HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 21:
Register Allocation

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

Contains content from lecture notes by Steve Zdancewic and Greg Morrisett

https://www.seas.harvard.edu/courses/cs153

Pre-class Puzzle

*\What's the minimum number of colors needed to color a map
of the USA?

°LEvery state Is
assigned one color e

* Adjacent states must
be given different colors

https://printable-maps.blogspot.com/2011/12/blank-map-of-united-states.html

Pre-class Puzzle Answer

o4

* Four-color theorem says <4 '

* Must be at least 4: a .
* Suppose we had only 3 colors Red

* Pick some colors for CA and OR Blue
(Red and Green) "

e NV must be Blue
e|D must be Red
e AZ must be Green

Green

AnNno

e HW5: Oat v.2 out

eDue in one week: Tue Nov 19

e HW6 released today

eDue in 3 weeks: Tue Dec 3

Stephen Chong, Harvard University 4

e HW®6 overview

e Register allocation
e Graph coloring by simplification
e Coalescing

* Coloring with coalescing

* Pre-colored nodes to handle callee-save, caller-save, and
special purpose registers

Stephen Chong, Harvard University 5

HW

* Analysis and optimization
eImplement generic iterative dataflow
eImplement Alias Analysis
eImplement Dead-Code Elimination

*Implement Constant Propagation
Register allocation
* Performance

*Post a test case

e Optional: participate in leaderboard

e More optimizations...

e Extra credit available!

* Sophisticated register allocation, additional optimizations

Stephen Chong, Harvard University

Yet More General Dataflow Analysis

e Gen-kill framework suits many dataflow analyses
e Forward: out[n] := gen[n] u (in[n] — kill[n])
eBackward: in[n] := gen[n] u (out[n] — kill[n])
e But some analyses can’t be phrased in this way
eE.g., constant propagation, alias analysis
e|nstead, characterize a (forward) dataflow analysis by:

e Domain of dataflow values £
* The info we are computing

* E.g., for reaching definitions, L is the set of definitions
e Flow function for instruction n, F, : L—=L
*For gen-kill analyses, Fn(£) = gen[n] u (€ — kill[n])
* Combining operator n : L= L
* “If either €1 or £> holds just before node n, we know at most 27 n £,
* in[n] = Myepredin) out[n’]
* E.g., for may analyses n is u (set union), for must analyses n is n (set intersection)

e (Backwards analysis is similar)

Generic Iterative Forward Analysis

for all n, in[n] := T, out[n] := T
repeat until no change in ‘in” and ‘out’
for all n
In[n] := [n’esuccln] out/N’]
out[n] := F,(In[Nn])
end
end

* T is the “top element” of L, typically the “maximum” amount of
information

eHaving “more” information enables more optimizations
*“Maximum” information could be inconsistent with the constraints

elteration refines the answer, eliminating inconsistencies

Constant Pro

. Undef
eDDomain ////<::;;;§j7§§f::t:?\\\\
* L =uid = SymConst ... Const-T ConstO Const1T Const2 ...
e SymConst = NonConst | Const i | Undef W
e Flow function: NonConst

® Fuid = ins (M) = m[uid = [ins]m]
e[ol + 02]m =
* NonConst if [o1]m = NonConst or [02]m = NonConst
* Undef if [o1]m = Undef or [02]m = Undef
* Const k where k =i + j and [o1]m = Const i and [02]m = Const |

e[NullJm = NonConst

e[kIm = Const k (i.e., a constant integer operand

*[%ulm = m(u)
e Combining operator:

*m1, m2 : uid = SymConst
e(mT N M2)(%u) = m1(%u) M Mm2(%u)

Stephen Chong, Harvard University 9

Alias

: Undef
°*Domain
e L =uid = SymPtr Unique
e SymPtr = MayAlias | Unique | Undef .
MayAlias

e Flow function:
® Fuid = ins (M) = F(uid = ins, m)
*F(%s = alloca ..., m) = m[%s ~» Unique]
*F(%s = load ..., m) = m[%s ~ MayAlias]

*F(%s = store t %t 0, m) = m[%t » MayAlias]

* (i.e., %t was stored in a location, and so it may no longer be a
unique pointer)

e Combining operator:
em1, m2 : uid = SymPtr

e(mT n M2)(%u) = m1(%u) N m2(%u)

Stephen Chong, Harvard University 10

Register Allocation Problem

e Given: an IR program that uses an unbounded number of
temporaries

ee.g. the uids of our LLVM programs

*Find: a mapping from temporaries to machine registers such that
e program semantics is preserved (i.e., behavior is the same)
*register usage is maximized
* moves between registers are minimized

e calling conventions / architecture requirements are obeyed

o Stack Spilling

e|f there are k registers available and m > k temporaries are live at the
same time, then not all of them will fit into registers.

*So: "spill" the excess temporaries to the stack.

Linear-Scan Register Allocation

*Simple, greedy register-allocation strategy:
1. Compute liveness information: 1live out(x)

erecall: 1ive out (x)is the set of uids that are live immediately after x's definition
e?. Let pal be the set of usable registers

eusually reserve a couple for spill code [our implementation uses rax,rcx]

*3. Maintain "layout" uid_loc that maps uids to locations
e|ocations include registers and stack slots n, starting at n=0

4. Scan through the program. For each instruction that defines a uid x
*used = {r | reg r =uid loc(y)s.t.ye live out(x)}

eavalilable = pal - used

elf available is empty: // no registers available, spill
uid loc(x):=slotn ; n=n+1
e Otherwise, pick r in available: // choose an available register

uid loc(x):=reg r

For HW6

e HW 6 implements two naive register allocation strategies:
°eno_reg layout: spill all registers
egreedy layout: assign registers greedily using linear scan
*Your job: do “better” than these.
e Quality Metric:
*registers other than rbp count positively
e rbp counts negatively (it is used for spilling)
eshorter code is better

einear scan register allocation should suffice

e But... can we do better?

Register Allocation

e Register allocation is in generally an NP-complete
problem

e Can we allocate all these n temporaries to k registers?

e But we have a heuristic that is linear in practice!

*Based on graph coloring

» Given a graph, can we assign one of k colors to each node such that
connected nodes have different colors?

e Here, nodes are temp variables, an edge between t1 and t2
means that t1 and t2 are live at the same time. Colors are
registers.

e But graph coloring is also NP-complete! How does that
work?

Coloring by Simplification

e Four phases

eBuild: construct interference graph, using dataflow analysis to find for each
program point vars that are live at the same time

e Simplify: color based on simple heuristic

*If graph G has node n with k-1 edges, then G-{n} is k-colorable iff G is k-colorable
*So remove nodes with degree <k

oSpill: if graph has only nodes with degree >k, choose one to potentially spill (i.e.,
that may need to be saved to stack)

e Then continue with Simplify

eSelect: when graph is empty, start restoring nodes in reverse order and color them

When we encounter a potential spill node, try coloring it. If we can’t, rewrite program to
store it to stack after definition and load before use. Try again!

| Build l—»\(Simpli@ Spm Select |

From Appel

{live-in: j, k}

g := *(J+12)
h := k -1

f := g * h
e := *(J+8)
m := *(J+16)
b := *(£+0)
c := e + 8
d := c

Kk :=m + 4

j = Db

{

live-out: d,j,k}

Stephen Chong, Harvard University 16

Choose any node with degree <4
Stack:

9

Stephen Chong, Harvard University 17

Choose any node with degree <4
Stack:

g9
h

Stephen Chong, Harvard University 18

Simplifcation (¢ registers)

Choose any node with degree <4
Stack:

g9
h

k

Stephen Chong, Harvard University 19

Choose any node with degree <4
Stack:

Q. ~ VU \Q

Stephen Chong, Harvard University 20

Choose any node with degree <4
Stack:

9

h
k
d
]

Stephen Chong, Harvard University 21

Choose any node with degree <4

Stack:

O w. O ~ VU Q

Stephen Chong, Harvard University 22

Simplificatic

Choose any node with degree <4
Stack:

Hh O Q- O X~ B Q

Stephen Chong, Harvard University 23

Simplificati

Choose any node with degree <4
Stack:

O Hh 0w O ~ B Q

Stephen Chong, Harvard University 24

Simplific
Choose any node with degree <4
Stack:

Q O H O« O A~ 5 Q

Stephen Chong, Harvard University 25

Simplific
Choose any node with degree <4
Stack:

Q O H O« O A~ 5 Q

m

Stephen Chong, Harvard University 26

Select (4 re

Graph is now empty!
Stack: Color nodes in order of stack

Q O H O« O A~ 5 Q

m

Stephen Chong, Harvard University

Select (4 regi

g := *(J+12)
h :=k -1

f (= g * h
e := *(Jj+8)
m := *(jJ+16)
b := *(£+0)
c := e + 8
d := ¢

k :=m+ 4

j = Db

Stephen Chong, Harvard University

Select (4 regist

St2 := *(td+12)
Stl := Stl1l -1
St2 := $t2 * $tl
St3 := *($t4d+8)
Stl := *($td+16)
sSt2 := *($t2+0)
St3 := St3 + 8
St3 := St3

Stl := Stl + 4
St4d := St2

Some moves might subsequently be simplified...
@ @O @
y 29

Stephen Chong, Harvard Universit

Sp1

* This example worked out nicely!
* Always had nodes with degree <k
*et’s try again, but now with only 3 registers...

Stephen Chong, Harvard University 30

Choose any node with degree <3
Stack:

h

Stephen Chong, Harvard University 31

Choose any node with degree <3
Stack:

h
C

Stephen Chong, Harvard University 32

Choose any node with degree <3
Stack:

h
C

9

Stephen Chong, Harvard University 33

Simplification

Choose any node with degree <3
Stack:

h
C

9

Now we are stuck! No nodes with degree <3

Pick a node to potentially spill

Stephen Chong, Harvard University 34

Which Node to Spill?

*\Want to pick a node
(i.e., temp variable)
that will make it
likely we'll be able to
k color graph

*High degree (= live at
many program points)

*Not used/defined very
often (so we don’t
need to access stack
very often)

. Uses+defs n Uses+defs %10
¢ Eg, Compute Spl" outside loop in loop

priority of node

degree of node

Which Node to Spill?

{live-in: j, k}

g := *(J+12)
h := k -1

f :(= g * h
e := *(J+8)
m := *(J+16)
b := *(£+0)
c := e + 8
d := ¢

K :=m + 4

J := Db
{live-out: d4,3j,k}

Uses+defs n Uses+defs %10
outside loop in loop

Spill priority =

degree of node

Simplification

Choose any node with degree <3
Stack:

h
C

g9
d spill?

Pick a node with small spill priority degree to potentially spill

Stephen Chong, Harvard University 37

Simplificatio

Choose any node with degree <3
Stack:

h
C

g9
d spill?
k

Stephen Chong, Harvard University 38

Simplificati

Choose any node with degree <3
Stack:

h
C

g9
d spill?
k

J

Stephen Chong, Harvard University 39

Simplificatic

Choose any node with degree <3
Stack:

h (&

C
9 \
d spill? ‘@

k
]
b

Stephen Chong, Harvard University 40

Simplificatic

Choose any node with degree <3
Stack:

h
C

g9
d spill?
k

]
b
e

Stephen Chong, Harvard University 41

Simplificati

Choose any node with degree <3
Stack:

h
C

g9
d spill?
k

Hh O O 4.

Stephen Chong, Harvard University 42

Simplific
Choose any node with degree <3
Stack:

h
C

g9
d spill?
k

Hh O O 4.

=

Stephen Chong, Harvard University 43

Select (3 re

Graph is now empty!
Stack: Color nodes in order of stack

h
C

g9
d spill?
k

Hh O O 4.

=

Stephen Chong, Harvard University

Select (3 regis

Stack:

h
C

g9
d spill?

We got unlucky!

In some cases a potential spill
node is still colorable, and the
Select phase can continue.

But in this case, we need to rewrite...
@ @0

Stephen Chong, Harvard University

45

Select (3 regt

*Spill d
{live-in: j, k}
g := *(J+12)
h : =k -1

f := g * h
e := *(j+8)
m := *(J+16)
b := *(£+0)
c := e + 8
d := cC

K :=m+ 4

j = Db

{

live-out: d,3j,k}

Stephen Chong, Harvard University

{live-in: j, k}

g := *(J+12)
h := k -1

f := g * h
e := *(J+8)
m := *(J+16)
b := *(£+0)
c :(= e + 8
d := ¢

*<fp+doff> =d

K :=m+ 4

j = Db
d2:=*<fp+doff>
{live-out: d2,j,k}

46

{live-in: j, k} G
= *(3+12)
k -1

o O
:= *(J+8
@ Yo

‘ k b

:= *(£+4+0)

:= e + 8 ‘E’ ["‘
“\9 o

K :=m+ 4

j := Db
d2:=*<fp+doff>
{live-out: d2,j,k}

Stephen Chong, Harvard University 47

O Q O3 0O Hh oW

Simplification (3 registers)

Choose any node with degree <3
Stack:

RS
-

This time we succeed and
will be able to complete Select phase successfully!

