
CS153: Compilers
Lecture 18:
Compiling Objects ctd.

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Contains content from lecture notes by Steve Zdancewic and Greg Morrisett

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Announcements

•HW5: Oat v.2
•Due Tuesday Nov 19
•Files will be released on Canvas Saturday 12am
•If you have submitted HW4 and want HW5 files now,

email cs153-staff@seas.harvard.edu
•We will email you a link to the files

•Guest lecturer Tuesday Nov 5: Eliza Kozyri
•Steve away

2

mailto:cs153-staff@seas.harvard.edu

Stephen Chong, Harvard University

Today

•Object Oriented programming ctd.
•Dynamic dispatch
•Code generation for methods and method calls
•Fields
•Creating objects
•Extensions
•Type system

3

Stephen Chong, Harvard University

Need for Dynamic Dispatch

•Methods look like functions. Can they be treated the same?
•Consider the following Java code: Same interface implemented by multiple classes

interface IntSet {
 public IntSet insert(int i);
 public boolean has(int i);
 public int size();
}

4

class IntSet1 implements IntSet {
 private List<Integer> rep;
 public IntSet1() {
 rep = new LinkedList<Integer>();}

 public IntSet1 insert(int i) {
rep.add(new Integer(i));

 return this;}

 public boolean has(int i) {
 return rep.contains(new Integer(i));}

 public int size() {return rep.size();}
}

class IntSet2 implements IntSet {
 private Tree rep;
 private int size;
 public IntSet2() {
 rep = new Leaf(); size = 0;}

 public IntSet2 insert(int i) {
Tree nrep = rep.insert(i);

 if (nrep != rep) {
 rep = nrep; size += 1;
 }

return this;}

 public boolean has(int i) {
return rep.find(i);}

 public int size() {return size;}
}

Stephen Chong, Harvard University

Need for Dynamic Dispatch

•Suppose a client uses the IntSet interface

•Which code to call?
•IntSet1.size? IntSet2.size?

•Client code doesn’t know which code! Could be either at runtime.
•Objects must “know” which code to call
•Invocation of method must indirect through object

interface IntSet {
 public IntSet insert(int i);
 public boolean has(int i);
 public int size();
}

5

IntSet set = foo();
int x = set.size();

Stephen Chong, Harvard University

Dynamic Dispatch Solution

•So we need some way at
run time to figure out
which code to invoke

•Solution: dispatch table
(aka virtual method
table, vtable)
•Each class has table (array)

of function pointers

•Each method of class is at
a known index of table

6

Object o  
of class IntSet1

class_ptr

... more stuff for
the representation
of an object ...

Code for
IntSet1.insert

... more stuff for the
representation of class
IntSet1...

insert
has

⋮
size

Dispatch vector

IntSet set = foo();
int x = set.size();

insert
has

⋮
size

set
class_ptr

... more stuff for
the representation
of an object ...

Stephen Chong, Harvard University

What Offset Into the VTable?

•Want to make sure that every object of class B has same
layout of dispatch table
•Even if object is actually a subclass of B!  
 
 
 
 
 

•List methods in order
•Ensures that a dispatch table for class C also looks like a

dispatch table for class B, and for class A
7

class A {
 void foo() { ... }
}
class B extends A {
 void bar() { ... }
 void baz() { ... }
}

class C extends B {
 void foo() { ... }

 void baz() { ... }
 void quux() { ... }
}

1

2

3 4

Stephen Chong, Harvard University

Dispatch Tables

•Dispatch table for class C looks like a dispatch table for class B
•i.e., address for method foo is at index 0 (offset 0 bytes) 

 address for method bar is at index 1 (offset 4 bytes) 
 address for method baz is at index 2 (offset 8 bytes)

•And it looks like a dispatch table for class A
•i.e., address for method foo is at index 0

8

A

B

C

foo

bar, baz

quux

&A.foo

&B.bar

&B.baz

Dispatch table
for class B

Dispatch table
for class A

&A.foo

Dispatch table
for class C

&C.foo

&B.bar

&C.baz

&C.quux

Stephen Chong, Harvard University

Generating Code for Methods

•For method declarations
•Compiled just like top-level procedures, but...
•Methods have implicit argument, the receiver object (i.e., this, self)
•In essence, method bar declared in class B  
 
 
 
is translated like a function  
 void bar(B this, int x)

•For method call o.bar(54)
•Essentially: 
 

•i.e., use vtable to get pointer to appropriate function, invoke it with receiver
and arguments

9

class B {
 void bar(int x) { ... }
}

void (*f)(obj *,int);
f = o->class_ptr->vtable[offset for bar]
f(o, 54);

Stephen Chong, Harvard University

Sharing Dispatch Tables

•All instances of a class may share same dispatch
vector
•Assuming that methods are immutable

•When object is constructed, object needs to
point to the appropriate dispatch table

10

&A.foo

&B.bar

&B.baz

Dispatch table
for class B

b1 class_ptr

class_ptrb2

code for
B.bar

Stephen Chong, Harvard University

Inheritance: Sharing Code

•Inheritace: Method code “copied down” from the
superclass
•If not overridden in the subclass

11

&A.foo

&B.bar

&B.baz

Dispatch table
for class B

b class_ptr

class_ptrc

code for
B.bar

Dispatch table
for class C

&C.foo

&B.bar

&C.baz

&C.quux

Stephen Chong, Harvard University

Fields

•Same basic idea for fields as for methods!

•Representation of object of class 3DPoint has
space to store fields of 3DPoint and superclasses

12

interface Point { int getx(); float norm(); }

class 2DPoint implements Point {
 int x;
 int y;
 ...
}

class 3DPoint implements Point {
 int z;
 ...
}

1
2

3

Object o  
of class 3DPoint

class_ptr

2DPoint.x

2DPoint.y

3DPoint.z

Stephen Chong, Harvard University

Generating Code for Field Accesses

•To access field x.f
•x will be represented as pointer to object

•Need to know (static) type of x
•x.f refers to memory location at appropriate offset

from base of object x

•E.g., reading o.y would translate to
dereferencing address  
o+(offset for y)

13

Object o  
of class 3DPoint

class_ptr

2DPoint.x

2DPoint.y

3DPoint.z

Stephen Chong, Harvard University

Creating Objects

•new C creates a new object of class C
•Creates record big enough to hold a C object
•Initializes pointer to dispatch table
•Initializes instance variables
•Evaluates to pointer to newly created object

14

Stephen Chong, Harvard University

Representation in LLVM

•During typechecking, create a class hierarchy
•(We will discuss typechecking more later)
•Map each class to its interface
• Superclass

•Constructor type

• Fields

•Method types (plus whether they inherit and from where)

•Compile the class hierarchy to produce
•An LLVM IR struct type for each object instance
•An LLVM IR struct type for each dispatch table
•Global definitions that implement the class tables

15

Stephen Chong, Harvard University

Extensions...

•Multiple inheritance
•Typically use multiple vtables (one for each base class)

and switch between them based on the static type
•Other approaches possible

•Separate compilation
•Don’t know how many fields/method in superclass!

(Superclass could be recompiled after subclass)
•Resolve offsets at link or load time

16

Stephen Chong, Harvard University

Extensions...

•Prototype based OO languages
•Similar approach, but vtable belongs with object (no

classes!)
•Objects are created by cloning other objects
•Many objects will have the same vtable: can share them,

with copy-on-write

•Runtime type check: o instanceof C
•Each object contains pointer to its class, so can figure out

at runtime if a o’s class is a subclass of C
•But how to efficiently store inheritance information in

runtime representation of classes?
17

Stephen Chong, Harvard University

OO Type Systems

•Visibility
•To support encapsulation, some OO languages provide visibility

restrictions on fields and methods
•Java has private, protected, public (and some more)
• private members accessible only to implementation of class

• public members accessible by any code

• protected members accessible only to implementation of class and
subclasses

•Subclassing vs inheritance
•Somewhat conflated in Java
•Inheritance: reuse code from another class;  

Subclassing: every object of subclass is a superclass object
•C++ has visibility restrictions on inheritance

18

Stephen Chong, Harvard University

OO Type Systems

•Subclassing vs subtyping
•Not the same!

•No contravariance in argument type in Java methods

•Overriding vs overloading
•Given C.m(T1, T2, ..., Tn) and D.m(S1, S2, ..., Sm)
where C is subclass of D,  
C.m overrides D.m only if T1, T2, ..., Tn = S1, S2, ..., Sm

•Otherwise, D.m just overloads the method name m...

•Null values
•In Java type C for class C is analogous to C option in ML
• Since any object value can be null

•...
19

