1 (offset 4 bytes)

baz is at ino

ex 2 (offset 8 bytes)

* And it looks like a dispatch table for class A

ej.e., address for method foo is at index 0

Generating Code for Methods

e For method declarations
e Compiled just like top-level procedures, but...
e Methods have implicit argument, the receiver object (i.e., this, self)

°In essence, method bar declared in class B

class B {
void bar(int x) { ... }

}

is translated like a function
void bar (B this, int x)

*For method call o.bar (54)

eEssentially: void (*f)(obj *,int);
f = o->class ptr->vtable[offset for bar]
f(o, 54);

ei.e., use vtable to get pointer to appropriate function, invoke it with receiver
and arguments

Sharing Dispatch Tables

 All instances of a class may share same dispatch
vector

* Assuming that methods are immutable

*\When object is constructed, object needs to
point to the appropriate dispatch table

b1 e [- Dispatch table
for class B
&A.foo / code for
/ &B.bar" B.bar
b2 —|class_ptr @ &B.baz

Inheritance: Sharing Code

e Inheritace: Method code “copied down” from the
superclass

e |f not overridden in the subclass
Dispatch table

for class B ot
code for
>
b —_— C|aSS_ptl’ . &A. foo / e
&B.bar
&B.baz

Dispatch table
for class C

—»1&C.foo

c —>
class_ptr <B.bar

&C .baz

&C.quux

Fields

e Same basic idea for fields as for methods!

interface Point { int getx(); float norm(); }

class 2DPoint implements Point {

int x;
int y;

}
Object o
class 3DPoint implements Point { of class 3DPoint
@int “ class_ptr‘
} o 2DPoint.x
2DPoint.y
e Representation of object of class 3DPoint has [2™™

space to store fields of 3DPoint and superclasses

Stephen Chong, Harvard University 12

Generating Code for Field Accesses

*To access field x. £
*x will be represented as pointer to object

*Need to know (static) type of x

*x . f refers to memory location at appropriate offset

from base of object x
Object o

°F.g., reading o.y would translate to of class 3pPoint
. class_ptr

dereferencing address .
ot+(offset for y) 2DPointy

3DPoint.z

Creating

*new C creates a new object of class C

* Creates record big enough to hold a C object
e|nitializes pointer to dispatch table

e|nitializes instance variables
e Evaluates to pointer to newly created object

Stephen Chong, Harvard University 14

Representation in LLVM

e During typechecking, create a class hierarchy

e (We will discuss typechec

el

* Map each class to its interface

» Superclass

» Constructor type
- Fields
» Method types (plus whether they inherit and from where)

King more later)

e Compile the class hierarchy to produce

eAn L
eAn L

VM

VM

R struct ty

R struct ty

D€
O[S

.l

10r €acC

ﬂ

10r €acC

N obj

N dis

e Global definitions that implement t

ect Instance
natch table

ne class tables

Extensions...

* Multiple inheritance

e Typically use multiple vtables (one for each base class)
and switch between them based on the static type

e Other approaches possible

* Separate compilation

*Don’t know how many fields/method in superclass!
(Superclass could be recompiled after subclass)

e Resolve offsets at link or load time

Extensions...

e Prototype based OO languages

e Similar approach, but vtable belongs with object (no
classes!)

e Objects are created by cloning other objects

* Many objects will have the same vtable: can share them,
with copy-on-write

e Runtime type check: o instanceof C

e Each object contains pointer to its class, so can figure out
at runtime if a o’s class is a subclass of C

e But how to efficiently store inheritance information in
runtime representation of classes?

OO0 lype Systems

o Visibility
* To support encapsulation, some OO languages provide visibility
restrictions on fields and methods

°Java has private, protected, public (and some more)
» private members accessible only to implementation of class
» public members accessible by any code

- protected members accessible only to implementation of class and
subclasses

e Subclassing vs inheritance
e Somewhat conflated in Java

e Inheritance: reuse code from another class;
Subclassing: every object of subclass is a superclass object

e C++ has visibility restrictions on inheritance

OO0 lype Systems

* Subclassing vs subtyping

* Not the same!
* No contravariance in argument type in Java methods

e Overriding vs overloading

GivenC.m(T1, T2, «.., Tn)andD.m(S1, S2, <., Sn)
where C is subclass of D,
C.moverridesD.monly if Ty, T2, ..., Tn = Si, Sz,

» Otherwise, D.m just overloads the method name m...

e Null values

*|n Java type C for class C is analogous to C option in ML

» Since any object value can be null

