John A. Paulson
School of Engineering and Applied Sciences

CS153: Compilers Lecture 22: Register Allocation ctd.

Stephen Chong
 https://www.seas.harvard.edu/courses/cs153

Contains content from lecture notes by Steve Zdancewic and Greg Morrisett

Pre-class Puzzle

- Can you write programs that have the following interference graphs?

Pre-class Puzzle


```
g(a) \{
    if a then goto L1 else goto L2
L1: \(c:=a ;\)
\(a:=a+c ;\)
\(\mathrm{d}:=\mathrm{a}\);
\(\mathrm{d}:=\mathrm{d}+\mathrm{c}\);
goto L3
L2: b := a;
    \(\mathrm{a}:=\mathrm{a}+\mathrm{b}\);
    \(\mathrm{d}:=\mathrm{a}\);
    \(d:=d+b ;\)
```

L3: return d
\}

Announcements

-HW5: Oat v. 2 out
-Due Tue Nov 19

- HW6: Optimization and Data Analysis -Due: Tue Dec 3

Today

- Register allocation ctd
- Graph coloring by simplification
- Coalescing
-Coloring with coalescing
- Pre-colored nodes to handle callee-save, caller-save, and special purpose registers

Spilling

-The previous example worked out nicely!

- Always had nodes with degree $<k$
- Let's try again, but now with only 3 registers...

Example

From Appel
\{live-in: j, k\}
$\mathrm{g}:=$ *(j+12)
h := k - 1
f : = g * h
e : = * ${ }^{j+8 \text {) }}$
$m:=$ * $(j+16)$
b : $=$ * $(\mathrm{f}+0)$
c $:=e+8$
d := c
$\mathrm{k}:=\mathrm{m}+4$
j := b
\{live-out: d,j,k\}

Interference graph

Simplification (3 registers)

Choose any node with degree <3

Stack:
h

Simplification (3 registers)

Choose any node with degree <3

Stack:
h
C

Simplification (3 registers)

Choose any node with degree <3

Stack:
h
C
g

Simplification (3 registers)

Choose any node with degree <3
Stack:
h
C
g

Now we are stuck! No nodes with degree <3
Pick a node to potentially spill

Which Node to Spill?

-Want to pick a node (i.e., temp variable) that will make it likely we'll be able to k color graph

- High degree (\approx live at many program points)
- Not used/defined very often (so we don't need to access stack very often)
very often)
- E.g., compute spill
priority of node
$\begin{gathered}\text { Uses }+ \text { defs } \\ \text { outside loop }\end{gathered}+\begin{gathered}\text { Uses+defs } \\ \text { in loop }\end{gathered} \times 10$
very often)
- E.g., compute spill
priority of node

Which Node to Spill?

\{live-in: j, k\}

$$
\begin{aligned}
g & :=*(j+12) \\
h & :=k-1 \\
f & :=g * h \\
e & :=*(j+8) \\
m & :=*(j+16) \\
b & :=*(f+0) \\
c & :=e+8 \\
d & :=c \\
k & :=m+4 \\
j & :=b
\end{aligned}
$$

\{live-out: d,j,k\}

$$
\begin{aligned}
& \text { Uses+defs } \\
& \text { outside loop }
\end{aligned}+\begin{gathered}
\text { Uses+defs } \\
\text { in loop }
\end{gathered} \times 10
$$

Spill priority =

Simplification (3 registers)

Choose any node with degree <3
Stack:
h
C
g
d spill?

Pick a node with small spill priority degree to potentially spill

Simplification (3 registers)

Choose any node with degree <3
Stack:
h
C
g
d spill?
k

Simplification (3 registers)

Choose any node with degree <3
Stack:
h
C
g
d spill?
k

j

Simplification (3 registers)

Choose any node with degree <3

Stack:
h
C
9
d spill?
k

j
b

Simplification (3 registers)

Choose any node with degree <3
Stack:
h
C
g
d spill?

k
j
b
e

Simplification (3 registers)

Choose any node with degree <3
Stack:
h
C
g
d spill?

k
j
b
e
f

Simplification (3 registers)

Choose any node with degree <3
Stack:
h
C
g
d spill?
k
j
b
e
f
m

Select (3 registers)

Graph is now empty!
Stack:
h
C h
c
g
d spill? h
c
g
d spill?
k
j
b
e
f
m
Color nodes in order of stack

$$
\circlearrowleft=t 1 \circlearrowleft=t 2 \circlearrowleft=t 3
$$

Select (3 registers)

Stack:

C

We got unlucky!
In some cases a potential spill node is still colorable, and the Select phase can continue.

But in this case, we need to rewrite...

$$
\circlearrowleft=t 1 \circlearrowleft=t 2 \Omega=t 3
$$

Select (3 registers)

- Spill d

\{live-in: j, k\}
$\mathrm{g}:=$ *(j+12)
h := k - 1
f := g * h
e : = *(j+8)
$m:=$ * $(j+16)$
b : $=$ * $(\mathrm{f}+0)$
c $:=e+8$
d := c
$\mathrm{k}:=\mathrm{m}+4$
j := b
\{live-out: d,j,k\}
\{live-in: j, k\}
$\mathrm{g}:=$ *(j+12)
h : $=\mathrm{k}$ - 1
f : $=\mathrm{g}$ * h
e : $=$ * $(j+8)$
$m:=$ *(j+16)
b : $=$ *(f+0)
c : $=$ e + 8
d := c
*<fp+doff>:=d
k := m + 4
j $:=\mathrm{b}$
d2:=*<fp+doff>
\{live-out: d2,j,k\}

Build

\{live-in: j, k\}
g := *(j+12)
$\mathrm{h}:=\mathrm{k}-1$
f := g * h
e : = * (j+8)
m := *(j+16)
b : $=$ *(f+0)
c $:=e+8$
d := c
*<fp+doff>:=d
k := m + 4
j $:=\mathrm{b}$
d2:=*<fp+doff>
\{live-out: d2,j,k\}

Simplification (3 registers)

Choose any node with degree <3 Stack:
h
C
g
d
d2
k
b
m

This time we succeed and will be able to complete Select phase successfully!

Register Pressure

- Some optimizations increase live-ranges:
- Copy propagation
-Common sub-expression elimination
- Loop invariant removal
- In turn, that can cause the allocator to spill
- Copy propagation isn't that useful anyway:
- Let register allocator figure out if it can assign the same register to two temps!
-Then the copy can go away.
- And we don't have to worry about register pressure.

Coalescing Register Allocation

- If we have " $x:=y$ " and x and y have no edge in the interference graph, we might be able to assign them the same color.
-This would translate to "ri := ri" which would then be removed
- One idea is to optimistically coalesce nodes in the interference graph
-Just take the edges to be the union

Example

- E.g., the following nodes could be coalesced -d and c
- j and b

$$
\begin{aligned}
& \{\text { live-in: j, k\} } \\
& \mathrm{g}:=*(j+12) \\
& \mathrm{h}:=\mathrm{k}-1 \\
& \mathrm{f}:=\mathrm{g} * \mathrm{~h} \\
& \mathrm{e}:=*(\mathrm{j}+8) \\
& \mathrm{m}:=*(\mathrm{j}+16) \\
& \mathrm{b}:=*(\mathrm{f}+0) \\
& \mathrm{c}:=\mathrm{e}+8 \\
& \mathrm{~d}:=\mathrm{c} \\
& \mathrm{k}:=\mathrm{m}+4 \\
& \mathrm{j}:=\mathrm{b} \\
& \{\mathrm{live-out}: \mathrm{d}, \mathrm{j}, \mathrm{k}\}
\end{aligned}
$$

Coalescing Heuristics

- But coalescing may make a k-colorable graph uncolorable!
- Briggs: safe to coalesce x and y if the resulting node will have fewer than k neighbors with degree $\geq k$.
- George: safe to coalesce x and y if for every neighbor t of x, either t already interferes with y or t has degree $<k$
- These strategies are conservative: will not turn a k colorable graph into a non- k-colorable graph
-Why?

Coloring with Coalescing

- Build: construct interference graph
- Categorize nodes as move-related (if sc or dest of move) or non-move-related
- Simplify: Remove non-move-related nodes with degree $<k$
- Coalesce: Coalesce nodes using Briggs' or George's heuristic
- Possibly re-mark coalesced nodes as non-move-related
- Continue with Simplify if there are nodes with degree $<k$
- Freeze: if some low-degree $(<k)$ move-related node, freeze it
\bullet-ie., make it non-move-related, ie., give up on coalescing that node
- Continue with Simplify
- Spill: choose node with degree $\geq k$ to potentially spill
-Then continue with simplify
- Select: when graph is empty, start restoring nodes in reverse order and color them
- Potential spill node: try coloring it; if not rewrite program to use stack and try again!

Example (4 registers)

Stack:

Example (4 registers)

Stack:
g
h
k
f

Example (4 registers)

Stack:
j and b, and d and c are move related

Example (4 registers)

Stack:
j and b, and d and c are move related
g
h
k
f
e
m

Example (4 registers)

Stack:
j and b, and d and c are move related
g
h
k
f
e
m

Remaining nodes are move related, so coalesce

Example (4 registers)

Stack:
d and c
g
h
k
f
e
m

Remaining nodes are move related, so coalesce

Example (4 registers)

Stack:
d and c
g
h
k
f

Example (4 registers)

Stack:
d and c
g
h
k
f
e
m
job
(d) (c)

Example (4 registers)

Stack:
g
h
k
f
e
m
(dc)
jb
dc

Example (4 registers)

Stack:

g
h
k
f
e
m
jb
dc

Example (4 registers)

\{live-in: j, k\} $g:=*(j+12)$
$\mathrm{h}:=\mathrm{k}-1$
$\mathrm{f}:=\mathrm{g} * \mathrm{~h}$
e $:=*(j+8)$
$m:=*(j+16)$
b : = * (f+0)
c : $=e+8$
d $:=\mathrm{C}$
$\mathrm{k}:=\mathrm{m}+4$
j $:=b$
\{live-out: $d, j, k\}$

Example (4 registers)

\{live-in: $\$ t 4, \$ t 1\}$ \$t2 : = * (\$t4+12)
\$t1 : = \$t1 - 1
\$t3 : = \$t2 * \$t1
\$t1 : = * (\$t4+8)
\$t2 : = * (\$t4+16)
\$t4 : = * $\mathrm{f}+0$)
\$t3 := \$t1 + 8
\$t3 := \$t3
\$t1 : = \$t2 + 4
\$t4 := \$t4 $\{$ live-out: $\mathbf{\$ t} \mathbf{t}, \mathbf{\$ t 4}, \mathbf{\$ t 1 \}}$ This is the result of coalescing!

Pre-colored Temps

-The IR often includes machine registers
-e.g., \$rbp, \$rsp, \$rcx, \$rdx, ...

- allows us to expose issues of calling convention over which we don't have control.
- We can treat the machine registers as pre-colored temps.
-Their assignment to a physical register is already determined
- But note that Select and Coalesce phases may put a different temp in the same physical register, as long as it doesn't interfere

Using Physical Registers

-Within a procedure:

- Move arguments from \$rdi, \$rsi, \$rdx, \$rcx, \$r8, \$r9 (and Mem [$\$ r b p+o f f s e t]$) into fresh temps, move result into $\$ r a x$
- Manipulate the temps directly within the procedure body instead of the physical registers, giving the register allocation maximum freedom in assignment, and minimizing the lifetimes of precolored nodes
- Register allocation will hopefully coalesce the argument registers with the temps, eliminating the moves
- Ideally, if we end up spilling a temp corresponding to an argument, we should write it back in the already reserved space on the stack...

Note

- We cannot simplify a pre-colored node:
- Removing a node during simplification happens because we expect to be able to assign it any color that doesn't conflict with the neighbors
- But we don't have a choice for pre-colored nodes
- Similarly, we cannot spill a pre-colored node

Callee-Save Registers

- Callee-Save register r:
- Is "defined" upon entry to the procedure
- Is "used" upon exit from the procedure.
- Trick: move it into a fresh temp
-Ideally, the temp will be coalesced with the calleesaves register (getting rid of the move)
- Otherwise, we have the freedom to spill the temp.
-(Example of this soon)

Caller-Save Registers

-Want to assign a temp to a caller-save register only when it's not live across a function call

- Since then we have to save/restore it
- So treat a function call as "defining" all caller-save registers.
- Callee might move values into them
- Now any temps that are live across the call will interfere, and register assignment will find different registers to assign the temps
- Note: When constructing interference graph, also need to make sure that any variable defined by a statement S interferes with any variable that is live-out for S . So if a function call "defines" all caller-save registers, all live-out variables live after the function call will interfere with all caller-save registers

Example

- Compile the following C function
- Assume target machine has 3 registers
- $\$ r 1$ and $\$ r 2$ are caller-save

$$
\begin{aligned}
\mathrm{f}: \mathrm{c} & :=\$ \mathrm{r} 3 \\
\mathrm{a} & :=\$ \mathrm{r} 1 \\
\mathrm{~b} & :=\$ \mathrm{preserve} \text { callee } \\
\mathrm{d} & :=0 \\
\mathrm{e} & :=\mathrm{a}
\end{aligned}
$$

int $f($ int $a, ~ i n t ~ b) ~\{~$
int $d=0$;
int $e=a ;$
do \{
$\mathrm{d}=\mathrm{d}+\mathrm{b}$;
e = e-1;
\} while (e > 0);
return d;
loop:

$$
\begin{aligned}
& d:=d+b \\
& e:=e-1 \\
& \text { if } e>0 \text { loop else end }
\end{aligned}
$$

end:

$$
\begin{array}{ll}
\mathrm{r} 1:=\mathrm{d} & \text {; return } d \\
\text { r3 }:=\mathrm{c} & \text {; restore callee } \\
\text { return } & \text {; \$r3,\$r1 live out }
\end{array}
$$

Example

f: C := \$r3

$$
\mathrm{a}:=\$ \mathrm{r} 1
$$

$$
\mathrm{b}:=\$ \mathrm{r} 2
$$

$$
\mathrm{d}:=0
$$

$$
\mathrm{e}:=\mathrm{a}
$$

loop:

$$
\begin{aligned}
& d:=d+b \\
& e:=e-1
\end{aligned}
$$

if e > 0 loop else end end:

$$
\begin{aligned}
\mathrm{r} 1 & :=\mathrm{d} \\
\mathrm{r} 3 & :=\mathrm{c}
\end{aligned}
$$

return

Example

Stack:

c spill?

No simplify, coalesce, or freeze is possible... c is a good candidate for spilling...

Example

Stack:
c spill?

No simplify is possible...
Coalesce a and e

Example

Stack:
c spill?

Example

Stack:
c spill?

No simplify is possible...
Coalesce b and r2

Example

Stack:
c spill?

No simplify is possible...
Coalesce b and r2

Example

Stack:
c spill?

Coalesce r1 and ae

Example

Stack:
c spill?

Example

Stack:

> c spill?
> d

Simplify d

Example

Stack:

> c spill?
> d

Only pre-colored nodes left, so start Select phase...

Example

Stack:

c spill?
 d

Due to coalescing, b, a, and e are already colored Pop d and color it

Example

Stack:

c spill?

We can't color c, so we must do an actual spill, i.e., rewrite code and try again!

Example

```
f: \(\mathrm{c}:=\$ \mathrm{r} 3\)
    a := \$r1
    b := \$r2
    d \(:=0\)
    e := a
loop:
    \(d:=d+b\)
    e := e - 1
    if e > 0 loop else end
end:
    r1 := d
    r3 := c
    return
```

```
f: c1 := \$r3
    Mem[fp+i] := c1
    a := \$r1
    b := \$r2
    d := 0
    e := a
loop:
    \(d:=d+b\)
    e : \(=\) e - 1
    if e > 0 loop else end
end:
    r1 := d
    c2 := Mem[fp+i]
    r3 := c2
    return
```

Build \longrightarrow Simplify \longrightarrow Coalesce \rightarrow Sreeze \rightarrow Select \rightarrow

Example

```
f: c1 := $r3
    Mem[fp+i] := c1
    a := $r1
    b := $r2
    d := 0
    e := a
loop:
    d := d + b
    e := e - 1
    if e > O loop else end
end:
    r1 := d
    c2 := Mem[fp+i]
    r3 := c2
return
```


Example

Coalesce c1 and r3, and then c2 and r3

Example

Coalesce c1 and r3, and then c2 and r3

Example

As before, coalesce a and e , and then b and r 2

Example

As before, coalesce a and e, and then b and $r 2$

Example

As before, coalesce ae and r1

Example

As before, coalesce ae and r1

Example

Stack:
d

Example

Stack:
d

Only pre-colored nodes left, we're ready to move to Select phase!

Example

Stack:
d

Due to coalescing, c1, c2, b, a and e are already colored Pop d and color

Example

$$
\mathrm{f}: \mathrm{c} 1:=\$ \mathrm{r} 3
$$

$$
\operatorname{Mem}[b p+i]:=c 1
$$

$$
\mathrm{a}:=\$ \mathrm{r} 1
$$

$$
\mathrm{b}:=\$ \mathrm{r} 2
$$

$$
\mathrm{d}:=0
$$

$$
\mathrm{e}:=\mathrm{a}
$$

loop:

$$
\begin{aligned}
& d:=d+b \\
& e:=e-1 \\
& \text { if } e>0 \text { loop else end }
\end{aligned}
$$ end:

$$
\begin{aligned}
& \mathrm{r} 1:=\mathrm{d} \\
& \mathrm{c} 2:=\mathrm{Mem}[\mathrm{bp}+\mathrm{i}] \\
& \mathrm{r} 3:=\mathrm{c} 2
\end{aligned}
$$

return

Example

```
f: $r3 := $r3
    Mem[bp+i] := $r3
    $r1 := $r1
    $r2 := $r2
    $r3 := 0
    $r1 := $r1
loop:
    $r3 := $r3 + $r2
    $r1 := $r1 - 1
    if $r1 > 0 loop else end
end:
$r1 := $r3
    $r3 := Mem[bp+i]
    $r3 := $r3
    return
```


Example

$$
\mathrm{f}: \text { Mem[bp+i] }:=\$ r 3
$$

$$
\$ r 3:=0
$$

loop:

$$
\begin{aligned}
& \$ r 3:=\$ r 3+\$ r 2 \\
& \$ r 1:=\$ r 1-1
\end{aligned}
$$

$$
\text { if } \$ r 1>0 \text { loop else end }
$$ end:

Only one non-coalesced move remains!

