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Announcements

•HW5: Oat v.2 out 
•Due in 2 weeks 

•HW6 will be released next week 
•Implementing optimizations! (and more)
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Today

•Optimizations 
•Safety 
•Constant folding 
•Algebraic simplification 
• Strength reduction 

•Constant propagation 
•Copy propagation 
•Dead code elimination 
•Inlining and specialization 
•Recursive function inlining 

•Tail call elimination 
•Common subexpression elimination
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Optimizations

•The code generated by our OAT compiler so far 
is pretty inefficient. 
•Lots of redundant moves. 
•Lots of unnecessary arithmetic instructions. 

•Consider this OAT program:
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int foo(int w) {
  var x = 3 + 5;
  var y = x * w;
  var z = y - 0;
  return z * 4;
}
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Unoptimized vs. Optimized Output

•Hand optimized code:  
    _foo:  
        shlq    $5, %rdi  
        movq    %rdi, %rax  
        ret

•Function foo may be 
inlined by the compiler, 
so it can be implemented 
by just one instruction!
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.globl _foo
_foo:

pushl %ebp
movl %esp, %ebp
subl $64, %esp

__fresh2:
leal -64(%ebp), %eax
movl %eax, -48(%ebp)
movl 8(%ebp), %eax
movl %eax, %ecx
movl -48(%ebp), %eax
movl %ecx, (%eax)
movl $3, %eax
movl %eax, -44(%ebp)
movl $5, %eax
movl %eax, %ecx
addl %ecx, -44(%ebp)
leal -60(%ebp), %eax
movl %eax, -40(%ebp)
movl -44(%ebp), %eax
movl %eax, %ecx
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Why do we need optimizations?

•To help programmers… 
•They write modular, clean, high-level programs 
•Compiler generates efficient, high-performance assembly 

•Programmers don’t write optimal code 

•High-level languages make avoiding redundant computation inconvenient 
or impossible 

•e.g.   A[i][j] = A[i][j] + 1 

•Architectural independence 
•Optimal code depends on features not expressed to the programmer 

•Modern architectures assume optimization 

•Different kinds of optimizations: 
•Time: improve execution speed 

•Space: reduce amount of memory needed 
•Power: lower power consumption (e.g. to extend battery life)
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Some caveats

•Optimization are code transformations: 
•They can be applied at any stage of the compiler 
•They must be safe – they shouldn’t change the meaning of the program. 

•In general, optimizations require some program analysis: 
•To determine if the transformation really is safe 

•To determine whether the transformation is cost effective 

•“Optimization” is misnomer 
•Typically no guarantee transformations will improve performance, nor 

that compilation will produce optimal code 

•This course: most common and valuable performance 
optimizations 

•See Muchnick “Advanced Compiler Design and Implementation” for ~10 
chapters about optimization
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Constant Folding

•Idea: If operands are known at compile type, 
perform the operation statically. 

•int x = (2+3) * y  ➔ int x = 5 * y 
•b & false       ➔ false
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Constant Folding

•What performance metric does it intend to 
improve? 
•In general, the question of whether an optimization 

improves performance is undecidable. 

•At which compilation step can it be applied? 
•Intermediate Representation 
•Can be performed after other optimizations that create 

constant expressions. 
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int x = (2+3) * y  ➔ int x = 5 * y
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Constant Folding

•When is it safely applicable? 
•For Boolean values, yes. 
•For integers, almost always yes. 
•An exception: division by zero. 

•For floating points, use caution. 
• Example: rounding 

•General notes about safety: 
•Whether an optimization is safe depends on language semantics. 
• Languages that provide weaker guarantees to the programmer permit 
more optimizations, but have more ambiguity in their behavior. 

•Is there a formal proof for safety?
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int x = (2+3) * y  ➔ int x = 5 * y
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Algebraic Simplification

•More general form of constant folding 
•Take advantage of mathematically sound simplification 

rules. 

•Identities: 
•a * 1 ➔ a a * 0 ➔ 0
•a + 0 ➔ a a – 0 ➔ a
•b | false ➔ b b & true ➔ b

•Reassociation & commutativity: 
•(a + b) + c ➔ a + (b + c)
• a + b ➔ b + a
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Algebraic Simplification

•Combined with Constant Folding: 
•(a + 1) + 2 ➔ a + (1 + 2) ➔ a + 3

•(2 + a) + 4 ➔ (a + 2) + 4 ➔ a + (2 + 
4) ➔ a + 6

•Iteration of these optimizations is useful…  
•How much?
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Strength Reduction

•Replace expensive op with cheaper op: 
•a * 4  ➔  a << 2

•a * 7  ➔  (a << 3) – a
•a / 32767  ➔  (a >> 15) + (a >> 30)

•So, the effectiveness of this optimization depends on the 
architecture.
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Constant Propagation

•If the value of a variable is known to be a constant, replace the use of 
the variable by that constant. 

•Value of the variable must be propagated forward from the point of 
assignment. 

•This is a substitution operation. 

•Example: 

•To be most effective, constant propagation can be interleaved with 
constant folding.
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int x = 5;
int y = x * 2;
int z = a[y];

int y = 5 * 2;
int z = a[y];

int y = 10;
int z = a[y];

➔

int z = a[10];

➔

➔
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Constant Propagation

•For safety, it requires a data-flow analysis. 
•Next lecture! 

•What performance metric does it intend to 
improve? 

•At which compilation step can it be applied? 
•What is the computational complexity of this 

optimization?
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Copy Propagation

•If one variable is assigned to another, replace uses of the assigned 
variable with the copied variable. 

•Need to know where copies of the variable propagate. 
•Interacts with the scoping rules of the language. 

•Example: 

•Can make the first assignment to x dead code (that can be eliminated).
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x = y;
if (x > 1) {
  x = x * f(x – 1);
}

x = y;
if (y > 1) {
  x = y * f(y – 1);
}

➔
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Dead Code Elimination

•If a side-effect free statement can never be observed, it is safe to 
eliminate the statement. 

•A variable is dead if it is never used after it is defined. 
•Computing such definition and use information is an important 

component of compiler 

•Dead variables can be created by other optimizations… 
•Code for computing the value of a dead variable can be dropped.
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x  = y * y // x is dead!
...    // x never used 
x = z * z

...
x = z * z➔
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Dead Code Elimination

•Is it always safely applicable? 
•Only if that code is pure (i.e. it has no externally 

visible side effects). 
• Externally visible effects: raising an exception, modifying a 
global variable, going into an infinite loop, printing to 
standard output, sending a network packet, launching a 
rocket, ... 
•Note: Pure functional languages (e.g. Haskell) make 
reasoning about the safety of optimizations (and code 
transformations in general) easier!
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Unreachable Code Elimination

•Basic blocks not reachable by any trace leading 
from the starting basic block are unreachable 
and can be deleted. 

•At which compilation step can it be applied? 
•IR or assembly level 

•What performance metric does it intend to 
improve? 
•Improves instruction cache utilization.
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Common Subexpression Elimination

•Idea: replace an expression with previously 
stored evaluations of that expression. 

•Example:   
  [a + i*4] = [a + i*4] + 1 
•Common subexpression elimination removes the 

redundant add and multiply:  
t = a + i*4; [t] = [t] + 1

•For safety, you must be sure that the shared 
expression always has the same value in both 
places!
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Unsafe Common Subexpression Elimination

•As an example, consider function: 

•The following optimization that shares expression a[i] is unsafe… 
Why?
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void f(int[] a, int[] b, int[] c) {
int j = …; int i = …; int k = …;
b[j] = a[i] + 1;
c[k] = a[i]; 
return; 

}

void f(int[] a, int[] b, int[] c) {
int j = …; int i = …; int k = …;

   t = a[i];
b[j] = t + 1;
c[k] = t; 
return; 

}
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Common Subexpression Elimination

•Almost always improves performance. 
•But sometimes… 

•It might be less expensive to recompute an expression, 
rather than to allocate another register to hold its value 
(or to store it in memory and later reload it). 
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Loop-invariant Code Motion

•Idea: hoist invariant code out of a loop. 

•What performance metric does it intend to 
improve? 

•Is this always safe?
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while (b) {
  z = y/x;
  … // y, x not updated
}

z = y/x;
while (b) {
  … // y, x not updated
}

➔
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Optimization Example
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let a = x ** 2 in
let b = 3 in
let c = x in
let d = c * c in
let e = b * 2 in
let f = a + d in
e * f

let a = x ** 2 in
let d = x * x in
let e = 3 * 2 in
let f = a + d in
e * f

Copy and  
constant  
propagation

let a = x ** 2 in
let d = x * x in
let e = 6 in
let f = a + d in
e * f

let a = x * x in
let d = x * x in
let e = 6 in
let f = a + d in
e * f

let a = x * x in
let d = a in
let e = 6 in
let f = a + d in
e * f

let a = x * x in
let f = a + a in
6 * f

Constant 
   folding

Strength reduction

       Common  
    sub-expression  
elimination

Copy and  
constant propagation
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Loop Unrolling

•Idea: replace the body of a loop by several copies of 
the body and adjust the loop-control code. 

•Example: 
•Before unrolling:   
for(int i=0; i<100; i=i+1) {  
  s = s + a[i];  
} 

•After unrolling:   
for(int i=0; i<99; i=i+2){  
  s = s + a[i];  
  s = s + a[i+1];  
}
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Loop Unrolling

•What performance metric does it intend to improve? 
•Reduces the overhead of branching and checking the loop-

control. 
• But it yields larger loops, which might impact the instruction cache. 

•Which loops to unroll and by what factor? 
•Some heuristics: 
• Body with straight-line code. 
• Simple loop-control. 

•Use profiled runs. 

•It may improve the effectiveness of other optimizations 
(e.g., common-subexpression evaluation).
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Inlining

•Replace call to a function with function body (rewrite arguments to be local 
variables). 

•Example: 

•Eliminates the stack manipulation, jump, etc. 
•May need to rename variable names to avoid name capture.  

•Example of what can go wrong?   

•Best done at the AST or relatively high-level IR. 
•Enables further optimizations.
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int g(int x) { return x + pow(x); }

int pow(int a) { 
  int b = 1; int n = 0; 
  while (n < a) {b = 2 * b}; 
  return b; 
}

int g(int x) { 
  int a = x; 
  int b = 1; int n = 0;
  while (n < a) {b = 2 * b}; 
  tmp = b; 
  return x + tmp;
} 

➔
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Inlining Recursive Functions

•Consider recursive function:  
f(x,y) = if x < 1 then y  
         else x * f(x-1,y)

•If we inline it, we essentially just unroll one call: 
•f(z,8) + 7  

becomes  
(if z < 0 then 8 else z*f(z-1,8)) + 7 

•Can’t keep on inlining definition of f; will never stop! 

•But can still get some benefits of inlining by 
slight rewriting of recursive function...
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Rewriting Recursive Functions for 
Inlining

•Rewrite function to use a loop pre-header  
 
becomes 

•Example:
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function f(a1,...,an) = e

function f(a1,...,an) = 
   let function f’(a1,...,an) = e[f↦f']  
   in f’(a1,...,an)

function f(x,y) = if x < 1 then y else x * f(x-1,y)

function f(x,y) = 
   let function f’(x,y) = if x < 1 then y  
                          else x * f’(x-1,y)
   in f’(x,y)
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Rewriting Recursive Functions for 
Inlining

•Remove loop-invariant arguments  
•e.g., y is invariant in calls to f’
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function f(x,y) = 
   let function f’(x,y) = if x < 1 then y  
                          else x * f’(x-1,y)
   in f’(x,y)

function f(x,y) = 
   let function f’(x) = if x < 1 then y  
                          else x * f’(x-1)
   in f’(x)
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Rewriting Recursive Functions for 
Inlining
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function f(x,y) = 
   let function f’(x) = if x < 1 then y  
                          else x * f’(x-1)
   in f’(x)

6+f(4,5) becomes: 
6 + 
(let function f’(x)= 
if x < 1 then 5 
else x * f’(x-1)

in f’(4))

Without rewriting f, 

6+f(4,5) becomes: 
6 + 
(if 4 < 1 then 5 

else 4 * 
f(3,5))
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Rewriting Recursive Functions for 
Inlining

•Now inlining recursive function is more useful! 
•Can specialize the recursive function! 
•Additional optimizations for the specific arguments can be 
enabled (e.g., copy propagation, dead code elimination).
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When to Inline

•Code inlining might increase the code size. 
•Impact on cache misses. 

•Some heuristics for when to inline a function: 
•Expand only function call sites that are called frequently 
•Determine frequency by execution profiler or by approximating 
statically (e.g., loop depth) 

•Expand only functions with small bodies 
•Copied body won’t be much larger than code to invoke function 

•Expand functions that are called only once 
•Dead function elimination will remove the now unused function
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Tail Call Elimination

•Consider two recursive functions: 

•First function: after recursive call to add, still have 
computation to do (i.e., add 1). 

•Second function: after recursive call, nothing to do 
but return to caller. 
•This is a tail call.

34

let add(m,n) = if (m=0) then n else 1 + add(m-1,n)

let add(m,n) = if (m=0) then n else add(m-1,n+1)
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Tail Call Elimination
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let add(m,n) = if (m=0) then n else add(m-1,n+1)

int add(int m, int n){
if (m=0) then
return n

else
return add(m-1,n+1)}

Equivalent program in 
an imperative language

int add(int m, int n){
loop:
if (m=0) then
return n

else
m:=m-1;
n:=n+1;
goto loop } 

Tail Call 
Elimination
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Tail Call Elimination

•Steps for applying tail call elimination to a recursive 
procedure: 
•Replace recursive call by updating the parameters. 
•Branch to the beginning of the procedure. 
•Delete the return. 

•Reuse stack frame! 
•Don’t need to allocate new stack frame for recursive call. 

•Values of arguments (n, m) remain in registers. 
•Combined with inlining, a recursive function can become as 

cheap as a while loop. 

•Even for non-recursive functions: if last statement is function 
call (tail call), can still reuse stack frame.
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Some Optimizations
•Inlining 
•Function specialization 
•Constant folding 
•Constant propagation 
•Value numbering 
•Dead code elimination 
•Loop-invariant code motion 
•Common sub-expression elimination 
•Strength Reduction 
•Constant folding & propagation 
•Branch prediction / optimization 
•Register allocation 
•Loop unrolling 
•Cache optimization

37

Assembly

Abstract assembly

Canonical IR

IR

AST

H
ig

h 
le

ve
l

M
id

 le
ve

l
Lo

w
 le

ve
l



Stephen Chong, Harvard University

Writing Fast Programs In Practice

•Pick the right algorithms and data structures. 
•These have a much bigger impact on performance that 

compiler optimizations. 

•Reduce # of operations 
•Reduce memory accesses 
•Minimize indirection – it breaks working-set coherence 

•Then turn on compiler optimizations. 
•Profile to determine program hot spots. 
•Evaluate whether the algorithm/data structure 

design works.
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