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Announcements

•HW5: Oat v.2 out 
•Due Tuesday 19 Nov 

•HW6 will be released Tuesday 12 Nov 
•3 weeks to complete
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Today

•Dataflow analysis 
•Liveness analysis 

•Worklist algorithm 

•Generalizing dataflow analysis 
•Available expressions 
•Reaching definitions
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Motivating Code Analyses

•There are lots of things that might influence the 
safety/applicability of an optimization 
•How do you know an expression is invariant? 
•How do you know if an expression has no side effects? 
•How do you keep track of where a variable is defined? 
•How do you know where a variable is used? 
•How do you know if two reference values may be 

aliases of one another? 

•Today: algorithms and data structures useful for 
answering these questions
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Moving Towards Register Allocation

•Oat compiler currently generates as many temporary variables as 
needed 

•The %uids that that you are very familiar with... 

•Current compilation strategy: 
•Each %uid maps to a stack location 
•Yields programs with many loads/stores to memory 

•Very inefficient! 

•Ideally, map as many %uid’s as possible into registers. 
•Eliminate the use of the alloca instruction? 

•Only 16 max registers available on 64-bit X86 

•%rsp and %rbp are reserved and some have special semantics, so really only 
10 or 12 available 

•This means that a register must hold more than one slot 

•When is this safe?
5



Stephen Chong, Harvard University

Liveness

•Observation: %uid1 and %uid2 can be assigned 
to the same register if their values will not be 
needed at the same time. 
•A %uid is“needed” if its contents will be used as a 

source operand in a later instruction. 

•Such a variable is called “live” 
•Two variables can share the same register if they 

are not live at the same time.
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Scope vs. Liveness

•We can already get some coarse liveness information from variable scoping. 
•Consider the following Oat program: 

•Note that due to Oat’s scoping rules, variables b and c can never be live at 
the same time. 

•c’s scope is disjoint from b’s scope 

•So, we could assign b and c to the same alloca’ed slot and potentially to 
the same register.
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int f(int x) {
  var a = 0; 
  if (x > 0) {
    var b = x * x;
    a = b + b;
  }
  var c = a * x; 
  return c;
}
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But Scope is too Coarse 

•Consider this program: 

•The scopes of a,b,c,x all overlap – they’re all in scope at 
the end of the block. 

•But a, b, c are never live at the same time. 
•So they can share the same stack slot / register
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int f(int x) {
  int a = x + 2;
  int b = a * a;
  int c = b + x;
  return c;
}

x is live

a and x are live

c is live

b and x are live
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Live Variable Analysis

•Variable v is live at a program point if v is defined before the 
program point and used after it. 

•Liveness is defined in terms of where variables are defined 
and where variables are used 

•Liveness analysis: Compute the live variables between each 
statement. 
•May be conservative (i.e., may claim a variable is live when it isn’t) 
• Safe approximation! 

•To be useful, it should be more precise than simple scoping rules. 

•Liveness analysis is one example of dataflow analysis 
•Other examples: Available Expressions, Reaching Definitions, 

Constant-Propagation Analysis, …
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Control-flow Graphs Revisited

•Recall: a basic block is a sequence of instructions such that: 
•There is a distinguished, labeled entry point (no jumps into the middle of a basic block) 
•There is a (possibly empty) sequence of non-control-flow instructions 
•The block ends with a single control-flow instruction (jump, conditional branch, return, 

etc.) 

•In a control flow graph (CFG), nodes are basic blocks 
•There is an edge from B1 to B2 if the control-flow instruction of B1 might jump to the 

entry label of B2 
•There are no “dangling” edges – there is a block for every jump target.  

•Note: the following slides are intentionally ambiguous about the exact nature 
of the code in the CFGs 

•CFGs and dataflow analysis work for x86 assembly, imperative C-like source, LLVM 
IR, ... 

•Same general idea, but the exact details differ 
•e.g. LLVM IR doesn’t have “imperative” update of %uid temporaries. SSA structure of the 

LLVM IR makes some of these analyses simpler.
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Dataflow over CFGs

•For precision, it is helpful to think of the “fall through” between 
sequential instructions as an edge of the control-flow graph too. 

•Different implementation tradeoffs in practice…
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Liveness is Associated with Edges

•This is useful so that the same register can be used for different 
temporaries in the same statement. 

•Example:   a = b + 1
•Compiles to:   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Instr

Live: a, b

Live:  b, d, e

Mov a, b

Add a, 1

Live: b

Live: a

Live: a (maybe)

Mov eax, eax

Add eax, 1

Register Allocate: 
a à eax, b à eax
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Uses and Definitions

•Every instruction/statement uses some set of variables 
•i.e., reads from them 

•Every instruction/statement defines some set of variables 
•i.e., writes to them 

•For a node/statement s define: 
•use[s] : set of variables used by s 
•def[s] : set of variables defined by s 

•Examples: 
•a = b + c  use[s] = {b,c}  def[s] = {a} 

•a = a + 1  use[s] = {a}  def[s] = {a}
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Liveness, Formally

•Variable v is live on edge e if: 
•(1) there is a node n in the CFG such that use[n] contains v, and  
•(2) there is a directed path from e to n such that for every statement s’ on the 

path, def[s’] does not contain v 

•Clause (1) says that v will be used on some path starting from edge e 
•Clause (2) says that v won’t be redefined on that path before the use 

•Questions: 
•How to compute this efficiently? 
•How to use this information (e.g., for register allocation)? 
•How does the choice of  IR affect this?  

(e.g. LLVM IR uses SSA, so it doesn’t allow redefinition, which simplifies 
liveness analysis)
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Simple, inefficient algorithm

•“A variable v is live on an edge e if there is a node n in 
the CFG using it and a directed path from e to n that does 
not define v” 

•Backtracking Algorithm: 
•For each variable v… 
•Try all paths from each use of v, tracing backwards through the 

control-flow graph until either v is defined or a previously 
visited node has been reached. 

•Mark the variable v live on each edge traversed. 

•Inefficient because it explores the same paths many times  
(for different uses and different variables)
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Dataflow Analysis

•Idea: compute liveness information for all variables simultaneously 
•Keep track of sets of information about each node 

•Approach: define equations that must be satisfied by any liveness 
determination 

•Equations based on “obvious” constraints. 

•Solve the equations by iteratively converging on a solution. 
•Start with a “rough” approximation to the answer 
•Refine the answer at each iteration 

•Keep going until no more refinement is possible: a fixpoint has been reached 

•This is an instance of a general framework for computing program 
properties: dataflow analysis
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Dataflow Value Sets for Liveness

•Nodes are program statements, so, for 
each n, define the following sets: 

•use[n] : set of variables used by n 
•def[n] : set of variables defined by n 
•in[n] : set of variables live on entry to n 
•out[n] : set of variables live on exit from n 

•Associate in[n] and out[n] with the 
“collected” information about incoming/
outgoing edges 

•i.e., out[n] is union of all liveness information 
on outgoing edges of n 

•For liveness, what constraints are there  
among these sets?
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n

n

in[n]

out[n]



Stephen Chong, Harvard University

Liveness Dataflow Constraints

•We have:  in[n] ⊇ use[n] 
•“A variable must be live on entry to n if it is used 

by n” 

•Also:  in[n] ⊇ out[n] – def[n] 
•“If a variable is live on exit from n, and n doesn’t 

define it, then it is live on entry to n” 
•Note: here ‘–’ means “set difference” 

•And:  out[n] ⊇ in[n’] if n’ ∈ succ[n] 
•“If a variable is live on entry to a successor  

node of n, it must be live  on exit from n.”
18
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Iterative Dataflow Analysis

•Find a solution to those constraints by starting from a rough guess. 
•Start with:  in[n] = ∅  and out[n] = ∅ 

•They don’t satisfy the constraints: 
•in[n] ⊇ use[n] 

•in[n] ⊇ out[n] - def[n] 

•out[n] ⊇ in[n’] if n’ ∈ succ[n] 

•Idea: iteratively re-compute in[n] and out[n] where forced to by the 
constraints 

•Each iteration will add variables to the sets in[n] and out[n]  
(i.e. the live variable sets will increase monotonically) 

•We stop when in[n] and out[n] satisfy these equations:  
 (which are derived from the constraints above) 

•in[n] = use[n] ∪ (out[n] – def[n]) 

•out[n] = ⋃n’∈succ[n] in[n’]
19
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Complete Liveness Analysis 
Algorithm

•Finds a fixpoint of the in and out equations. 
•The algorithm is guaranteed to terminate… Why? 

•Why do we start with ∅?
20

for all n, in[n] := ∅, out[n] := ∅ 
repeat until no change in ‘in’ and ‘out’ 
 for all n 
   out[n] := ∪n’∈succ[n] in[n’] 
   in[n] := use[n] ∪ (out[n] – def[n]) 
 end 
end
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Example Liveness 
Analysis

•Example flow graph:
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e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7
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def: e 
use: 

e = 1;
while(x>0) {
  z = e * e;  
  y = e * x;
  x = x – 1;
  if (x & 1) {
    e = z;
  } else {
    e = y;
  }
}
return x;

x = x - 1

def:  
use: x

6

def:  
use: x

def: z  
use: e

def: y 
use: e,x

def: x  
use: x

def:  
use: x

def: e  
use: z

def: e  
use: y

9

4

in:

in:

in:

in:

in:

in:

in:in:

in:

out:

out:

out:

out:

out:

out: out:

out:
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Example Liveness 
Analysis

•Iteration 1: 
in[2] = x  
in[3] = e  
in[4] = x 
in[5] = e,x 
in[6] = x  
in[7] = x 
in[8] = z 
in[9] = y 

(showing only updates  
that make a change)
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e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y
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def: e 
use: 

x = x - 1

def:  
use: x

6

def:  
use: x

def: z  
use: e

def: y 
use: e,x

def: x  
use: x

def:  
use: x

def: e  
use: z

def: e  
use: y

9

4

in:

in: x

in: x

in: e,x

in: x

in: x

in: yin: z

in: e

out:

out:

out:

out:

out:

out: out:

out:

Each iteration update: 

out[n] := ∪n’∈succ[n]in[n’] 

in[n] := use[n] ∪ (out[n] – def[n])
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Example Liveness 
Analysis

• Iteration 2: 
out[1]= x 
in[1] = x 
out[2] = e,x  
in[2] = e,x 
out[3] = e,x  
in[3] = e,x 
out[5] = x 
out[6] = x 
out[7] = z,y  
in[7] = x,z,y 
out[8] = x 
in[8] = x,z 
out[9] = x 
in[9] = x,y
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e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y
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def: e 
use: 

x = x - 1

def:  
use: x

6

def:  
use: x

def: z  
use: e

def: y 
use: e,x

def: x  
use: x

def:  
use: x

def: e  
use: z

def: e  
use: y

9
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in: x

in: e,x

in: x

in: e,x

in: x

in: x,y,z

in: x,yin: x,z

in: e,x

out: x

out: e,x

out: e,x

out: x

out: x

out: x out: x

out: y,z

Each iteration update: 

out[n] := ∪n’∈succ[n]in[n’] 

in[n] := use[n] ∪ (out[n] – def[n])
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Example Liveness 
Analysis

•Iteration 3: 

out[1]= e,x 
out[6]= x,y,z 
in[6]= x,y,z 
out[7]= x,y,z 
out[8]= e,x 
out[9]= e,x
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e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y
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def: e 
use: 

x = x - 1

def:  
use: x
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def:  
use: x

def: z  
use: e

def: y 
use: e,x

def: x  
use: x

def:  
use: x

def: e  
use: z

def: e  
use: y
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in: x

in: e,x

in: x

in: e,x

in: x,y,z

in: x,y,z

in: x,yin: x,z

in: e,x

out: e,x

out: e,x

out: e,x

out: x

out: x,y,z

out: e,x out: e,x

out: x,y,z

Each iteration update: 

out[n] := ∪n’∈succ[n]in[n’] 

in[n] := use[n] ∪ (out[n] – def[n])
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Example Liveness 
Analysis

•Iteration 4: 
out[5]= x,y,z 
in[5]= e,x,z
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e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y
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def: e 
use: 

x = x - 1

def:  
use: x
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def:  
use: x

def: z  
use: e

def: y 
use: e,x

def: x  
use: x

def:  
use: x

def: e  
use: z

def: e  
use: y
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in: x

in: e,x

in: x

in: e,x,z

in: x,y,z

in: x,y,z

in: x,yin: x,z

in: e,x

out: e,x

out: e,x

out: e,x

out: x,y,z

out: x,y,z

out: e,x out: e,x

out: x,y,z

Each iteration update: 

out[n] := ∪n’∈succ[n]in[n’] 

in[n] := use[n] ∪ (out[n] – def[n])
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Example Liveness 
Analysis

•Iteration 5: 
out[3]= e,x,z 

Done!
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use: 
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def:  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in: x

in: e,x

in: x

in: e,x,z

in: x,y,z
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Each iteration update: 

out[n] := ∪n’∈succ[n]in[n’] 

in[n] := use[n] ∪ (out[n] – def[n])
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Improving the Algorithm

•Can we do better? 
•Observe: the only way information propagates 

from one node to another is using:  
            out[n] := ⋃n’∈succ[n] in[n’] 
•This is the only rule that involves more than one node 

•If the in sets of a node’s successors haven’t 
changed, then the node itself won’t change! 

•Idea for an improved version of the algorithm: 
•Keep track of which node’s successors have changed
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A Worklist Algorithm

•Use a FIFO queue of nodes that might need to be updated. 
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for all n, in[n] := Ø, out[n] := Ø 
w = new queue with all nodes 
repeat until w is empty 
 let n = w.pop()       // pull a node off the queue 
   old_in = in[n]       // remember old in[n] 
   out[n] := ⋃n’∈succ[n] in[n’] 
     in[n] := use[n] ∪ (out[n] – def[n]) 
   if (old_in != in[n]),      // if in[n] has changed  
      for all m in pred[n], w.push(m) // add to worklist 
end 
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Generalizing Dataflow Analyses

•The kind of iterative constraint solving used for 
liveness analysis applies to other kinds of 
analyses as well 
•Available expressions analysis  
•Reaching definitions analysis 
•Alias Analysis 
•Constant Propagation
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Available Expressions

•An expression e is available at program point p if on 
all paths from the entry to p, expression e is 
computed at least once, and there are no intervening 
assignment to x or to the free variables of e 

•If e is available at p, we do not need to re-compute 
e 
•(i.e., for common sub-expression elimination) 

•How do we compute the available expressions at 
each program point?
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x := a + b;

y := a * b;

y > a

a := a + 1;

x := a + b

exit

entry
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Available Expressions Example
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∅

∅

{a+b}

{a+b, a*b}
{a+b, a*b}

{a+b, a*b}
{a+b, a*b}

∅

{a+b}

{a+b}

{a+b}

{a+b}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

(Numbers indicate the order that the  
    facts are computed in this example.)
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Reaching definitions

•A definition of a variable v is an assignment to v 
•A definition of variable v reaches point p if 

•There is a path from the definition of v to p 
•There is no intervening assignment to v on that path 
•Also called def-use information
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Common Framework: Gen-Kill

•Can think of all these dataflow analysis as computing facts at program points  
•in[n] is set of facts that hold immediately before before n 

•out[n] is set of facts that hold immediately before before n 

•Each instruction n generates some facts, and kills some facts 
•E.g., liveness: in[n] := use[n] ∪ (out[n] – def[n]) 

•Generates use[n] and kills def[n] 

•Analyses differ on: 
•Which facts we are computing and which facts instructions gen and kill 

•Forward or backwards 
• Forwards: compute out[n] using in[n] 

• Backwards: compute in[n] using out[n] 

•How to combine facts: may or must 
•Must: compute facts which must be true, by intersect-ing facts  

•May: compute facts that may be true, by union-ing facts
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Comparing Dataflow Analyses

•Liveness:  
backward may analysis 

•Facts = variables that are live 
•gen[n] = use[n]  

kill[n] = def[n] 
•out[n] := ⋃n’∈succ[n] in[n’] 

•in[n] := gen[n] ∪ (out[n] – kill[n]) 

•Available Expressions:  
forward must analysis 

•Facts = expressions that are available 
•gen[n] = expressions evaluated          

kill[n] = expressions containing a 
variable in def[n] 

•in[n] := ⋂n’∈pred[n] out[n’] 

•out[n] := gen[n] ∪ (in[n] – kill[n]) 
34

•Reaching Definitions:  
forward may analysis 

•Facts = definitions (i.e., instructions that 
assign) 

•gen[n] = { n } if n defines variables 
kill[n] = { n’ | n’ defines a variable in def[n] } 

•in[n] := ⋃n’∈pred[n] out[n’] 

•out[n] := gen[n] ∪ (in[n] – kill[n])


