
CS153: Compilers
Lecture 22:  
Register Allocation ctd.

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Contains content from lecture notes by Steve Zdancewic and Greg Morrisett

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Pre-class Puzzle

•Can you write programs that have the following
interference graphs?

2

a

b

g c

f d

e

a b

c d

Stephen Chong, Harvard University

Pre-class Puzzle

3

a

b

g c

f d

ef(a,b) {
 c := b;
 d := c;
 e := d;
 f := e;
 g := f;
 a := a+g;
 return a;
}

a b

c d
g(a) {
 if a then goto L1 else goto L2
L1: c := a;
 a := a + c;
 d := a;
 d := d + c;
 goto L3
L2: b := a;
 a := a + b;
 d := a;
 d := d + b;
L3: return d
}

Stephen Chong, Harvard University

Announcements

•HW5: Oat v.2 out
•Due Tue Nov 19

•HW6: Optimization and Data Analysis
•Due: Tue Dec 3

4

Stephen Chong, Harvard University

Today

•Register allocation ctd
•Graph coloring by simplification
•Coalescing
•Coloring with coalescing
• Pre-colored nodes to handle callee-save, caller-save, and
special purpose registers

5

Stephen Chong, Harvard University

Spilling

•The previous example worked out nicely!
•Always had nodes with degree <k
•Let’s try again, but now with only 3 registers...

6

Stephen Chong, Harvard University

Example

7

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b
{live-out: d,j,k}

f

e

m

b

cd

k
j

h

g

From Appel Interference graph

Stephen Chong, Harvard University

Simplification (3 registers)

8

f

e

m

b

cd

k
j

h

g

Stack:

h

Choose any node with degree <3

h

Stephen Chong, Harvard University

Simplification (3 registers)

9

f

e

m

b

cd

k
j

g

Stack:

h

Choose any node with degree <3

c

c

Stephen Chong, Harvard University

Simplification (3 registers)

10

f

e

m

b

d

k
j

g

Stack:

h

Choose any node with degree <3

g

c
g

Stephen Chong, Harvard University

Simplification (3 registers)

11

f

e

m

b

d

k
j

Stack:

h

Now we are stuck! No nodes with degree <3

c
g

Pick a node to potentially spill

Choose any node with degree <3

Stephen Chong, Harvard University

Which Node to Spill?

•Want to pick a node
(i.e., temp variable)
that will make it
likely we’ll be able to
k color graph
•High degree (≈ live at

many program points)
•Not used/defined very

often (so we don’t
need to access stack
very often)

•E.g., compute spill
priority of node

12

f

e

m

b

d

k
j

Uses+defs
outside loop

Uses+defs
in loop ×10 +

degree of node

Stephen Chong, Harvard University

Which Node to Spill?

13

f

e

m

b

d

k
j

Uses+defs
outside loop

Uses+defs
in loop ×10 +

degree of node

Spill priority =

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b
{live-out: d,j,k}

Stephen Chong, Harvard University

Simplification (3 registers)

14

f

e

m

b

d

k
j

Stack:

h

Pick a node with small spill priority degree to potentially spill

c
g

Choose any node with degree <3

d spill?

d

Stephen Chong, Harvard University

Simplification (3 registers)

15

f

e

m

bk
j

Stack:

h
c
g

Choose any node with degree <3

d spill?
kk

Stephen Chong, Harvard University

Simplification (3 registers)

16

f

e

m

b
j

Stack:

h
c
g

Choose any node with degree <3

d spill? j
k
j

Stephen Chong, Harvard University

Simplification (3 registers)

17

f

e

m

b

Stack:

h
c
g

Choose any node with degree <3

d spill?
bk

j
b

Stephen Chong, Harvard University

Simplification (3 registers)

18

f

e

m

Stack:

h
c
g

Choose any node with degree <3

d spill?
e

k
j
b
e

Stephen Chong, Harvard University

Simplification (3 registers)

19

f

m

Stack:

h
c
g

Choose any node with degree <3

d spill?

f

k
j
b
e
f

Stephen Chong, Harvard University

Simplification (3 registers)

20

m

Stack:

h
c
g

Choose any node with degree <3

d spill? m

k
j
b
e
f
m

Stephen Chong, Harvard University

Select (3 registers)

21

Stack:
f

e

m

b

cd

k
j

h

g

f

e

mj
b

Color nodes in order of stack

=t1 =t2 =t3

Graph is now empty!

h
c
g
d spill?
k
j
b
e
f
m

k

Stephen Chong, Harvard University

Select (3 registers)

22

Stack:

h
c
g
d spill?

f

e

m

b

cd

k
j

h

g

f

e

m

=t1 =t2 =t3

We got unlucky!

In some cases a potential spill
node is still colorable, and the
Select phase can continue.

But in this case, we need to rewrite...

b
j

k

Stephen Chong, Harvard University

Select (3 registers)

•Spill d

23

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b
{live-out: d,j,k}

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
*<fp+doff>:=d
k := m + 4
j := b
d2:=*<fp+doff>
{live-out: d2,j,k}

Stephen Chong, Harvard University

Build

24

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
*<fp+doff>:=d
k := m + 4
j := b
d2:=*<fp+doff>
{live-out: d2,j,k}

f

e

m

b

c
d

k
j

h

g d2

Stephen Chong, Harvard University

Simplification (3 registers)

25

f

e

m

b

c
d

k
j

h

g d2

Stack:
Choose any node with degree <3

h
c
g
d
d2
k
b
m
e
f
j

This time we succeed and
will be able to complete Select phase successfully!

Stephen Chong, Harvard University

Register Pressure

•Some optimizations increase live-ranges:
•Copy propagation
•Common sub-expression elimination
•Loop invariant removal

•In turn, that can cause the allocator to spill

•Copy propagation isn't that useful anyway:
•Let register allocator figure out if it can assign the same

register to two temps!
•Then the copy can go away.
•And we don't have to worry about register pressure.

26

Stephen Chong, Harvard University

Coalescing Register Allocation

•If we have “x := y” and x and y have no edge
in the interference graph, we might be able to
assign them the same color.
•This would translate to “ri := ri” which would

then be removed

•One idea is to optimistically coalesce nodes in
the interference graph
•Just take the edges to be the union

27

Stephen Chong, Harvard University

Example

•E.g., the following nodes could be coalesced
•d and c

•j and b

28

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b
{live-out: d,j,k}

f

e

m

b

cd

k
j

h

g

b
j

cd

Stephen Chong, Harvard University

Coalescing Heuristics

•But coalescing may make a k-colorable graph
uncolorable!

•Briggs: safe to coalesce x and y if the resulting node
will have fewer than k neighbors with degree ≥k.

•George: safe to coalesce x and y if for every
neighbor t of x, either t already interferes with y or
t has degree < k

•These strategies are conservative: will not turn a k-
colorable graph into a non-k-colorable graph
•Why?

29

Stephen Chong, Harvard University

Coloring with Coalescing
•Build: construct interference graph

•Categorize nodes as move-related (if src or dest of move) or non-move-related

•Simplify: Remove non-move-related nodes with degree <k

•Coalesce: Coalesce nodes using Briggs’ or George’s heuristic
•Possibly re-mark coalesced nodes as non-move-related
•Continue with Simplify if there are nodes with degree <k

•Freeze: if some low-degree (<k) move-related node, freeze it
•i.e., make it non-move-related, i.e., give up on coalescing that node
•Continue with Simplify

•Spill: choose node with degree ≥k to potentially spill
•Then continue with simplify

•Select: when graph is empty, start restoring nodes in reverse order and color them
•Potential spill node: try coloring it; if not rewrite program to use stack and try again!

30

Build Simplify Spill SelectCoalesce Freeze

Stephen Chong, Harvard University

Example (4 registers)

31

Build Simplify Spill SelectCoalesce Freeze

f

e

m

b

cd

k
j

h

g

j and b, and d and c
are move relatedStack:

Stephen Chong, Harvard University

Example (4 registers)

32

Build Simplify Spill SelectCoalesce Freeze

f

e

m

b

cd

k
j

h

g

j and b, and d and c
are move relatedStack:

g

g

Stephen Chong, Harvard University

Example (4 registers)

33

Build Simplify Spill SelectCoalesce Freeze

f

e

m

b

cd

k
j

h

j and b, and d and c
are move relatedStack:

g

h

h

Stephen Chong, Harvard University

Example (4 registers)

34

Build Simplify Spill SelectCoalesce Freeze

f

e

m

b

cd

k
j

j and b, and d and c
are move relatedStack:

g

k

h
k

Stephen Chong, Harvard University

Example (4 registers)

35

Build Simplify Spill SelectCoalesce Freeze

f

e

m

b

cd

j

j and b, and d and c
are move relatedStack:

g

f

h
k
f

Stephen Chong, Harvard University

Example (4 registers)

36

Build Simplify Spill SelectCoalesce Freeze

e

m

b

cd

j

j and b, and d and c
are move relatedStack:

g
eh

k
f
e

Stephen Chong, Harvard University

Example (4 registers)

37

Build Simplify Spill SelectCoalesce Freeze

m

b

cd

j

j and b, and d and c
are move relatedStack:

g

m
h
k
f
e
m

Stephen Chong, Harvard University

Example (4 registers)

38

Build Simplify Spill SelectCoalesce Freeze

b

cd

j

j and b, and d and c
are move relatedStack:

g
h
k
f
e
m

Remaining nodes are move related, so coalesce

Stephen Chong, Harvard University

Example (4 registers)

39

Build Simplify Spill SelectCoalesce Freeze

b

cd

j

j and b, and d and c
are move relatedStack:

g
h
k
f
e
m

Remaining nodes are move related, so coalesce

jb

Stephen Chong, Harvard University

Example (4 registers)

40

Build Simplify Spill SelectCoalesce Freeze

cd

d and c
are move relatedStack:

g
h
k
f
e
m

jbjb

jb

Stephen Chong, Harvard University

Example (4 registers)

41

Build Simplify Spill SelectCoalesce Freeze

cd

d and c
are move relatedStack:

g
h
k
f
e
m

jb

Stephen Chong, Harvard University

Example (4 registers)

42

Build Simplify Spill SelectCoalesce Freeze

cd

Stack:

g
h
k
f
e
m

jb
dc

dc

f

e

m

b

cd

k
j

h

g

Stephen Chong, Harvard University

Example (4 registers)

43

Build Simplify Spill SelectCoalesce Freeze

Stack:

g
h
k
f
e
m

jb

dc

=t1 =t2

=t3 =t4

m

d

j

e

f

k

h

g

b

c

Stephen Chong, Harvard University

Example (4 registers)

44

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b
{live-out: d,j,k}

f

e

m

b

cd

k
j

h

g

=t1 =t2

=t3 =t4

m

d

j

e

f

k

h

g

b

c

Stephen Chong, Harvard University 45

{live-in: $t4, $t1}
$t2 := *($t4+12)
$t1 := $t1 - 1
$t3 := $t2 * $t1
$t1 := *($t4+8)
$t2 := *($t4+16)
$t4 := *(f+0)
$t3 := $t1 + 8
$t3 := $t3
$t1 := $t2 + 4
$t4 := $t4
{live-out: $t3,$t4,$t1} This is the result of coalescing!

f

e

m

b

cd

k
j

h

g

=t1 =t2

=t3 =t4

m

d

j

e

f

k

h

g

b

c

Example (4 registers)

Stephen Chong, Harvard University

Pre-colored Temps

•The IR often includes machine registers
•e.g., $rbp, $rsp, $rcx, $rdx, ...
•allows us to expose issues of calling convention over

which we don't have control.

•We can treat the machine registers as pre-colored
temps.
•Their assignment to a physical register is already

determined
•But note that Select and Coalesce phases may put a

different temp in the same physical register, as long as it
doesn't interfere

46

Stephen Chong, Harvard University

Using Physical Registers

•Within a procedure:
•Move arguments from $rdi, $rsi, $rdx, $rcx, $r8, $r9 (and
Mem[$rbp+offset]) into fresh temps, move result into $rax

•Manipulate the temps directly within the procedure body instead
of the physical registers, giving the register allocation maximum
freedom in assignment, and minimizing the lifetimes of pre-
colored nodes

•Register allocation will hopefully coalesce the argument registers
with the temps, eliminating the moves

•Ideally, if we end up spilling a temp corresponding to an
argument, we should write it back in the already reserved space
on the stack…

47

Stephen Chong, Harvard University

Note

•We cannot simplify a pre-colored node:
•Removing a node during simplification happens

because we expect to be able to assign it any color
that doesn't conflict with the neighbors

•But we don't have a choice for pre-colored nodes

•Similarly, we cannot spill a pre-colored node

48

Stephen Chong, Harvard University

Callee-Save Registers

•Callee-Save register r:
•Is “defined” upon entry to the procedure
•Is “used” upon exit from the procedure.

•Trick: move it into a fresh temp
•Ideally, the temp will be coalesced with the callee-

saves register (getting rid of the move)
•Otherwise, we have the freedom to spill the temp.

•(Example of this soon)

49

Stephen Chong, Harvard University

Caller-Save Registers

•Want to assign a temp to a caller-save register only when it’s
not live across a function call
•Since then we have to save/restore it

•So treat a function call as “defining” all caller-save registers.
•Callee might move values into them
•Now any temps that are live across the call will interfere, and register

assignment will find different registers to assign the temps

•Note: When constructing interference graph, also need to
make sure that any variable defined by a statement S interferes
with any variable that is live-out for S. So if a function call
“defines” all caller-save registers, all live-out variables live
after the function call will interfere with all caller-save registers

50

Stephen Chong, Harvard University

Example

•Compile the following C function
•Assume target machine has 3 registers

•$r1 and $r2 are caller-save

•$r3 is callee-save

51

p238 in Appel

int f(int a, int b) {
 int d = 0;
 int e = a;
 do {
 d = d+b;
 e = e-1;
 } while (e > 0);
 return d;
}

f: c := $r3

 a := $r1

 b := $r2

 d := 0

 e := a

loop:

 d := d + b

 e := e - 1

 if e > 0 loop else end

end:

 r1 := d

 r3 := c

 return

; preserve callee

; move arg1 into a

; move arg2 into b

; return d

; restore callee

; $r3,$r1 live out

Stephen Chong, Harvard University

Example

52

f: c := $r3
 a := $r1
 b := $r2
 d := 0
 e := a
loop:
 d := d + b
 e := e - 1
 if e > 0 loop else end
end:
 r1 := d
 r3 := c
 return

cr3

r2

r1

b

a

e

d

Build Simplify Spill SelectCoalesce Freeze

Stephen Chong, Harvard University

Example

53

cr3

r2

r1

b

a

e

d

Stack:

No simplify, coalesce, or freeze is possible...
c is a good candidate for spilling...

cc spill?

Build Simplify Spill SelectCoalesce Freeze

Stephen Chong, Harvard University

Example

54

e

r3

r2

r1

b

a

d

Stack:

c spill?

No simplify is possible...

Build Simplify Spill SelectCoalesce Freeze

Coalesce a and e

Stephen Chong, Harvard University

Example

55

e

r3

r2

r1

b

a

d

Stack:

c spill?

Build Simplify Spill SelectCoalesce Freeze

ae

Stephen Chong, Harvard University

Example

56

r3

r2

r1

b

ae

d

Stack:

c spill?

Build Simplify Spill SelectCoalesce Freeze

No simplify is possible...
Coalesce b and r2

r3

r2

r1
ae

d

b

r3

r2

r1
ae

d

Stephen Chong, Harvard University

Example

57

r3

br2

r1
ae

d

Stack:

c spill?

Build Simplify Spill SelectCoalesce Freeze

No simplify is possible...
Coalesce b and r2

r3

br2

r1

d

Stephen Chong, Harvard University

Example

58

r3

br2

r1
ae

d

Stack:

c spill?

Build Simplify Spill SelectCoalesce Freeze

No simplify is possible...
Coalesce r1 and ae

r3

br2

r1

d

Stephen Chong, Harvard University

Example

59

r3

br2

r1ae

d

Stack:

c spill?

Build Simplify Spill SelectCoalesce Freeze

No simplify is possible...
Coalesce r1 and ae

r1ae

Stephen Chong, Harvard University

Example

60

r3

br2

d

Stack:

c spill?

Build Simplify Spill SelectCoalesce Freeze

Simplify d

r1ae

d

d

Stephen Chong, Harvard University

Example

61

r3

br2

Stack:

c spill?

Build Simplify Spill SelectCoalesce Freeze

Only pre-colored nodes left, so start Select phase...

r1ae

d

Stephen Chong, Harvard University

Example

62

Stack:

c spill?

Build Simplify Spill SelectCoalesce Freeze

d
cr3

r2

r1

b

a

e

d
Due to coalescing, b, a, and e are already colored

Pop d and color it
d

Stephen Chong, Harvard University

Example

63

Stack:

c spill?

Build Simplify Spill SelectCoalesce Freeze

cr3

r2

r1

b

a

e

d
We can’t color c, so we must do an actual spill,
i.e., rewrite code and try again! d

Stephen Chong, Harvard University

Example

64

Build Simplify Spill SelectCoalesce Freeze

f: c := $r3
 a := $r1
 b := $r2
 d := 0
 e := a
loop:
 d := d + b
 e := e - 1
 if e > 0 loop else end
end:
 r1 := d
 r3 := c
 return

f: c1 := $r3
 Mem[fp+i] := c1

 a := $r1
 b := $r2
 d := 0
 e := a
loop:
 d := d + b
 e := e - 1
 if e > 0 loop else end
end:
 r1 := d
 c2 := Mem[fp+i]
 r3 := c2
 return

Stephen Chong, Harvard University

Example

65

Build Simplify Spill SelectCoalesce Freeze

c1

r3

r2

r1

b

a

e

d

f: c1 := $r3
 Mem[fp+i] := c1

 a := $r1
 b := $r2
 d := 0
 e := a
loop:
 d := d + b
 e := e - 1
 if e > 0 loop else end
end:
 r1 := d
 c2 := Mem[fp+i]
 r3 := c2
 return

c2

r3

r2

r1

b

a

e

d

Stephen Chong, Harvard University

Example

66

Build Simplify Spill SelectCoalesce Freeze

c1

r3

r2

r1

b

a

e

d

c2

Coalesce c1 and r3, and then c2 and r3

c1c2r3

r2

r1

b

a

e

d

Stephen Chong, Harvard University

Example

67

Build Simplify Spill SelectCoalesce Freeze

c1
c2r3

r2

r1

b

a

e

d
Coalesce c1 and r3, and then c2 and r3

c1
c2r3

r2

r1
a

d

Stephen Chong, Harvard University

Example

68

Build Simplify Spill SelectCoalesce Freeze

c1
c2r3

r2

r1

b

a

e

d
As before, coalesce a and e, and then b and r2

e

b

c1
c2r3

r2

r1
a

d

Stephen Chong, Harvard University

Example

69

Build Simplify Spill SelectCoalesce Freeze

c1
c2r3

br2

r1
ae

d
As before, coalesce a and e, and then b and r2

c1
c2r3

br2

r1

d

Stephen Chong, Harvard University

Example

70

Build Simplify Spill SelectCoalesce Freeze

c1
c2r3

br2

r1
ae

d
As before, coalesce ae and r1

ae

c1
c2r3

br2

r1

d

Stephen Chong, Harvard University

Example

71

Build Simplify Spill SelectCoalesce Freeze

c1
c2r3

br2

ae
r1

d
As before, coalesce ae and r1

Stephen Chong, Harvard University

Example

72

Build Simplify Spill SelectCoalesce Freeze

c1
c2r3

br2

ae
r1

d
Simplify d

Stack:

d

d

Stephen Chong, Harvard University

Example

73

Build Simplify Spill SelectCoalesce Freeze

c1
c2r3

br2

ae
r1

Stack:

d

Only pre-colored nodes left, we’re ready to move to Select phase!

Stephen Chong, Harvard University

Example

74

Build Simplify Spill SelectCoalesce Freeze

Stack:

d
c1

r3

r2

r1

b

a

e

d

c2

Due to coalescing, c1, c2, b, a, and e are already colored

c1

c2

b

a

e

d
Pop d and color

Stephen Chong, Harvard University

Example

75

Build Simplify Spill SelectCoalesce Freeze

c1

r3

r2

r1

b

a

e

d

c2

c1

c2

b

a

e

d

f: c1 := $r3
 Mem[bp+i] := c1

 a := $r1
 b := $r2
 d := 0
 e := a
loop:
 d := d + b
 e := e - 1
 if e > 0 loop else end
end:
 r1 := d
 c2 := Mem[bp+i]
 r3 := c2
 return

Stephen Chong, Harvard University

Example

76

Build Simplify Spill SelectCoalesce Freeze

c1

r3

r2

r1

b

a

e

d

c2

c1

c2

b

a

e

d

f: $r3 := $r3

$r1 := $r1
$r2 := $r2

$r1 := $r1

$r3 := $r3

 Mem[bp+i] := $r3

 $r3 := 0

 return

loop:
 $r3 := $r3 + $r2
 $r1 := $r1 - 1
 if $r1 > 0 loop else end
end:
 $r1 := $r3
 $r3 := Mem[bp+i]

Stephen Chong, Harvard University

Example

77

Build Simplify Spill SelectCoalesce Freeze

c1

r3

r2

r1

b

a

e

d

c2

c1

c2

b

a

e

d

f: Mem[bp+i] := $r3

 $r3 := 0

 return

loop:
 $r3 := $r3 + $r2
 $r1 := $r1 - 1
 if $r1 > 0 loop else end
end:
 $r1 := $r3
 $r3 := Mem[bp+i]

Only one non-coalesced move remains!

