HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 20: Dataflow analysis

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

Contains content from lecture notes by Steve Zdancewic and Greg Morrisett

https://www.seas.harvard.edu/courses/cs153

AnNno

* HW5: Oat v.2 out
e Due Tuesday 19 Nov

e HW6 will be released Tuesday 12 Nov

*3 weeks to complete

Stephen Chong, Harvard University 2

e Dataflow analysis

*Liveness analysis
* Worklist algorithm

* Generalizing dataflow analysis

* Available expressions
e Reaching definitions

Stephen Chong, Harvard University 3

Motivating Code Analyses

* There are lots of things that might influence the
safety/applicability of an optimization

e How do you know an expression is invariant?

How C
How ¢

—How C

O you
O you
O you

<now if an expression has no side effects?

<eep track of where a variable is defined?

<now where a variable is used?

e How do you know if two reference values may be

aliases of one another?

e Today: algorithms and data structures useful for
answering these questions

Moving Towards Register Allocation

e Oat compiler currently generates as many temporary variables as
needed

*The %uids that that you are very familiar with...

e Current compilation strategy:
*Fach $uid maps to a stack location
*Yields programs with many loads/stores to memory
*Very inefficient!

e deally, map as many $uid’s as possible into registers.
e Eliminate the use of the alloca instruction?
*Only 16 max registers available on 64-bit X86

e3rsp and $rbp are reserved and some have special semantics, so really only
10 or 12 available

*This means that a register must hold more than one slot
*\When is this safe?

[Liveness

* Observation: $uid1 and $uid2 can be assigned
to the same register if their values will not be
needed at the same time.

e A 23uid is“needed” if its contents will be used as a
source operand in a later instruction.

e Such a variable is called “hive”

e Two variables can share the same register if they
are not live at the same time.

Scope vs. Li

*\We can already get some coarse liveness information from variable scoping.
 Consider the following Oat program:

int f(int x) {

var a = 0;

if (x> 0) {
var b = x * Xx;
a=>b + b;

}

var ¢ = a * X;
return c;

}

* Note that due to Oat’s scoping rules, variables b and ¢ can never be live at
the same time.

ec’s scope is disjoint from b’s scope

*So, we could assign b and ¢ to the same alloca’ed slot and potentially to
the same register.

Stephen Chong, Harvard University 7

But Scope 1s too Coarse

e Consider this program:

int £f(int x) { o
. < x is live
int a = x + 2; ’ '
. <€ a dnd X are live
int b = a * a; |
, < b and x are live
int ¢ = b + X;
< c is live
return c;

*The scopes of a,b,c,x all overlap — they're all in scope at

the end of the block.

*But a, b, c are never live at the same time.

*So they can share the same stack slot / register

Live Variable Analysis

eVariable v is live at a program point if v is defined before the

program point and used after it.

e iveness is defined in terms of where variables are defined

and where variables are used

*Liveness analysis: Compute the live variables between each

statement.

* May be conservative (i.e., may claim a variable is live when it isnt)

- Safe approximation!

*To be useful, it should be more precise t

eLiveness analysis is one example of ¢

ataf

e Other examples: Available Expressions,
Constant-Propagation Analysis, ...

ReacC

nan simple scoping rules.

ow analysis

ning Definitions,

Control-flow Graphs Revisited

eRecall: a basic block is a sequence of instructions such that:
* There is a distinguished, labeled entry point (no jumps into the middle of a basic block)
e There is a (possibly empty) sequence of non-control-flow instructions

e The block ends with a single control-flow instruction (jump, conditional branch, return,
etc.)

*In a control flow graph (CFG), nodes are basic blocks

* There is an edge from B1 to B2 if the control-flow instruction of B1 might jump to the
entry label of B2

e There are no “dangling” edges — there is a block for every jump target.

* Note: the following slides are intentionally ambiguous about the exact nature
of the code in the CFGs

e CFGs and dataflow analysis work for x86 assembly, imperative C-like source, LLVM
IR, ...

e Same general idea, but the exact details differ

ee.g. LLVM IR doesn’t have “imperative” update of %uid temporaries. SSA structure of the
LLVM IR makes some of these analyses simpler.

Datafl

e For precision, it is helpful to think of the “fall through” between
sequential instructions as an edge of the control-flow graph too.

e Different implementation tradeoffs in practice...
Fall-through edges

in-edges

f_)

D

»

71N

out-edges

Basic block CFG
“Exploded” CFG

Stephen Chong, Harvard University 11

[LLiveness 1s Assc

Live: a, b

/ l N\, Live: b d,e

eThis is useful so that the same register can be used for different
temporaries in the same statement.

°Example: a = b + 1

e Compiles to: Live: b

Register Allocate:
a =2 eax, b 2 eax

—

Stephen Chong, Harvard University 12

Live: a

l Live: a (maybe)

Uses and Definitions

e Every instruction/statement uses some set of variables

°j.e., reads from them

e Every instruction/statement defines some set of variables

ei.e., writes to them

e For a node/statement s define:

eusels] : set of variables used by s
edef(s] : set of variables defined by s

e Examples:

ea = b + ¢ use[s] = {b,c} def[s] = {a}

°a = a + 1 usels] = {a} def[s] = {a}

Liveness, Formally

eVariable v is live on edge e if:
(1) there is a node n in the CFG such that use[n] contains v, and

¢ (2) there is a directed path from e to n such that for every statement s’ on the
path, def[s’] does not contain v

eClause (1) says that v will be used on some path starting from edge e
e Clause (2) says that v won't be redefined on that path before the use

e Questions:
e How to compute this efficiently?
e How to use this information (e.g., for register allocation)?

e How does the choice of IR affect this?
(e.g. LLVM IR uses SSA, so it doesn’t allow redefinition, which simplifies
liveness analysis)

Simple, inefficient algorithm

*“A variable v is live on an edge e if there is a node n in

the CFG using it and a direc
not define v”

e Backtracking Algorithm:

e For each variable v...

ed path from e to n that does

e Try all paths from each use of v, tracing backwards through the

control-flow graph until either
visited node has been reached

v is defined or a previously

* Mark the variable v live on each edge traversed.

e |nefficient because it explores the same paths many times
(for different uses and different variables)

Datatlow Analysis

eldea: compute liveness information for all variables simultaneously

* Keep track of sets of information about each node

* Approach: define equations that must be satisfied by any liveness
determination

 Equations based on “obvious” constraints.

*Solve the equations by iteratively converging on a solution.
e Start with a “rough” approximation to the answer
e Refine the answer at each iteration

* Keep going until no more refinement is possible: a fixpoint has been reached

*This is an instance of a general framework for computing program
properties: dataflow analysis

Dataflow Value Sets for Liveness

* Nodes are program statements, so, for \ l ,/

each n, define the following sets:

euse[n] : set of variables used by n

edef[n] : set of variables defined by n / l \

ein[n] : set of variables live on entry to n

eout[n] : set of variables live on exit from n

e Associate in[n] and out[n] with the
“collected” information about incoming/ \u/
outgoing edges in[n]

ei.e., out[n] is union of all liveness information
on outgoing edges of n

e For liveness, what constraints are there ¥

among these sets? /\

Liveness Dataflow Constraints

e\We have: in[n] 2 use[n]

*“A variable must be live on entry to n if it is used \u/
by n” In[n]

Vv
n

e Also: in[n] 2 out[n] — def[n] out|n]

Y

e“If a variable is live on exit from n, and n doesn’t /\
define it, then it is live on entry to n” v

e Note: here '~ means “set difference”

e And: out[n] 2 in[n’] if n” € succ|n]

“If a variable is live on entry to a successor
node of n, it must be live on exit from n.”

[terative Datatlow Analysis

eFind a solution to those constraints by starting from a rough guess.
eStart with: in[n] =@ and out[n] = @
e They don’t satisfy the constraints:

ein[n] 2 use[n]

ein[n] 2 out[n] - def[n]

eout[n] 2 in[n’] if n” € succ|n]
e|dea: iteratively re-compute in[n] and out[n] where forced to by the
constraints

e Fach iteration will add variables to the sets in[n] and out[n]
(i.e. the live variable sets will increase monotonically)

*We stop when in[n] and out[n] satisfy these equations:
(which are derived from the constraints above)

ein[n] = use[n] u (out[n] — def[n])

eout[n] = Un’esucc[n] In[n’]

Complete Liveness Analysis
Algorithm

for all n, in[n] := @, out[n] := &
repeat until no change in ‘in” and ‘out’
for all n
out[n] := Unesuccny IN[N”
in[n] := use[n] u (out[n] — def[n])
end
end

*Finds a fixpoint of the in and out equations.
*The algorithm is guaranteed to terminate... Why?

*Why do we start with @?

Example Live
Analysi

e Example flow graph:

e = 1;
while(x>0) {
Z = e * e;
y = e * X;
X = x — 1;
if (x & 1) {
e = z;
} else {
e =Ys
}
}

return Xx;

def: e

out: use:y out:

Stephen Chong, Harvard University

21

Example Livene

Analysis

Each iteration update:

out[n] := Un,esucc[n]in[n’]
in[n] := use[n] u (out[n] — def[n])
e |teration 1:

IN[2] = x

In[3] = e

INn[4] =

IN[5] = e, x

IN[6] = X

IN[/] = x

IN[8] =z

IN[9] =y

(showing only updates
that make a change)

def:

use: X

out:

out:

22

Example Liven
Analysi

Each iteration update:

out[n] := U

in[n] := use[n] u (out[n] — def[n])

n’esuccln] in [n/]

e |[teration 2:
out|[1]= x
In[1] = x
out[2] = e,x
INn[2] = e,X
out[3] = e,x
IN[3] = e,x
out[5] = x
out[6] = x
out|/] =zy
In[7] =x,z,y
out[8] = x
IN[8] = x,z
out[9] = x

def:

use: X

IN[9] = x,y

out: x out: x

Example Liven
Analysi

Each iteration update:

out[n] := U

n’esuccln] in [n/]

in[n] := use[n] u (out[n] — def[n])

e [teration 3:

out|1

out|6]
IN[6]=

out|/
out|[8
out[9

|=e,x

= X,Y,Z
X,V,Z
= X,Y,Z
= e,X
= e,X

out: e,x

def:

use: X

out: e,x

24

Example Live
Analysi

Each iteration update:

out[n] := U wesucelniN[N’]

in[n] := use[n] u (out[n] — def[n])

e [teration 4:

out[5]=x,y,z
In[5]=e,x,z

Stephen Chong, Harvard University

out: e, X

def:

use: X

out: e, X

25

Example Live
Analysi

Each iteration update:

out[n] := U wesucelniN[N’]

in[n] := use[n] u (out[n] — def[n])

e [teration 5:
out|3]=e,X,z

Done!

out: e, X

def:

use: X

Stephen Chong, Harvard University

out: e, X

26

Improving the Algorithm

e Can we do better?

e Observe: the only way information propagates
from one node to another is using:

out|n

e This is the on

:= Un’esucc[n] IN[N']
y rule that involves more than one node

e|f the in sets of a node’s successors haven't
changed, then the node itself won’t change!

e|dea for an improved version of the algorithm:

e Keep track of which node’s successors have changed

A Worklist Algorithm

e Use a FIFO queue of nodes that might need to be updated.

for all n, in[n] := @, out[n] := O
w = new queue with all nodes
repeat until w is empty

let n = w.pop() // pull a node off the queue
old_in = in[n] // remember old in[n]
out[n] := Unesuccln] In[n’]
in[n] := use[n] u (out[n] — def[n])
if (old_in !=in[n]), // if in[n] has changed

for all m in pred[n], w.push(m) // add to worklist
end

Generalizing Datatlow Analyses

e The kind of iterative constraint solving used for
liveness analysis applies to other kinds of
analyses as well

e Available expressions analysis
e Reaching definitions analysis
e Alias Analysis

* Constant Propagation

Available Expressions

* An expression e is available at program point p if on
all paths from the entry to p, expression e is
computed at least once, and there are no intervening
assignment to x or to the free variables of e

*|f e is available at p, we do not need to re-compute
e
*(i.e., for common sub-expression elimination)

e How do we compute the available expressions at
each program point?

Available Expr

X := a + b;
3.{atb} >
y := a * b;
4. {a+b, a*b} > l
5. {a+b, a*b} > < {a+b} 10.
y > a l
6. {a+b, a*b) > l < {atb} 11.
7. {at+b, a*Db} S latb} 12.
3 %) >
X = a + b

9. {atb} > (Numbers indicate the order that the
facts are computed in this example.)

Stephen Chong, Harvard University 31

Reaching detinitions

* A definition of a variable v is an assignment to v

* A definition of variable v reaches point p if

e There is a path from the definition of v to p

e There is no intervening assignment to v on that path
* Also called def-use information

Common Framework: Gen-Kill

e Can think of all these dataflow analysis as computing facts at program points
ein[n] is set of facts that hold immediately before before n
eout[n] is set of facts that hold immediately before before n

e Each instruction n generates some facts, and kills some facts
eE.g., liveness: in[n] := use[n] u (out[n] — def[n])
e Generates use[n] and kills def[n]

* Analyses differ on:
e Which facts we are computing and which facts instructions gen and kill

e Forward or backwards
* Forwards: compute out[n] using in[n]
 Backwards: compute in[n] using out[n]
e How to combine facts: may or must

* Must: compute facts which must be true, by intersect-ing facts
« May: compute facts that may be true, by union-ing facts

Comparing Datatlow Analyses

*Liveness:
backward may analysis

e Facts = variables that are live
egen([n] = use[n]

kill[n] = def[n]
eout[n] := Un’esuccn] In[n’]

ein[n] := gen[n] u (out[n] — kill[n])

* Available Expressions:
forward must analysis
e Facts = expressions that are available

egen[n] = expressions evaluated
kill[n] = expressions containing a
variable in def[n]

‘iﬂ[n] = ﬂn’epred[n] OUt[n/]

eout[n] := gen[n] u (in[n] — kill[n])

* Reaching Definitions:
forward may analysis

e Facts = definitions (i.e., instructions that
assign)

egen[n] = { n} if n defines variables
kill[n] ={ n" | n” defines a variable in def[n]]

ein[n] := Un’epred|n] out[n’]

eout[n] := gen[n] u (in[n] — kill[n])

