John A. Paulson
School of Engineering and Applied Sciences

CS153: Compilers Lecture 21: Register Allocation

Stephen Chong
 https://www.seas.harvard.edu/courses/cs153

Contains content from lecture notes by Steve Zdancewic and Greg Morrisett

Pre-class Puzzle

-What's the minimum number of colors needed to color a map of the USA?

- Every state is assigned one color
- Adjacent states must be given different colors

Pre-class Puzzle Answer

- 4
- Four-color theorem says ≤ 4
- Must be at least 4:
- Suppose we had only 3 colors
- Pick some colors for CA and OR
(Red and Green)
- NV must be Blue
- ID must be Red
- AZ must be Green
- UT!!!!!!

Announcements

-HW5: Oat v. 2 out
-Due in one week: Tue Nov 19

- HW6 released today
-Due in 3 weeks: Tue Dec 3

Today

- HW6 overview
- Register allocation
- Graph coloring by simplification
- Coalescing
-Coloring with coalescing
- Pre-colored nodes to handle callee-save, caller-save, and special purpose registers

HW6

- Analysis and optimization
- Implement generic iterative dataflow
- Implement Alias Analysis
- Implement Dead-Code Elimination
- Implement Constant Propagation
- Register allocation
- Performance
- Post a test case
- Optional: participate in leaderboard
- More optimizations...
- Extra credit available!
- Sophisticated register allocation, additional optimizations

Yet More General Dataflow Analysis

-Gen-kill framework suits many dataflow analyses
-Forward: out[n] := gen[n] $\cup(\mathrm{in}[\mathrm{n}]-$ kill[n])

- Backward: in[n] := gen[n] $\cup(o u t[n]-k i l l[n])$
- But some analyses can't be phrased in this way
-E.g., constant propagation, alias analysis
- Instead, characterize a (forward) dataflow analysis by:
- Domain of dataflow values \mathcal{L}
- The info we are computing
- E.g., for reaching definitions, \mathcal{L} is the set of definitions
- Flow function for instruction $\mathrm{n}, \mathrm{F}_{\mathrm{n}}: \mathcal{L} \rightarrow \mathcal{L}$
-For gen-kill analyses, $\mathrm{F}_{\mathrm{n}}(\ell)=$ gen[n] $\cup(\ell-$ kill $[\mathrm{n}])$
-Combining operator $п: \mathcal{L} \rightarrow \mathcal{L}$
- "If either ℓ_{1} or ℓ_{2} holds just before node n, we know at most $\ell_{1} \sqcap \ell_{2}$
\bullet in $[n]=\Pi_{n^{\prime} \in \operatorname{pred}}[n]$ out[$\left[n^{\prime}\right]$
- E.g., for may analyses \square is \cup (set union), for must analyses \square is \cap (set intersection)
-(Backwards analysis is similar)

Generic Iterative Forward Analysis

```
for all n, in[n]:= T, out[n]:= T
repeat until no change in 'in' and 'out'
    for all n
        in[n]:= 语\insucc[n] out[n']
        out[n]:= F F (in[n])
    end
end
```

- T is the "top element" of \mathcal{L}, typically the "maximum" amount of information
- Having "more" information enables more optimizations
-"Maximum" information could be inconsistent with the constraints
- Iteration refines the answer, eliminating inconsistencies

Constant Propagation

- Domain
- $\mathcal{L}=$ uid \rightarrow SymConst
- SymConst = NonConst | Const i | Undef - Flow function:

- $\mathrm{F}_{\text {uid }}=$ ins $(\mathrm{m})=\mathrm{m}$ [uid \mapsto [ins】m]
- $\llbracket \mathrm{o} 1+\mathrm{o} 2 \rrbracket \mathrm{~m}=$
- NonConst if $\llbracket \mathrm{o} 1 \rrbracket \mathrm{~m}=$ NonConst or $\llbracket \mathrm{o} 2 \rrbracket \mathrm{~m}=$ NonConst
- Undef if $\llbracket o 1 \rrbracket \mathrm{~m}=$ Undef or $\llbracket \mathrm{o} 2 \rrbracket \mathrm{~m}=$ Undef
- Const k where $\mathrm{k}=\mathrm{i}+\mathrm{j}$ and $\llbracket \mathrm{o} 1 \rrbracket \mathrm{~m}=$ Const i and $\llbracket \mathrm{o} 2 \rrbracket \mathrm{~m}=$ Const j
- $\llbracket \mathrm{Null} \rrbracket \mathrm{m}=$ NonConst
$\bullet \llbracket k \rrbracket m=$ Const k (i.e., a constant integer operand
- $\llbracket \% \mathrm{u} \rrbracket \mathrm{m}=\mathrm{m}(\mathrm{u})$
-...
- Combining operator:
- m1, m2 : uid \rightarrow SymConst
$\bullet(\mathrm{m} 1 \sqcap \mathrm{~m} 2)(\% \mathrm{u})=\mathrm{m} 1(\% \mathrm{u}) \sqcap \mathrm{m} 2(\% \mathrm{w})$

Alias Analysis

-Domain

- $\mathcal{L}=$ uid \rightarrow SymPtr
- SymPtr = MayAlias | Unique | Undef
- Flow function:
- $\mathrm{F}_{\text {uid }}=$ ins $(\mathrm{m})=\mathrm{F}($ uid $=$ ins, $m)$
- $F(\% s=$ alloca $\ldots, m)=m[\% s \mapsto$ Unique $]$
- $\mathrm{F}(\% \mathrm{~s}=$ load $\ldots, \mathrm{m})=\mathrm{m}[\% \mathrm{~s} \mapsto$ MayAlias $]$
- $\mathrm{F}(\% \mathrm{~s}=$ store $\mathrm{t} \% \mathrm{t} \mathrm{o}, \mathrm{m})=\mathrm{m}[\% \mathrm{t} \mapsto$ MayAlias]
-(i.e., \%t was stored in a location, and so it may no longer be a unique pointer)
-Combining operator:
$\bullet m 1$, m2 : uid \rightarrow SymPtr
$\bullet(\mathrm{m} 1 \sqcap \mathrm{~m} 2)(\% \mathrm{u})=\mathrm{m} 1(\% \mathrm{u}) \sqcap \mathrm{m} 2(\% \mathrm{u})$
-...

Undef
Unique
MayAlias

Register Allocation Problem

- Given: an IR program that uses an unbounded number of temporaries
-e.g. the uids of our LLVM programs
- Find: a mapping from temporaries to machine registers such that
- program semantics is preserved (i.e., behavior is the same)
- register usage is maximized
- moves between registers are minimized
- calling conventions / architecture requirements are obeyed
- Stack Spilling
- If there are k registers available and $m>k$ temporaries are live at the same time, then not all of them will fit into registers.
- So: "spill" the excess temporaries to the stack.

Linear-Scan Register Allocation

- Simple, greedy register-allocation strategy:
-1. Compute liveness information: live_out(x)
- recall: live_out (x) is the set of uids that are live immediately after x's definition
-2. Let pal be the set of usable registers
-usually reserve a couple for spill code [our implementation uses rax,rcx]
-3. Maintain "layout" uid_loc that maps uids to locations
- locations include registers and stack slots n, starting at $n=0$
-4. Scan through the program. For each instruction that defines a uid x
$\bullet u s e d=\left\{r \mid r e g r=u i d _l o c(y)\right.$ s.t. $y \in$ live_out $\left.(x)\right\}$
- available = pal - used
- If available is empty: // no registers available, spill

$$
\text { uid_loc(x) }:=\operatorname{slot} n \quad ; n=n+1
$$

- Otherwise, pick r in available: // choose an available register
uid_loc(x) := reg r

For HW6

- HW 6 implements two naive register allocation strategies:
-no_reg_layout: spill all registers
- greedy_layout: assign registers greedily using linear scan
- Your job: do "better" than these.
- Quality Metric:
- registers other than rbp count positively
- rbp counts negatively (it is used for spilling)
- shorter code is better
- Linear scan register allocation should suffice
-But... can we do better?

Register Allocation

- Register allocation is in generally an NP-complete problem
- Can we allocate all these n temporaries to k registers?
- But we have a heuristic that is linear in practice!
- Based on graph coloring
- Given a graph, can we assign one of k colors to each node such that connected nodes have different colors?
- Here, nodes are temp variables, an edge between $t 1$ and t2 means that $t 1$ and $t 2$ are live at the same time. Colors are registers.
- But graph coloring is also NP-complete! How does that work?

Coloring by Simplification

- Four phases
- Build: construct interference graph, using dataflow analysis to find for each program point vars that are live at the same time
- Simplify: color based on simple heuristic
- If graph G has node n with k - 1 edges, then G - $\{\mathrm{n}\}$ is k-colorable iff G is k-colorable
- So remove nodes with degree $<k$
- Spill: if graph has only nodes with degree $\geq k$, choose one to potentially spill (i.e., that may need to be saved to stack)
-Then continue with Simplify
-Select: when graph is empty, start restoring nodes in reverse order and color them -When we encounter a potential spill node, try coloring it. If we can't, rewrite program to store it to stack after definition and load before use. Try again!

Example

From Appel
\{live-in: j, k\}
$\mathrm{g}:=$ *(j+12)
h := k - 1
f : = g * h
e : = * ${ }^{j+8 \text {) }}$
$m:=$ * $(j+16)$
b : $=$ * $(\mathrm{f}+0)$
c $:=e+8$
d := c
$\mathrm{k}:=\mathrm{m}+4$
j := b
\{live-out: d,j,k\}
Interference graph

Simplification (4 registers)

Choose any node with degree <4

Stack:
g

Simplification (4 registers)

Choose any node with degree <4

Stack:

g
 h

Simplification (4 registers)

Choose any node with degree <4

Stack:

g
 h
 k

Simplification (4 registers)

Choose any node with degree <4

Stack:
g
h
k
d

Simplification (4 registers)

Choose any node with degree <4
Stack:
g
h
k
d

Simplification (4 registers)

Choose any node with degree <4

Stack:

g
 h
 k
 d
 j
 e

Simplification (4 registers)

Choose any node with degree <4
Stack:
g
h
k
d
j
e
f

Simplification (4 registers)

Choose any node with degree <4
Stack:

g
 h
 k
 d
 j
 e
 f
 b

Simplification (4 registers)

Choose any node with degree <4
Stack:

g
 h
 k
 d
 j
 e
 f
 b
 C

Simplification (4 registers)

Choose any node with degree <4
Stack:

Select (4 registers)

Graph is now empty!
Stack:
Color nodes in order of stack
g
h
k
d
j
e
f
b

c

Select (4 registers)

$$
\begin{aligned}
g & :=*(j+12) \\
h & :=k-1 \\
f & :=g * h \\
e & :=*(j+8) \\
m & :=*(j+16) \\
b & :=*(f+0) \\
c & :=e+8 \\
d & :=c \\
k & :=m+4 \\
j & :=b
\end{aligned}
$$

Select (4 registers)

$$
\begin{aligned}
& \$ t 2:=*(t 4+12) \\
& \$ t 1:=\$ t 1-1 \\
& \$ t 2:=\$ t 2 * \$ t 1 \\
& \$ t 3:=*(\$ t 4+8) \\
& \$ t 1:=*(\$ t 4+16) \\
& \$ t 2:=*(\$ t 2+0) \\
& \$ t 3:=\$ t 3+8 \\
& \$ t 3:=\$ t 3 \\
& \$ t 1:=\$ t 1+4) \\
& \$ t 4:=\$ t 2
\end{aligned}
$$

Some moves might subsequently be simplified...

Spilling

-This example worked out nicely!

- Always had nodes with degree $<k$
- Let's try again, but now with only 3 registers...

Simplification (3 registers)

Choose any node with degree <3

Stack:
h

Simplification (3 registers)

Choose any node with degree <3

Stack:
h
C

Simplification (3 registers)

Choose any node with degree <3

Stack:
h
C
g

Simplification (3 registers)

Choose any node with degree <3
Stack:
h
C
g

Now we are stuck! No nodes with degree <3
Pick a node to potentially spill

Which Node to Spill?

-Want to pick a node (i.e., temp variable) that will make it likely we'll be able to k color graph

- High degree (\approx live at many program points)
- Not used/defined very often (so we don't need to access stack very often)
very often)
- .g., compute spill
priority of node
$\begin{gathered}\text { Uses }+ \text { defs } \\ \text { outside loop }\end{gathered}+\begin{gathered}\text { Uses+defs } \\ \text { in loop }\end{gathered} \times 10$
very often)
- .g., compute spill
priority of node

Which Node to Spill?

\{live-in: j, k\}

$$
\begin{aligned}
g & :=*(j+12) \\
h & :=k-1 \\
f & :=g * h \\
e & :=*(j+8) \\
m & :=*(j+16) \\
b & :=*(f+0) \\
c & :=e+8 \\
d & :=c \\
k & :=m+4 \\
j & :=b
\end{aligned}
$$

\{live-out: d,j,k\}

$$
\begin{aligned}
& \text { Uses+defs } \\
& \text { outside loop }
\end{aligned}+\begin{gathered}
\text { Uses+defs } \\
\text { in loop }
\end{gathered} \times 10
$$

Spill priority =

Simplification (3 registers)

Choose any node with degree <3
Stack:
h
C
g
d spill?

Pick a node with small spill priority degree to potentially spill

Simplification (3 registers)

Choose any node with degree <3
Stack:
h
C
g
d spill?
k

Simplification (3 registers)

Choose any node with degree <3
Stack:
h
C
g
d spill?
k

j

Simplification (3 registers)

Choose any node with degree <3

Stack:
h
C
9
d spill?
k

j
b

Simplification (3 registers)

Choose any node with degree <3
Stack:
h
C
g
d spill?

k
j
b
e

Simplification (3 registers)

Choose any node with degree <3
Stack:
h
C
g
d spill?

k
j
b
e
f

Simplification (3 registers)

Choose any node with degree <3
Stack:
h
C
g
d spill?
k
j
b
e
f
m

Select (3 registers)

Graph is now empty!
Stack:
h
C h
c
g
d spill? h
c
g
d spill?
k
j
b
e
f
m
Color nodes in order of stack

$$
\circlearrowleft=t 1 \circlearrowleft=t 2 \circlearrowleft=t 3
$$

Select (3 registers)

Stack:

C

We got unlucky!
In some cases a potential spill node is still colorable, and the Select phase can continue.

But in this case, we need to rewrite...

$$
\circlearrowleft=t 1 \circlearrowleft=t 2 \Omega=t 3
$$

Select (3 registers)

- Spill d

\{live-in: j, k\}
$\mathrm{g}:=$ *(j+12)
h := k - 1
f := g * h
e : = *(j+8)
$m:=$ * $(j+16)$
b : $=$ * $(\mathrm{f}+0)$
c $:=e+8$
d := c
$\mathrm{k}:=\mathrm{m}+4$
j := b
\{live-out: d,j,k\}
\{live-in: j, k\}
$\mathrm{g}:=$ *(j+12)
h : $=\mathrm{k}$ - 1
f : $=\mathrm{g}$ * h
e : $=$ * $(j+8)$
$m:=$ *(j+16)
b : $=$ *(f+0)
c : $=$ e + 8
d := c
*<fp+doff>:=d
k := m + 4
j $:=\mathrm{b}$
d2:=*<fp+doff>
\{live-out: d2,j,k\}

Build

\{live-in: j, k\}
g := *(j+12)
$\mathrm{h}:=\mathrm{k}-1$
f := g * h
e : = * (j+8)
m := *(j+16)
b : $=$ *(f+0)
c $:=e+8$
d := c
*<fp+doff>:=d
k := m + 4
j $:=\mathrm{b}$
d2:=*<fp+doff>
\{live-out: d2,j,k\}

Simplification (3 registers)

Choose any node with degree <3 Stack:
h
C
g
d
d2
k
b
m

This time we succeed and will be able to complete Select phase successfully!

