

HARVARD John A. Paulson School of Engineering and Applied Sciences

CS153: Compilers Lecture 21: Register Allocation

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

Contains content from lecture notes by Steve Zdancewic and Greg Morrisett

Pre-class Puzzle

• What's the minimum number of colors needed to color a map of the USA? • Every state is assigned one color Adjacent states must be given different colors

Stephen Chong, Harvard University

Pre-class Puzzle Answer

•4

- Four-color theorem says ≤ 4
- Must be at least 4:
 - Suppose we had only 3 colors
 - Pick some colors for CA and OR (Red and Green)
 - NV must be Blue
 - •ID must be Red
 - •AZ must be Green
 - UT!!!!!

Announcements

•HW5: Oat v.2 out

- Due in one week: Tue Nov 19
- HW6 released today
 - Due in 3 weeks: Tue Dec 3

Today

- HW6 overview
- Register allocation
 - Graph coloring by simplification
 - Coalescing
 - Coloring with coalescing
 - Pre-colored nodes to handle callee-save, caller-save, and special purpose registers

HW6

- Analysis and optimization
 - Implement generic iterative dataflow
 - Implement Alias Analysis
 - Implement Dead-Code Elimination
 - Implement Constant Propagation
- Register allocation
- Performance
 - Post a test case
- Optional: participate in leaderboard
 - More optimizations...
- Extra credit available!
 - Sophisticated register allocation, additional optimizations

Yet More General Dataflow Analysis

• Gen-kill framework suits many dataflow analyses

- Forward: $out[n] := gen[n] \cup (in[n] kill[n])$
- Backward: $in[n] := gen[n] \cup (out[n] kill[n])$
- But some analyses can't be phrased in this way
 - E.g., constant propagation, alias analysis
- Instead, characterize a (forward) dataflow analysis by:
 - Domain of dataflow values $\mathcal L$
 - The info we are computing
 - E.g., for reaching definitions, $\mathcal L$ is the set of definitions
 - Flow function for instruction n, $F_n : \mathcal{L} \rightarrow \mathcal{L}$
 - For gen-kill analyses, $F_n(\ell) = gen[n] \cup (\ell kill[n])$
 - •Combining operator $\sqcap : \mathcal{L} \rightarrow \mathcal{L}$
 - "If either ℓ_1 or ℓ_2 holds just before node n, we know at most $\ell_1 \sqcap \ell_2$
 - $in[n] = \prod_{n' \in pred[n]} out[n']$
 - E.g., for may analyses \sqcap is \cup (set union), for must analyses \sqcap is \cap (set intersection)
 - (Backwards analysis is similar)

Generic Iterative Forward Analysis

for all n, in[n] := \top , out[n] := \top repeat until no change in 'in' and 'out' for all n in[n] := $\prod_{n' \in succ[n] out}[n']$ out[n] := $F_n(in[n])$ end end

• \top is the "top element" of \mathcal{L} , typically the "maximum" amount of information

- Having "more" information enables more optimizations
- "Maximum" information could be inconsistent with the constraints
- Iteration refines the answer, eliminating inconsistencies

Stephen Chong, Harvard University

Constant Propagation

- Domain
 - $\mathcal{L} = \text{uid} \rightarrow \text{SymConst}$
 - SymConst = NonConst | Const i | Undef
- Flow function:
 - $F_{uid = ins} (m) = m[uid \mapsto \llbracket ins \rrbracket m]$
 - •[[o1 + o2]]m =
 - NonConst if [[01]]m = NonConst or [[02]]m = NonConst
 - Undef if [[01]]m = Undef or [[02]]m = Undef
 - Const k where k = i + j and [[01]]m = Const i and [[02]]m = Const j
 - [[Null]]m = NonConst
 - [[k]]m = Const k (i.e., a constant integer operand
 - $\bullet \llbracket \% u \rrbracket m = m(u)$
 - •...

• Combining operator:

- •m1, m2 : uid → SymConst
- $(m1 \sqcap m2)(\%u) = m1(\%u) \sqcap m2(\%u)$

		Un	def		
_					
•••	Const -1	Const 0	Const 1	Const 2	•••
_					
NonConst					

Alias Analysis

Domain

- • $\mathcal{L} = uid \rightarrow SymPtr$
- SymPtr = MayAlias | Unique | Undef
- Flow function:
 - $F_{uid = ins}(m) = F(uid = ins, m)$
 - $F(%s = alloca ..., m) = m[%s \mapsto Unique]$
 - $F(%s = load ..., m) = m[%s \mapsto MayAlias]$
 - $F(\%s = \text{store t }\%t \text{ o, }m) = m[\%t \mapsto MayAlias]$
 - (i.e., %t was stored in a location, and so it may no longer be a unique pointer)

•...

• Combining operator:

- •m1, m2 : uid \rightarrow SymPtr
- $(m1 \sqcap m2)(\%u) = m1(\%u) \sqcap m2(\%u)$

Register Allocation Problem

- Given: an IR program that uses an unbounded number of temporaries
 - •e.g. the uids of our LLVM programs
- Find: a mapping from temporaries to machine registers such that
 - program semantics is preserved (i.e., behavior is the same)
 - register usage is maximized
 - moves between registers are minimized
 - calling conventions / architecture requirements are obeyed
- Stack Spilling
 - If there are k registers available and m > k temporaries are live at the same time, then not all of them will fit into registers.
 - So: "spill" the excess temporaries to the stack.

Linear-Scan Register Allocation

- Simple, greedy register-allocation strategy:
- •1. Compute liveness information: live_out(x)
 - •recall: live_out(x) is the set of uids that are live immediately after x's definition
- •2. Let pal be the set of usable registers
 - •usually reserve a couple for spill code [our implementation uses rax,rcx]
- •3. Maintain "layout" uid_loc that maps uids to locations
 - locations include registers and stack slots n, starting at n=0
- •4. Scan through the program. For each instruction that defines a uid \mathbf{x}
 - •used = {r | reg r = uid_loc(y) s.t. $y \in live_out(x)$ }
 - •available = pal used
 - If available is empty: // no registers available, spill uid_loc(x) := slot n ; n = n + 1
 - Otherwise, pick r in available: // choose an available register uid_loc(x) := reg r

For HW6

• HW 6 implements two naive register allocation strategies:

- •no_reg_layout: spill all registers
- •greedy_layout: assign registers greedily using linear scan
- Your job: do "better" than these.
- Quality Metric:
 - registers other than **rbp** count positively
 - •rbp counts negatively (it is used for spilling)
 - shorter code is better
- Linear scan register allocation should suffice
 - But... can we do better?

Register Allocation

- Register allocation is in generally an NP-complete problem
 - Can we allocate all these *n* temporaries to *k* registers?
- But we have a heuristic that is linear in practice!
 - Based on graph coloring
 - Given a graph, can we assign one of k colors to each node such that connected nodes have different colors?
 - Here, nodes are temp variables, an edge between t1 and t2 means that t1 and t2 are live at the same time. Colors are registers.
- But graph coloring is also NP-complete! How does that work?

Coloring by Simplification

- Four phases
- Build: construct interference graph, using dataflow analysis to find for each program point vars that are live at the same time
- Simplify: color based on simple heuristic
 - If graph G has node *n* with *k*-1 edges, then G-{n} is *k*-colorable iff G is *k*-colorable
 - So remove nodes with degree <*k*
- Spill: if graph has only nodes with degree $\geq k$, choose one to potentially spill (i.e., that may need to be saved to stack)
 - Then continue with Simplify
- •Select: when graph is empty, start restoring nodes in reverse order and color them
 - •When we encounter a potential spill node, try coloring it. If we can't, rewrite program to store it to stack after definition and load before use. Try again!

Example

From Appel

{live-in: j, k} g := *(j+12) h := k - 1f := g * h e := *(j+8) m := *(j+16)b := *(f+0)c := e + 8 d := c k := m + 4j := b {live-out: d,j,k} Interference graph

Choose any node with degree <4 Stack:

g

Choose any node with degree <4 Stack:

g h

Choose any node with degree <4 Stack:

g h k

Choose any node with degree <4 Stack:

g h k d

Choose any node with degree <4 Stack:

g h k d j

Choose any node with degree <4 Stack:

- g
- h k
- d j e

Choose any node with degree <4 Stack:

- g
- h
- k
- d j

f

e

Choose any node with degree <4 Stack:

- g
- h
- k

j

d

- e

Choose any node with degree <4 Stack:

- g
- h
- k
- d
- j
- e
- f b
- С

Choose any node with degree <4 Stack:

- g
- h
- k
- e
- f
- b
- С

m

d

j

Select (4 registers)

Select (4 registers)

g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b

Select (4 registers)

Spilling

- This example worked out nicely!
- Always had nodes with degree <k
- Let's try again, but now with only 3 registers...

Choose any node with degree <3 Stack:

h

Choose any node with degree <3 Stack:

h C

Choose any node with degree <3 Stack:

h C g

f

k

e

b

d

Choose any node with degree <3 Stack:

h C g

Now we are stuck! No nodes with degree <3

Pick a node to potentially spill

m

Which Node to Spill?

- Want to pick a node (i.e., temp variable) that will make it likely we'll be able to *k* color graph
 - High degree (≈ live at many program points)
 - Not used/defined very often (so we don't need to access stack very often)
- E.g., compute **spill priority** of node

degree of node

Stephen Chong, Harvard University

Which Node to Spill?

{live-in: j, k} g := *(j+12)h := k - 1 f := q * h e := *(j+8) m := *(j+16)b := *(f+0)c := e + 8 d := c k := m + 4j := b {live-out: d,j,k}

Spill priority =

degree of node

Stephen Chong, Harvard University

Choose any node with degree <3 Stack:

h c g d *spill?*

Pick a node with small spill priority degree to potentially spill

Choose any node with degree <3 Stack:

h c g d *spill?* k

Choose any node with degree <3 Stack:

h c g d *spill?* k

j

Choose any node with degree <3 Stack:

- h c g d *spill?* k i
- j b

Choose any node with degree <3 Stack:

h c g d *spill?* k j

b

e

Choose any node with degree <3 Stack:

h C g d spill? k j b e f

Choose any node with degree <3 Stack:

h C g d spill? k j b e f m

(m

Select (3 registers)

Select (3 registers)

Stack:

h c g d *spill?*

We got unlucky!

In some cases a potential spill node is still colorable, and the Select phase can continue.

But in this case, we need to rewrite...

=t1 =t2 =t3

Select (3 registers)

• Spill d

{live-in: j, k} g := *(j+12)h := k - 1 f := q * h e := *(j+8) m := *(j+16)b := *(f+0)c := e + 8 d := c k := m + 4j := b {live-out: d,j,k}

Build

```
{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
<fp+doff>:=d
k := m + 4
j := b
d2:=*<fp+doff>
{live-out: d2,j,k}
```


Choose any node with degree <3 Stack:

h C g d d2 k b m e

This time we succeed and will be able to complete Select phase successfully!

Stephen Chong, Harvard University

f