
CS153: Compilers
Lecture 19: Optimization

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Contains content from lecture notes by Steve Zdancewic and Greg Morrisett

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Announcements

•HW5: Oat v.2 out
•Due in 2 weeks

•HW6 will be released next week
•Implementing optimizations! (and more)

2

Stephen Chong, Harvard University

Today

•Optimizations
•Safety
•Constant folding
•Algebraic simplification
• Strength reduction

•Constant propagation
•Copy propagation
•Dead code elimination
•Inlining and specialization
•Recursive function inlining

•Tail call elimination
•Common subexpression elimination

3

Stephen Chong, Harvard University

Optimizations

•The code generated by our OAT compiler so far
is pretty inefficient.
•Lots of redundant moves.
•Lots of unnecessary arithmetic instructions.

•Consider this OAT program:

4

int foo(int w) {
 var x = 3 + 5;
 var y = x * w;
 var z = y - 0;
 return z * 4;
}

Stephen Chong, Harvard University

Unoptimized vs. Optimized Output

•Hand optimized code:  
 _foo:  
 shlq $5, %rdi  
 movq %rdi, %rax  
 ret

•Function foo may be
inlined by the compiler,
so it can be implemented
by just one instruction!

5

.globl _foo
_foo:

pushl %ebp
movl %esp, %ebp
subl $64, %esp

__fresh2:
leal -64(%ebp), %eax
movl %eax, -48(%ebp)
movl 8(%ebp), %eax
movl %eax, %ecx
movl -48(%ebp), %eax
movl %ecx, (%eax)
movl $3, %eax
movl %eax, -44(%ebp)
movl $5, %eax
movl %eax, %ecx
addl %ecx, -44(%ebp)
leal -60(%ebp), %eax
movl %eax, -40(%ebp)
movl -44(%ebp), %eax
movl %eax, %ecx

Stephen Chong, Harvard University

Why do we need optimizations?

•To help programmers…
•They write modular, clean, high-level programs
•Compiler generates efficient, high-performance assembly

•Programmers don’t write optimal code

•High-level languages make avoiding redundant computation inconvenient
or impossible

•e.g. A[i][j] = A[i][j] + 1

•Architectural independence
•Optimal code depends on features not expressed to the programmer

•Modern architectures assume optimization

•Different kinds of optimizations:
•Time: improve execution speed

•Space: reduce amount of memory needed
•Power: lower power consumption (e.g. to extend battery life)

6

Stephen Chong, Harvard University

Some caveats

•Optimization are code transformations:
•They can be applied at any stage of the compiler
•They must be safe – they shouldn’t change the meaning of the program.

•In general, optimizations require some program analysis:
•To determine if the transformation really is safe

•To determine whether the transformation is cost effective

•“Optimization” is misnomer
•Typically no guarantee transformations will improve performance, nor

that compilation will produce optimal code

•This course: most common and valuable performance
optimizations

•See Muchnick “Advanced Compiler Design and Implementation” for ~10
chapters about optimization

7

Stephen Chong, Harvard University

Constant Folding

•Idea: If operands are known at compile type,
perform the operation statically.

•int x = (2+3) * y ➔ int x = 5 * y
•b & false ➔ false

8

Stephen Chong, Harvard University

Constant Folding

•What performance metric does it intend to
improve?
•In general, the question of whether an optimization

improves performance is undecidable.

•At which compilation step can it be applied?
•Intermediate Representation
•Can be performed after other optimizations that create

constant expressions.

9

int x = (2+3) * y ➔ int x = 5 * y

Stephen Chong, Harvard University

Constant Folding

•When is it safely applicable?
•For Boolean values, yes.
•For integers, almost always yes.
•An exception: division by zero.

•For floating points, use caution.
• Example: rounding

•General notes about safety:
•Whether an optimization is safe depends on language semantics.
• Languages that provide weaker guarantees to the programmer permit
more optimizations, but have more ambiguity in their behavior.

•Is there a formal proof for safety?
10

int x = (2+3) * y ➔ int x = 5 * y

Stephen Chong, Harvard University

Algebraic Simplification

•More general form of constant folding
•Take advantage of mathematically sound simplification

rules.

•Identities:
•a * 1 ➔ a a * 0 ➔ 0
•a + 0 ➔ a a – 0 ➔ a
•b | false ➔ b b & true ➔ b

•Reassociation & commutativity:
•(a + b) + c ➔ a + (b + c)
• a + b ➔ b + a

11

Stephen Chong, Harvard University

Algebraic Simplification

•Combined with Constant Folding:
•(a + 1) + 2 ➔ a + (1 + 2) ➔ a + 3

•(2 + a) + 4 ➔ (a + 2) + 4 ➔ a + (2 +
4) ➔ a + 6

•Iteration of these optimizations is useful…
•How much?

12

Stephen Chong, Harvard University

Strength Reduction

•Replace expensive op with cheaper op:
•a * 4 ➔ a << 2

•a * 7 ➔ (a << 3) – a
•a / 32767 ➔ (a >> 15) + (a >> 30)

•So, the effectiveness of this optimization depends on the
architecture.

13

Stephen Chong, Harvard University

Constant Propagation

•If the value of a variable is known to be a constant, replace the use of
the variable by that constant.

•Value of the variable must be propagated forward from the point of
assignment.

•This is a substitution operation.

•Example: 

•To be most effective, constant propagation can be interleaved with
constant folding.

14

int x = 5;
int y = x * 2;
int z = a[y];

int y = 5 * 2;
int z = a[y];

int y = 10;
int z = a[y];

➔

int z = a[10];

➔

➔

Stephen Chong, Harvard University

Constant Propagation

•For safety, it requires a data-flow analysis.
•Next lecture!

•What performance metric does it intend to
improve?

•At which compilation step can it be applied?
•What is the computational complexity of this

optimization?

15

Stephen Chong, Harvard University

Copy Propagation

•If one variable is assigned to another, replace uses of the assigned
variable with the copied variable.

•Need to know where copies of the variable propagate.
•Interacts with the scoping rules of the language.

•Example:

•Can make the first assignment to x dead code (that can be eliminated).

16

x = y;
if (x > 1) {
 x = x * f(x – 1);
}

x = y;
if (y > 1) {
 x = y * f(y – 1);
}

➔

Stephen Chong, Harvard University

Dead Code Elimination

•If a side-effect free statement can never be observed, it is safe to
eliminate the statement.

•A variable is dead if it is never used after it is defined.
•Computing such definition and use information is an important

component of compiler

•Dead variables can be created by other optimizations…
•Code for computing the value of a dead variable can be dropped.

17

x = y * y // x is dead!
... // x never used
x = z * z

...
x = z * z➔

Stephen Chong, Harvard University

Dead Code Elimination

•Is it always safely applicable?
•Only if that code is pure (i.e. it has no externally

visible side effects).
• Externally visible effects: raising an exception, modifying a
global variable, going into an infinite loop, printing to
standard output, sending a network packet, launching a
rocket, ...
•Note: Pure functional languages (e.g. Haskell) make
reasoning about the safety of optimizations (and code
transformations in general) easier!

18

Stephen Chong, Harvard University

Unreachable Code Elimination

•Basic blocks not reachable by any trace leading
from the starting basic block are unreachable
and can be deleted.

•At which compilation step can it be applied?
•IR or assembly level

•What performance metric does it intend to
improve?
•Improves instruction cache utilization.

19

Stephen Chong, Harvard University

Common Subexpression Elimination

•Idea: replace an expression with previously
stored evaluations of that expression.

•Example:  
 [a + i*4] = [a + i*4] + 1
•Common subexpression elimination removes the

redundant add and multiply:  
t = a + i*4; [t] = [t] + 1

•For safety, you must be sure that the shared
expression always has the same value in both
places!

20

Stephen Chong, Harvard University

Unsafe Common Subexpression Elimination

•As an example, consider function:

•The following optimization that shares expression a[i] is unsafe…
Why?

21

void f(int[] a, int[] b, int[] c) {
int j = …; int i = …; int k = …;
b[j] = a[i] + 1;
c[k] = a[i];
return;

}

void f(int[] a, int[] b, int[] c) {
int j = …; int i = …; int k = …;

 t = a[i];
b[j] = t + 1;
c[k] = t;
return;

}

Stephen Chong, Harvard University

Common Subexpression Elimination

•Almost always improves performance.
•But sometimes…

•It might be less expensive to recompute an expression,
rather than to allocate another register to hold its value
(or to store it in memory and later reload it).

22

Stephen Chong, Harvard University

Loop-invariant Code Motion

•Idea: hoist invariant code out of a loop.

•What performance metric does it intend to
improve?

•Is this always safe?

23

while (b) {
 z = y/x;
 … // y, x not updated
}

z = y/x;
while (b) {
 … // y, x not updated
}

➔

Stephen Chong, Harvard University

Optimization Example

24

let a = x ** 2 in
let b = 3 in
let c = x in
let d = c * c in
let e = b * 2 in
let f = a + d in
e * f

let a = x ** 2 in
let d = x * x in
let e = 3 * 2 in
let f = a + d in
e * f

Copy and  
constant  
propagation

let a = x ** 2 in
let d = x * x in
let e = 6 in
let f = a + d in
e * f

let a = x * x in
let d = x * x in
let e = 6 in
let f = a + d in
e * f

let a = x * x in
let d = a in
let e = 6 in
let f = a + d in
e * f

let a = x * x in
let f = a + a in
6 * f

Constant 
 folding

Strength reduction

 Common
 sub-expression
elimination

Copy and  
constant propagation

Stephen Chong, Harvard University

Loop Unrolling

•Idea: replace the body of a loop by several copies of
the body and adjust the loop-control code.

•Example:
•Before unrolling:  
for(int i=0; i<100; i=i+1) {  
 s = s + a[i];  
}

•After unrolling:  
for(int i=0; i<99; i=i+2){  
 s = s + a[i];  
 s = s + a[i+1];  
}

25

Stephen Chong, Harvard University

Loop Unrolling

•What performance metric does it intend to improve?
•Reduces the overhead of branching and checking the loop-

control.
• But it yields larger loops, which might impact the instruction cache.

•Which loops to unroll and by what factor?
•Some heuristics:
• Body with straight-line code.
• Simple loop-control.

•Use profiled runs.

•It may improve the effectiveness of other optimizations
(e.g., common-subexpression evaluation).

26

Stephen Chong, Harvard University

Inlining

•Replace call to a function with function body (rewrite arguments to be local
variables).

•Example:

•Eliminates the stack manipulation, jump, etc.
•May need to rename variable names to avoid name capture.

•Example of what can go wrong?

•Best done at the AST or relatively high-level IR.
•Enables further optimizations.

27

int g(int x) { return x + pow(x); }

int pow(int a) {
 int b = 1; int n = 0;
 while (n < a) {b = 2 * b};
 return b;
}

int g(int x) {
 int a = x;
 int b = 1; int n = 0;
 while (n < a) {b = 2 * b};
 tmp = b;
 return x + tmp;
}

➔

Stephen Chong, Harvard University

Inlining Recursive Functions

•Consider recursive function:  
f(x,y) = if x < 1 then y  
 else x * f(x-1,y)

•If we inline it, we essentially just unroll one call:
•f(z,8) + 7  

becomes  
(if z < 0 then 8 else z*f(z-1,8)) + 7

•Can’t keep on inlining definition of f; will never stop!

•But can still get some benefits of inlining by
slight rewriting of recursive function...

28

Stephen Chong, Harvard University

Rewriting Recursive Functions for
Inlining

•Rewrite function to use a loop pre-header  
 
becomes

•Example:

29

function f(a1,...,an) = e

function f(a1,...,an) =
 let function f’(a1,...,an) = e[f↦f']  
 in f’(a1,...,an)

function f(x,y) = if x < 1 then y else x * f(x-1,y)

function f(x,y) =
 let function f’(x,y) = if x < 1 then y  
 else x * f’(x-1,y)
 in f’(x,y)

Stephen Chong, Harvard University

Rewriting Recursive Functions for
Inlining

•Remove loop-invariant arguments
•e.g., y is invariant in calls to f’

30

function f(x,y) =
 let function f’(x,y) = if x < 1 then y  
 else x * f’(x-1,y)
 in f’(x,y)

function f(x,y) =
 let function f’(x) = if x < 1 then y  
 else x * f’(x-1)
 in f’(x)

Stephen Chong, Harvard University

Rewriting Recursive Functions for
Inlining

31

function f(x,y) =
 let function f’(x) = if x < 1 then y  
 else x * f’(x-1)
 in f’(x)

6+f(4,5) becomes:
6 +
(let function f’(x)=
if x < 1 then 5
else x * f’(x-1)

in f’(4))

Without rewriting f,

6+f(4,5) becomes:
6 +
(if 4 < 1 then 5

else 4 *
f(3,5))

Stephen Chong, Harvard University

Rewriting Recursive Functions for
Inlining

•Now inlining recursive function is more useful!
•Can specialize the recursive function!
•Additional optimizations for the specific arguments can be
enabled (e.g., copy propagation, dead code elimination).

32

Stephen Chong, Harvard University

When to Inline

•Code inlining might increase the code size.
•Impact on cache misses.

•Some heuristics for when to inline a function:
•Expand only function call sites that are called frequently
•Determine frequency by execution profiler or by approximating
statically (e.g., loop depth)

•Expand only functions with small bodies
•Copied body won’t be much larger than code to invoke function

•Expand functions that are called only once
•Dead function elimination will remove the now unused function

33

Stephen Chong, Harvard University

Tail Call Elimination

•Consider two recursive functions:

•First function: after recursive call to add, still have
computation to do (i.e., add 1).

•Second function: after recursive call, nothing to do
but return to caller.
•This is a tail call.

34

let add(m,n) = if (m=0) then n else 1 + add(m-1,n)

let add(m,n) = if (m=0) then n else add(m-1,n+1)

Stephen Chong, Harvard University

Tail Call Elimination

35

let add(m,n) = if (m=0) then n else add(m-1,n+1)

int add(int m, int n){
if (m=0) then
return n

else
return add(m-1,n+1)}

Equivalent program in
an imperative language

int add(int m, int n){
loop:
if (m=0) then
return n

else
m:=m-1;
n:=n+1;
goto loop }

Tail Call
Elimination

Stephen Chong, Harvard University

Tail Call Elimination

•Steps for applying tail call elimination to a recursive
procedure:
•Replace recursive call by updating the parameters.
•Branch to the beginning of the procedure.
•Delete the return.

•Reuse stack frame!
•Don’t need to allocate new stack frame for recursive call.

•Values of arguments (n, m) remain in registers.
•Combined with inlining, a recursive function can become as

cheap as a while loop.

•Even for non-recursive functions: if last statement is function
call (tail call), can still reuse stack frame.

36

Stephen Chong, Harvard University

Some Optimizations
•Inlining
•Function specialization
•Constant folding
•Constant propagation
•Value numbering
•Dead code elimination
•Loop-invariant code motion
•Common sub-expression elimination
•Strength Reduction
•Constant folding & propagation
•Branch prediction / optimization
•Register allocation
•Loop unrolling
•Cache optimization

37

Assembly

Abstract assembly

Canonical IR

IR

AST

H
ig

h
le

ve
l

M
id

 le
ve

l
Lo

w
 le

ve
l

Stephen Chong, Harvard University

Writing Fast Programs In Practice

•Pick the right algorithms and data structures.
•These have a much bigger impact on performance that

compiler optimizations.

•Reduce # of operations
•Reduce memory accesses
•Minimize indirection – it breaks working-set coherence

•Then turn on compiler optimizations.
•Profile to determine program hot spots.
•Evaluate whether the algorithm/data structure

design works.
38

