
CS153: Compilers
Lecture 21:  
Register Allocation

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Contains content from lecture notes by Steve Zdancewic and Greg Morrisett

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Pre-class Puzzle

•What’s the minimum number of colors needed to color a map
of the USA?

2

•Every state is  
assigned one color

•Adjacent states must  
 be given different colors

https://printable-maps.blogspot.com/2011/12/blank-map-of-united-states.html

Stephen Chong, Harvard University

Pre-class Puzzle Answer

•4

•Four-color theorem says ≤4

•Must be at least 4:
•Suppose we had only 3 colors
•Pick some colors for CA and OR  

 (Red and Green)
•NV must be Blue
•ID must be Red
•AZ must be Green
•UT!!!!!!

3

Red

Green

Blue

Red

Green

!!!

Stephen Chong, Harvard University

Announcements

•HW5: Oat v.2 out
•Due in one week: Tue Nov 19

•HW6 released today
•Due in 3 weeks: Tue Dec 3

4

Stephen Chong, Harvard University

Today

•HW6 overview
•Register allocation

•Graph coloring by simplification
•Coalescing
•Coloring with coalescing
• Pre-colored nodes to handle callee-save, caller-save, and
special purpose registers

5

Stephen Chong, Harvard University

HW6

•Analysis and optimization
•Implement generic iterative dataflow
•Implement Alias Analysis

•Implement Dead-Code Elimination
•Implement Constant Propagation

•Register allocation

•Performance
•Post a test case

•Optional: participate in leaderboard
•More optimizations...

•Extra credit available!
•Sophisticated register allocation, additional optimizations

6

Stephen Chong, Harvard University

Yet More General Dataflow Analysis

•Gen-kill framework suits many dataflow analyses
•Forward: out[n] := gen[n] ∪ (in[n] – kill[n])

•Backward: in[n] := gen[n] ∪ (out[n] – kill[n])

•But some analyses can’t be phrased in this way
•E.g., constant propagation, alias analysis

•Instead, characterize a (forward) dataflow analysis by:
•Domain of dataflow values L

• The info we are computing

• E.g., for reaching definitions, L is the set of definitions

•Flow function for instruction n, Fn : L→L

•For gen-kill analyses, Fn(ℓ) = gen[n] ∪ (ℓ – kill[n])

•Combining operator ⊓ : L→L
• “If either ℓ1 or ℓ2 holds just before node n, we know at most ℓ1 ⊓ ℓ2

• in[n] = ⨅n’∈pred[n] out[n’]

• E.g., for may analyses ⊓ is ∪ (set union), for must analyses ⊓ is ∩ (set intersection)

•(Backwards analysis is similar)  
7

Stephen Chong, Harvard University

Generic Iterative Forward Analysis

•⊤ is the “top element” of L, typically the “maximum” amount of
information

•Having “more” information enables more optimizations
•“Maximum” information could be inconsistent with the constraints
•Iteration refines the answer, eliminating inconsistencies

8

for all n, in[n] := ⊤, out[n] := ⊤
repeat until no change in ‘in’ and ‘out’
 for all n
 in[n] := ⨅n’∈succ[n] out[n’]
 out[n] := Fn(in[n])
 end
end

Stephen Chong, Harvard University

Constant Propagation

•Domain
•L = uid → SymConst

•SymConst = NonConst | Const i | Undef

•Flow function:
•Fuid = ins (m) = m[uid ↦ ⟦ins⟧m]

•⟦o1 + o2⟧m =
•NonConst if ⟦o1⟧m = NonConst or ⟦o2⟧m = NonConst

•Undef if ⟦o1⟧m = Undef or ⟦o2⟧m = Undef

•Const k where k = i + j and ⟦o1⟧m = Const i and ⟦o2⟧m = Const j

•⟦Null⟧m = NonConst

•⟦k⟧m = Const k (i.e., a constant integer operand

•⟦%u⟧m = m(u)

•...

•Combining operator:
•m1, m2 : uid → SymConst
•(m1 ⊓ m2)(%u) = m1(%u) ⊓ m2(%u)

9

NonConst

Undef

Const -1 Const 0 Const 1 Const 2... ...

Stephen Chong, Harvard University

Alias Analysis

•Domain
•L = uid → SymPtr

•SymPtr = MayAlias | Unique | Undef

•Flow function:
•Fuid = ins (m) = F(uid = ins, m)

•F(%s = alloca ..., m) = m[%s ↦ Unique]

•F(%s = load ..., m) = m[%s ↦ MayAlias]

•F(%s = store t %t o, m) = m[%t ↦ MayAlias]
• (i.e., %t was stored in a location, and so it may no longer be a
unique pointer)

•...

•Combining operator:
•m1, m2 : uid → SymPtr
•(m1 ⊓ m2)(%u) = m1(%u) ⊓ m2(%u)

10

MayAlias

Undef

Unique

Stephen Chong, Harvard University

Register Allocation Problem

•Given: an IR program that uses an unbounded number of
temporaries
•e.g. the uids of our LLVM programs

•Find: a mapping from temporaries to machine registers such that
•program semantics is preserved (i.e., behavior is the same)
•register usage is maximized
•moves between registers are minimized

•calling conventions / architecture requirements are obeyed

•Stack Spilling
•If there are k registers available and m > k temporaries are live at the

same time, then not all of them will fit into registers.

•So: "spill" the excess temporaries to the stack.

11

Stephen Chong, Harvard University

Linear-Scan Register Allocation

•Simple, greedy register-allocation strategy:

•1. Compute liveness information: live_out(x)
•recall: live_out(x)is the set of uids that are live immediately after x's definition

•2. Let pal be the set of usable registers
•usually reserve a couple for spill code [our implementation uses rax,rcx]

•3. Maintain "layout" uid_loc that maps uids to locations
•locations include registers and stack slots n, starting at n=0

•4. Scan through the program. For each instruction that defines a uid x
•used = {r | reg r = uid_loc(y) s.t. y ∈ live_out(x)}

•available = pal - used
•If available is empty: // no registers available, spill  

 uid_loc(x) := slot n ; n = n + 1

•Otherwise, pick r in available: // choose an available register 
 uid_loc(x) := reg r

12

Stephen Chong, Harvard University

For HW6

•HW 6 implements two naive register allocation strategies:
•no_reg_layout: spill all registers

•greedy_layout: assign registers greedily using linear scan

•Your job: do “better” than these.
•Quality Metric:

•registers other than rbp count positively

•rbp counts negatively (it is used for spilling)

•shorter code is better

•Linear scan register allocation should suffice
•But… can we do better?

13

Stephen Chong, Harvard University

Register Allocation

•Register allocation is in generally an NP-complete
problem
•Can we allocate all these n temporaries to k registers?

•But we have a heuristic that is linear in practice!
•Based on graph coloring
•Given a graph, can we assign one of k colors to each node such that
connected nodes have different colors?

•Here, nodes are temp variables, an edge between t1 and t2
means that t1 and t2 are live at the same time. Colors are
registers.

•But graph coloring is also NP-complete! How does that
work?

14

Stephen Chong, Harvard University

Coloring by Simplification

•Four phases

•Build: construct interference graph, using dataflow analysis to find for each
program point vars that are live at the same time

•Simplify: color based on simple heuristic
•If graph G has node n with k-1 edges, then G-{n} is k-colorable iff G is k-colorable
•So remove nodes with degree <k

•Spill: if graph has only nodes with degree ≥k, choose one to potentially spill (i.e.,
that may need to be saved to stack)

•Then continue with Simplify

•Select: when graph is empty, start restoring nodes in reverse order and color them
•When we encounter a potential spill node, try coloring it. If we can’t, rewrite program to

store it to stack after definition and load before use. Try again!

15

Build Simplify Spill Select

Stephen Chong, Harvard University

Example

16

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b
{live-out: d,j,k}

f

e

m

b

cd

k
j

h

g

From Appel Interference graph

g

Stephen Chong, Harvard University

Simplification (4 registers)

17

f

e

m

b

cd

k
j

h

g

Stack:

g

Choose any node with degree <4

h

Stephen Chong, Harvard University

Simplification (4 registers)

18

f

e

m

b

cd

k
j

h

Stack:

g
h

Choose any node with degree <4

k

Stephen Chong, Harvard University

Simplification (4 registers)

19

f

e

m

b

cd

k
j

Stack:

g
h
k

Choose any node with degree <4

d

Stephen Chong, Harvard University

Simplification (4 registers)

20

f

e

m

b

cd

j

Stack:

g
h
k
d

Choose any node with degree <4

j

Stephen Chong, Harvard University

Simplification (4 registers)

21

f

e

m

b

c

j

Stack:

g
h
k
d
j

Choose any node with degree <4

e

Stephen Chong, Harvard University

Simplification (4 registers)

22

f

e

m

b

c

Stack:

g
h
k
d
j
e

Choose any node with degree <4

f

Stephen Chong, Harvard University

Simplification (4 registers)

23

f

m

b

c

Stack:

g
h
k
d
j
e
f

Choose any node with degree <4

b

Stephen Chong, Harvard University

Simplification (4 registers)

24

m

b

c

Stack:

g
h
k
d
j
e
f
b

Choose any node with degree <4

c

Stephen Chong, Harvard University

Simplification (4 registers)

25

m

c

Stack:

g
h
k
d
j
e
f
b
c

Choose any node with degree <4

m

Stephen Chong, Harvard University

Simplification (4 registers)

26

m

Stack:

g
h
k
d
j
e
f
b
c
m

Choose any node with degree <4

Stephen Chong, Harvard University

Select (4 registers)

27

f

e

m

b

cd

k
j

h

g

Stack:

g
h
k
d
j
e
f
b
c
m

f

e

m

b

cd

k
j

h

g

Color nodes in order of stack

=t1 =t2 =t3 =t4

Graph is now empty!

Stephen Chong, Harvard University

Select (4 registers)

28

f

e

m

b

cd

k
j

h

g

f

e

m

b

cd

k
j

h

g

g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b

=t1 =t2 =t3 =t4

Stephen Chong, Harvard University

Select (4 registers)

29

f

e

m

b

cd

k
j

h

g

f

e

m

b

cd

k
j

h

g

=t1 =t2 =t3 =t4

$t2 := *(t4+12)
$t1 := $t1 - 1
$t2 := $t2 * $t1
$t3 := *($t4+8)
$t1 := *($t4+16)
$t2 := *($t2+0)
$t3 := $t3 + 8
$t3 := $t3
$t1 := $t1 + 4
$t4 := $t2

Some moves might subsequently be simplified...

Stephen Chong, Harvard University

Spilling

•This example worked out nicely!
•Always had nodes with degree <k
•Let’s try again, but now with only 3 registers...

30

Stephen Chong, Harvard University

Simplification (3 registers)

31

f

e

m

b

cd

k
j

h

g

Stack:

h

Choose any node with degree <3

h

Stephen Chong, Harvard University

Simplification (3 registers)

32

f

e

m

b

cd

k
j

g

Stack:

h

Choose any node with degree <3

c

c

Stephen Chong, Harvard University

Simplification (3 registers)

33

f

e

m

b

d

k
j

g

Stack:

h

Choose any node with degree <3

g

c
g

Stephen Chong, Harvard University

Simplification (3 registers)

34

f

e

m

b

d

k
j

Stack:

h

Now we are stuck! No nodes with degree <3

c
g

Pick a node to potentially spill

Choose any node with degree <3

Stephen Chong, Harvard University

Which Node to Spill?

•Want to pick a node
(i.e., temp variable)
that will make it
likely we’ll be able to
k color graph
•High degree (≈ live at

many program points)
•Not used/defined very

often (so we don’t
need to access stack
very often)

•E.g., compute spill
priority of node

35

f

e

m

b

d

k
j

Uses+defs
outside loop

Uses+defs
in loop ×10 +

degree of node

Stephen Chong, Harvard University

Which Node to Spill?

36

f

e

m

b

d

k
j

Uses+defs
outside loop

Uses+defs
in loop ×10 +

degree of node

Spill priority =

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b
{live-out: d,j,k}

Stephen Chong, Harvard University

Simplification (3 registers)

37

f

e

m

b

d

k
j

Stack:

h

Pick a node with small spill priority degree to potentially spill

c
g

Choose any node with degree <3

d spill?

d

Stephen Chong, Harvard University

Simplification (3 registers)

38

f

e

m

bk
j

Stack:

h
c
g

Choose any node with degree <3

d spill?
kk

Stephen Chong, Harvard University

Simplification (3 registers)

39

f

e

m

b
j

Stack:

h
c
g

Choose any node with degree <3

d spill? j
k
j

Stephen Chong, Harvard University

Simplification (3 registers)

40

f

e

m

b

Stack:

h
c
g

Choose any node with degree <3

d spill?
bk

j
b

Stephen Chong, Harvard University

Simplification (3 registers)

41

f

e

m

Stack:

h
c
g

Choose any node with degree <3

d spill?
e

k
j
b
e

Stephen Chong, Harvard University

Simplification (3 registers)

42

f

m

Stack:

h
c
g

Choose any node with degree <3

d spill?

f

k
j
b
e
f

Stephen Chong, Harvard University

Simplification (3 registers)

43

m

Stack:

h
c
g

Choose any node with degree <3

d spill? m

k
j
b
e
f
m

Stephen Chong, Harvard University

Select (3 registers)

44

Stack:
f

e

m

b

cd

k
j

h

g

f

e

mj
b

Color nodes in order of stack

=t1 =t2 =t3

Graph is now empty!

h
c
g
d spill?
k
j
b
e
f
m

k

Stephen Chong, Harvard University

Select (3 registers)

45

Stack:

h
c
g
d spill?

f

e

m

b

cd

k
j

h

g

f

e

m

=t1 =t2 =t3

We got unlucky!

In some cases a potential spill
node is still colorable, and the
Select phase can continue.

But in this case, we need to rewrite...

b
j

k

Stephen Chong, Harvard University

Select (3 registers)

•Spill d

46

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b
{live-out: d,j,k}

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
*<fp+doff>:=d
k := m + 4
j := b
d2:=*<fp+doff>
{live-out: d2,j,k}

Stephen Chong, Harvard University

Build

47

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
*<fp+doff>:=d
k := m + 4
j := b
d2:=*<fp+doff>
{live-out: d2,j,k}

f

e

m

b

c
d

k
j

h

g d2

Stephen Chong, Harvard University

Simplification (3 registers)

48

f

e

m

b

c
d

k
j

h

g d2

Stack:
Choose any node with degree <3

h
c
g
d
d2
k
b
m
e
f
j

This time we succeed and
will be able to complete Select phase successfully!

