John A. Paulson
School of Engineering and Applied Sciences

CS153: Compilers Lecture 23: Loop Optimization

Stephen Chong
 https://www.seas.harvard.edu/courses/cs153

Contains content from lecture notes by Greg Morrisett

Pre-class Puzzle

- For each of these Control Flow Graphs (CFGs), what is a C program that corresponds to it?

Announcements

-HW5: Oat v. 2 due today (Tue Nov 19)

- HW6: Optimization and Data Analysis
-Due: Tue Dec 3 (in 2 weeks)
-Final exam
-9am-12pm Thursday December 19
-Extension school: online exam, 24 hour window
- Open book, open note, open laptop
- No communication, no searching for answers on internet
- ~30 multiple choice or short answer questions
- Comprehensive exam (i.e., all material covered in course)
- Won't need to program, won't depend on
-We will release some study material in a few weeks

Announcements: Upcoming Lectures

- Thursday Nov 21: Embedded EthiCS module
- Ethics of Open Source
- Guest lecturer Meica Magnani
- Pre-lecture viewing/thinking posted on Piazza
- Will be a brief assignment posted on Piazza after lecture
- Tuesday Dec 3: The Economics of Programming Languages
- Evan Czaplicki '12, creator of the Elm programming language
- https://elm-lang.org/

Today

- Loop optimization
- Examples
- Identifying loops
- Dominators
- Loop-invariant removal
- Induction variable reduction
- Loop fusion
- Loop fission
- Loop unrolling
- Loop interchange
- Loop peeling
-Loop tiling
- Loop parallelization

Loop Optimizations

- Vast majority of time spent in loops
- So we want techniques to improve loops!
- Loop invariant removal
- Induction variable elimination
- Loop unrolling
- Loop fusion
- Loop fission
- Loop peeling
- Loop interchange
- Loop tiling
- Loop parallelization
- Software pipelining

Example 1: Invariant Removal

L0: $\quad t:=0$

L1: $\begin{aligned} & i \quad:=i+1 \\ & t \quad:=a+b \\ & * i:=t\end{aligned}$
if i<N goto L1 else L2

L2: $x:=t$

Example 1: Invariant Removal

$$
\begin{aligned}
& \text { L0: } \quad t:=0 \\
& \mathrm{t}:=\mathrm{a}+\mathrm{b} \\
& \text { L1: i := i + } 1 \\
& \text { *i := t } \\
& \text { if i<N goto L1 else L2 } \\
& \text { L2: } x \text { : }=t
\end{aligned}
$$

Example 2: Induction Variable

$$
\begin{aligned}
& \mathrm{L} 0: \mathrm{i}:=0 \quad s=0 \text {; } \\
& \mathrm{s}:=0 \\
& \text { jump L2 } \\
& \text { for (i=0; } i<100 ; i++) \\
& s+=a[i] ; \\
& \text { L1: t1 : = i*4 } \\
& \text { 七2 :=a+t1 } \\
& \text { t3 : = * t } 2 \\
& s \quad:=s+t 3 \\
& i \quad:=i+1 \\
& \text { L2: if i < } 100 \text { goto L1 else goto L3 } \\
& \text { L3: }
\end{aligned}
$$

Example 2: Induction Variable

$$
\begin{aligned}
& \text { L0: i }:=0 \\
& \mathrm{~s}:=0 \\
& \text { L1: } \begin{array}{l}
\text { jump L2 } \\
\begin{array}{|l|}
\text { t1 }:=i * 4 \\
\text { t2 }:=a+t 1
\end{array} \\
\hline
\end{array} \\
& \text { 七3 : = * } 42 \\
& \mathrm{~s}:=\mathrm{s}+\mathrm{t} 3 \\
& i \quad:=i+1 \\
& \text { L2: if i < } 100 \text { goto L1 else goto L3 } \\
& \text { L3: }
\end{aligned}
$$

Example 2: Induction Variable

$$
\begin{aligned}
& \text { L0: i }:=0 \\
& \mathrm{~s}:=0 \\
& \begin{array}{|l|}
\hline \text { t1 }:=0 \\
\text { jump L2 }
\end{array} \\
& \text { t1 is always equal } \\
& \text { to } \mathbf{i * 4 !} \\
& \text { L1: t2 :=a+t1 } \\
& \text { t3 }:=* \text { t2 } \\
& \mathrm{s}:=\mathrm{s}+\mathrm{t} 3 \\
& \text { i }:=i+1 \\
& \text { t1 }:=t 1+4 \\
& \text { L2: if i < } 100 \text { goto L1 else goto L3 } \\
& \text { L3: }
\end{aligned}
$$

Example 2: Induction Variable

$$
\begin{array}{ll}
\text { L0 }: & i \quad=0 \\
& s:=0 \\
& \text { t1 }:=0 \\
& \text { jump L2 } \\
\text { L1: } & \text { t2 }:=a+t 1 \\
& \text { t3 }:=\star t 2 \\
& \text { s }:=s+t 3 \\
& \text { i }:=i+1 \\
& \text { t1 }:=\text { t1+4 } \\
\text { L2: } & \text { if } i<100 \text { goto L1 else goto L3 } \\
\text { L3: } & \cdots .
\end{array}
$$

Example 2: Induction Variable

$$
\begin{aligned}
& \text { L0: i }:=0 \\
& \mathrm{~s}:=0 \\
& \text { t1 :=0 } \\
& \text { jump L2 } \\
& \mathrm{L} 1: \begin{aligned}
\mathrm{t} 2 & :=a+\mathrm{t} 1 \\
\mathrm{t} 3 & :=* \mathrm{t} 2 \\
\mathrm{~s} & :=\mathrm{s}+\mathrm{t} 3
\end{aligned} \\
& i \quad:=i+1 \\
& \text { 七1 := t1+4 }
\end{aligned}
$$

L2: if i < 100 goto L1 else goto L3 L3:

Example 2：Induction Variable

$$
\begin{aligned}
& \text { L0: i }:=0 \\
& \mathrm{~s}:=0 \\
& t 1:=0 \\
& \text { t2 }:=a \\
& \text { jump L2 } \\
& \text { L1: t3:=*t2 } \\
& \mathrm{s}:=\mathrm{s}+\mathrm{t} 3 \\
& \text { i }:=i+1 \\
& \text { t2 }:=t 2+4 \\
& \text { 七1 : = 七1+4 }
\end{aligned}
$$

L2：if i＜ 100 goto L1 else goto L3 L3：

Example 2: Induction Variable

$$
\begin{aligned}
& \text { L0: i := } 0 \\
& \text { s := } 0 \\
& \text { t1 }:=0 \\
& \text { t2 := a } \\
& \text { jump L2 } \\
& \text { L1: t3 : = *t2 } \\
& \text { s : }=s+t 3 \\
& \text { i }:=i+1 \\
& \text { t2 := t2+4 } \\
& \text { t1 := t1+4 } \\
& \text { L2: if i < } 100 \text { goto L1 else goto L3 } \\
& \text { L3: }
\end{aligned}
$$

Example 2: Induction Variable

$$
\begin{array}{ll}
\text { Lo }: & \text { i }:=0 \\
& s:=0 \\
& \text { th }:=a \\
& \text { jump } \mathrm{L} 2 \\
\text { LI }: & \text { th }:=* \text { th } \\
& s:=s+t 3 \\
& \text { i }:=i+1 \\
& \text { th }:=t 2+4
\end{array}
$$

L2: if i < 100 goto L1 else goto L3 Le:

Example 2: Induction Variable

$$
\begin{array}{ll}
\mathrm{L} 0: & \text { i }:=0 \\
& \mathrm{~s}:=0 \\
& \mathrm{t} 2:=\mathrm{a} \\
& \text { jump } \mathrm{L} 2 \\
\mathrm{~L} 1: & \mathrm{t} 3:=* \mathrm{t} 2 \\
& \mathrm{~s}:=\mathrm{s}+\mathrm{t} 3 \\
\mathrm{i} \quad:=\mathrm{i}+1 \\
& \text { th }:=\mathrm{t} 2+4
\end{array}
$$

i is now used just to count 100 iterations.
But $\mathrm{t} 2=4 * \mathrm{i}+\mathrm{a}$

$$
\begin{gathered}
\text { so } i<100 \\
\text { when } \\
\text { te }<a+400
\end{gathered}
$$

L2: if i < 100 goto L1 else goto L3 Le:

Example 2: Induction Variable

$$
\begin{array}{ll}
\text { Lo }: & i \quad:=0 \\
& s:=0 \\
& \text { t2 }:=a \\
& \text { ts }:=\mathrm{t} 2+400 \\
\text { jump L2 } \\
\text { LI }: & \text { th }:=* \text { th } \\
& s \quad:=s+t 3 \\
& i \quad:=i+1 \\
& \text { th }:=t 2+4
\end{array}
$$

i is now used just to count 100 iterations.
But $\mathrm{t} 2=4 * \mathrm{i}+\mathrm{a}$

$$
\begin{gathered}
\text { so } i<100 \\
\text { when } \\
\text { tx }<a+400
\end{gathered}
$$

L2: if th < ty goto L1 else goto L3 Le:

Example 2: Induction Variable

$$
\begin{array}{ll}
\mathrm{L} 0: & \mathrm{s}:=0 \\
\mathrm{t} 2 & :=\mathrm{a} \\
\mathrm{t} 5 & :=\mathrm{t} 2+400 \\
& \text { jump } \mathrm{L} 2
\end{array}
$$

i is now used just to count 100 iterations.

$$
\mathrm{L} 1: \quad \mathrm{t} 3:=\text { *ta }
$$

But $\mathrm{t} 2=4 * \mathrm{i}+\mathrm{a}$

$$
s:=s+t 3
$$

$$
\text { tx }:=t 2+4
$$

$$
\begin{gathered}
\text { so } i<100 \\
\text { when } \\
\text { tx }<a+400
\end{gathered}
$$

L2: if th < ts goto L1 else goto L3 Le:

Loop Analysis

-How do we identify loops?
-What is a loop?

- Can't just "look" at graphs
- We're going to assume some additional structure
- Definition: a loop is a subset S of nodes where:
- S is strongly connected:
- For any two nodes in S, there is a path from one to the other using only nodes in S
-There is a distinguished header node $h \in S$ such that there is no edge from a node outside S to $S \backslash\{h\}$

Examples

Examples

Examples

Non-example

- Consider the following:
- a can't be header

- No path from b to a or c to a -b can't be header
- Has outside edge from a
- c can't be header
- Has outside edge from a
- So no loop...
- But clearly a cycle!

Reducible Flow Graphs

- So why did we define loops this way?
- Loop header gives us a "handle" for the loop
-e.g., a good spot for hoisting invariant statements
- Structured control-flow only produces reducible graphs
- a graph where all cycles are loops according to our definition.
- Java: only reducible graphs
- C/C++: goto can produce irreducible graph
- Many analyses \& loop optimizations depend upon having reducible graphs

Finding Loops

- Definition: node d dominates node n if every path from the start node to n must go through d
- Definition: an edge from n to a dominator d is called a back-edge
- Definition: a loop of a back edge $n \rightarrow d$ is the set of nodes x such that d dominates x and there is a path from x to n not including d
- So to find loops, we figure out dominators, and identify back edges

Example

- a dominates a,b,c,d,e,f,g,h
- b dominates b,c,d,e,f,g,h
- c dominates c,e
- d dominates d
-e dominates e
- f dominates $\mathrm{f}, \mathrm{g}, \mathrm{h}$
- g dominates g,h
- h dominates h
-back-edges?

$$
\begin{aligned}
& \bullet g \rightarrow b \\
& \bullet h \rightarrow a
\end{aligned}
$$

- loops?

Calculating Dominators

- $D[n]$: the set of nodes that dominate n
$-D[n]=\{n\} \cup\left(D\left[p_{1}\right] \cap D\left[p_{2}\right] \cap \ldots \cap D\left[p_{m}\right]\right)$ where $\operatorname{pred}[n]=\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$
- It's pretty easy to solve this equation:
- start off assuming $D[n]$ is all nodes.
- except for the start node (which is dominated only by itself)
- iteratively update $D[n]$ based on predecessors until you reach a fixed point

Representing Dominators

- Don't actually need to keep set of all dominators for each node
- Instead, construct a dominator tree
- Insight: if both d and e dominate n, then either d dominates e or vice versa
- So that means that node n has a "closest" or immediate dominator

Example

a dominates $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}$ b dominates b,c,d,e,f,g,h c dominates c,e d dominates d e dominates e f dominates f,g,h g dominates g,h h dominates h
a dominated by a b dominated by b,a c dominated by $\mathrm{c}, \mathrm{b}, \mathrm{a}$ d dominated by d,b,a e dominated by e,c,b,a f dominated by f,b,a g dominated by $\mathrm{g}, \mathrm{f}, \mathrm{b}, \mathrm{a}$ h dominated by h,g,f,b,a

Immediate
Dominator Tree

```

```


Nested Loops

- If loops A and B have distinct headers and all nodes in B are in A (i.e., $B \subseteq A$), then we say B is nested within A
- An inner loop is a nested loop that doesn't contain any other loops
-We usually concentrate our attention on nested loops first (since we spend most time in them)

Loop-Invariant Removal

Loop Invariants

- An assignment $\mathrm{x}:=\mathrm{v}_{1}$ op v_{2} is invariant for a loop if for each operand v_{1} and v_{2} either -the operand is constant, or
-all of the definitions that reach the assignment are outside the loop, or
- only one definition reaches the assignment and it is a loop invariant

Example

$$
\begin{aligned}
& \text { L0: t }:=0 \\
& \text { a }:=x \\
& \text { L1: i }:=i+1 \\
& \begin{array}{l}
\mathrm{b}:=7 \\
\mathrm{t}:=\mathrm{a}+\mathrm{b} \\
* \mathrm{i}:=\mathrm{t}
\end{array} \\
& \text { if i<N goto L1 else L2 } \\
& \text { L2: } x:=t
\end{aligned}
$$

Hoisting

- We would like to hoist invariant computations out of the loop
- But this is trickier than it sounds:
-We need to potentially introduce an extra node in the CFG, right before the header to place the hoisted statements (the pre-header)
-Even then, we can run into trouble...

Valid Hoisting Example

$$
\begin{aligned}
& \text { L0: } \quad \mathrm{t}:=0 \\
& \text { L1: } \quad \begin{array}{l}
\text { i }:=\mathrm{i}+1 \\
\mathrm{t}:=\mathrm{a}+\mathrm{b} \\
\mathrm{*i}:=\mathrm{t} \\
\text { if } \mathrm{i}<\mathrm{N} \text { goto L1 else L2 }
\end{array} \\
& \text { L2: } \mathrm{x}:=\mathrm{t}
\end{aligned}
$$

Valid Hoisting Example

$$
\begin{aligned}
& \text { L0: } \quad t:=0 \\
& \mathrm{t}:=\mathrm{a}+\mathrm{b} \\
& \text { L1: i := i + } 1 \\
& \text { *i }:=t \\
& \text { if i<N goto L1 else L2 } \\
& \text { L2: } x:=t
\end{aligned}
$$

Invalid Hoisting Example

$$
\begin{aligned}
& \mathrm{L} 0: \quad \mathrm{t}:=0 \quad \text { Although } \mathrm{t} \text { 's } \\
& \text { definition is loop } \\
& \text { invariant, hoisting } \\
& \text { conflicts with this } \\
& \mathrm{L} 1: i:=i+1 \quad \text { use of } t \\
& \text { *i : }=\text { t } \\
& \mathrm{t}:=\mathrm{a}+\mathrm{b} \\
& \text { if i<N goto L1 else L2 } \\
& \text { L2: } x:=t
\end{aligned}
$$

Conditions for Safe Hoisting

- An invariant assignment $d: \mathrm{x}:=\mathrm{v}_{1}$ op v_{2} is safe to hoist if:
-d dominates all loop exits at which x is live and -there is only one definition of x in the loop, and
$\cdot x$ is not live at the entry point for the loop (the preheader)

Induction Variable Reduction

Induction Variables

$$
\begin{aligned}
& \text { s }:=0 \\
& \text { i }:=0 \\
& \text { if } i=>=n \text { goto L2 } \\
& j:=i * 4 \\
& k:=j+a \\
& x:=* k \\
& \\
& \text { s }:=s+x \\
& \text { i }:=i+1 \\
& \text { L2 }: \\
&
\end{aligned}
$$

- Can express j and k as linear functions of $i \quad$ where the coefficients are either constants or loop-invariant

$$
\begin{aligned}
& \bullet j=4 * i+0 \\
& \bullet k=4 * i+a
\end{aligned}
$$

Induction Variables

$$
\text { L1: } \begin{aligned}
& \text { s }:=0 \\
& \text { i }:=0 \\
& \text { if } i=>=n \text { goto } L 2 \\
& \text { j }:=i * 4 \\
& k \quad:=j+a \\
& x \quad:=* k \\
& s:=s+x \\
& \text { i }:=i+1
\end{aligned}
$$

L2:

- Note that i only changes by the same amount each iteration of the loop - We say that i is a linear induction variable
- It's easy to express the change in j and k
- Since $j=4 * i+0$ and $k=4 * i+a$, if i changes by c, j and k change by $4 * c$

Detecting Induction Variables

- Definition: i is a basic induction variable in a loop L if the only definitions of i within L are of the form $i:=i+c$ or $i:=i-$ c where c is loop invariant
- Definition: k is a derived induction variable in loop L if:
-1.There is only one definition of k within L of the form $k:=j * c$ or $k:=j+c$ where j is an induction variable and c is loop invariant; and
-2.If j is an induction variable in the family of i (i.e., linear in i) then:
- the only definition of j that reaches k is the one in the loop; and
- there is no definition of i on any path between the definition of j and the definition of k
- If k is a derived induction variable in the family of j and $j=a * i+b$ and, say, $k:=j * c$, then $k=a * c * i+b * c$

Strength Reduction

- For each derived induction variable \mathbf{j} where $\mathrm{j}=$ $e_{1} * i+e_{0}$ make a fresh temp j'
- At the loop pre-header, initialize j ' to e_{0}
-After each i:=i+c, define j':=j'+($\left.e_{1} * c\right)$
- note that $e_{1} * c$ can be computed in the loop header (i.e., it's loop invariant)
- Replace the unique assignment of j in the loop with j := j'

Example

$$
\mathrm{L} 1: \quad \begin{aligned}
& \mathrm{s}:=0 \\
& \text { i }:=0 \\
& \text { if } \mathrm{i}>=\mathrm{n} \text { goto } \mathrm{L} 2 \\
& \mathrm{j}:=\mathrm{i} * 4 \\
& \mathrm{k}:=\mathrm{j}+\mathrm{a} \\
& \mathrm{x}:=\mathrm{k} \\
& \mathrm{~s}:=\mathrm{s}+\mathrm{x} \\
& \mathrm{i}:=\mathrm{i}+1
\end{aligned}
$$

L2:

- i is basic induction variable
- j is derived induction variable in family of i
- $j=4 * i+0$
$\bullet \mathrm{k}$ is derived induction variable in family of j
$\bullet \mathrm{k}=4 * \mathrm{i}+\mathrm{a}$

Example

$$
\begin{array}{rl}
s & := \\
i & 0 \\
i & = \\
\hline j^{\prime} & := \\
k^{\prime}: & = \\
\hline
\end{array}
$$

L1: if i $>=\mathrm{n}$ goto L 2

$$
j:=i * 4
$$

$$
k:=j+a
$$

$$
\mathrm{x}:=* \mathrm{k}
$$

Le:

$$
\begin{aligned}
& \mathrm{s}:=\mathrm{s}+\mathrm{x} \\
& \mathrm{i}:=\mathrm{i}+1
\end{aligned}
$$

- i is basic induction variable
$-j$ is derived induction variable in family of i
- $j=4 * i+0$
$\bullet \mathrm{k}$ is derived induction variable in family of j
-k $=4 * i+a$

Example

$$
\begin{aligned}
& \mathrm{s}:=0 \\
& \mathrm{i}:=0 \\
& \hline \mathrm{j}^{\prime}:=0 \\
& \mathrm{k}^{\prime}:=a \\
& \hline
\end{aligned}
$$

L1: if i $>=n$ goto L2

$$
j:=i * 4
$$

$$
\mathrm{k}:=j+a
$$

$$
\mathrm{x}:=* \mathrm{k}
$$

$$
s:=s+x
$$

$$
\begin{aligned}
& \mathrm{i}:=\mathrm{i}+1 \\
& \hline \mathrm{j}^{\prime}:=\mathrm{j}^{\prime}+4 \\
& \mathrm{k}^{\prime}:=\mathrm{k}^{\prime}+4 \\
& \hline
\end{aligned}
$$

Le:

- i is basic induction variable
$-j$ is derived induction variable in family of i
- $j=4 * i+0$
$\bullet \mathrm{k}$ is derived induction variable in family of j
$\bullet \mathrm{k}=4 * \mathrm{i}+\mathrm{a}$

Example

$$
\begin{aligned}
& \mathrm{s}:=0 \\
& \mathrm{i}: \\
& \hline \mathrm{j}^{\prime}:=0 \\
& \mathrm{k}^{\prime}:=\mathrm{a} \\
& \hline
\end{aligned}
$$

L1: if i $>=n$ goto L2

$$
\begin{array}{|ll|}
\hline \mathrm{j} & :=j^{\prime} \\
\mathrm{k} & :=\mathrm{k}^{\prime} \\
\hline \mathrm{x} & :=\mathrm{ok} \\
\hline
\end{array}
$$

$$
s:=s+x
$$

Le:

- i is basic induction variable
$-j$ is derived induction variable in family of i
- $j=4 * i+0$
$\bullet \mathrm{k}$ is derived induction variable in family of j
$\bullet \mathrm{k}=4 * \mathrm{i}+\mathrm{a}$

Example

$$
\begin{aligned}
& \mathrm{s}:=0 \\
& \mathrm{i}:=0 \\
& \mathrm{j}^{\prime}:=0 \\
& \mathrm{k}^{\prime}:=\mathrm{a} \\
& \mathrm{~L} 1: \quad \text { if } \mathrm{i}>=\mathrm{n} \text { goto } \mathrm{L} 2 \\
& \mathrm{x}:=\mathrm{k}^{\prime} \\
& \mathrm{s}:=\mathrm{s}+\mathrm{x} \\
& \mathrm{i}:=\mathrm{i}+1 \\
& \mathrm{j}^{\prime}:=\mathrm{j}^{\prime}+4 \\
& \mathrm{k}^{\prime}:=\mathrm{k}^{\prime}+4
\end{aligned}
$$

L2:

- i is basic induction variable
- j is derived induction variable in family of i
- $j=4 * i+0$
-k is derived induction variable in family of j
$\bullet \mathrm{k}=4 * \mathrm{i}+\mathrm{a}$

Useless Variables

$$
\begin{aligned}
& \mathrm{s}:=0 \\
& \mathrm{i}:=0 \\
& \mathrm{j}^{\prime}:=0 \\
& \mathrm{k} \mathrm{k}^{\prime}:=\mathrm{a}: \\
& \text { if } \mathrm{i}>=\mathrm{n} \text { goto } \mathrm{L} 2 \\
& \mathrm{x}:=\mathrm{kk}^{\prime} \\
& \mathrm{s}:=\mathrm{s}+\mathrm{x} \\
& \mathrm{i}:=\mathrm{i}+1 \\
& \mathrm{j}^{\prime}:=j^{\prime}+4 \\
& \mathrm{k}^{\prime}:=\mathrm{k}^{\prime}+4
\end{aligned}
$$

L2:

Useless Variables

	$\begin{aligned} & \mathrm{S}:=0 \\ & \mathrm{i}:=0 \end{aligned}$	- A variable is
	$j^{\prime}:=0$	useless for L
	$\mathrm{k}^{\prime}:=\mathrm{a}$	if it is dead at all
L1:	if $\mathrm{i}>=\mathrm{n}$ goto L2	exits from L and its
	$\mathrm{x}:=\mathrm{k}^{\prime}$	only use is in a
	$\mathrm{s}:=\mathrm{s}+\mathrm{x}$	definition of itself
	i $:=1+1$	definition
	$\mathrm{k}^{\prime}:=\mathrm{k}^{\prime}+4$	-E.g., j' is useless
L2:		- Can delete useless
		variables

Useless Variables

$\mathrm{s}:=0$
$\mathrm{i}:=0$
$\mathrm{k} \mathrm{k}^{\prime}:=\mathrm{a}$
$\mathrm{L} 1: \quad$ if $\mathrm{i}>=\mathrm{n}$ goto L 2
$\mathrm{x}:=\mathrm{*k}^{\prime}$
$\mathrm{s}:=\mathrm{s}+\mathrm{x}$
$\mathrm{i}:=\mathrm{i}+1$
$\mathrm{k}^{\prime}:=\mathrm{k}^{\prime}+4$

L2: ...

- A variable is useless for L if it is dead at all exits from L and its only use is in a definition of itself
-E.g., j ' is useless
- Can delete useless variables

Almost Useless Variables

```
\(\mathrm{s}:=0\)
i \(:=0\)
\(\mathrm{k}^{\prime}:=\mathrm{a}\)
L1: if i >= n goto L2
\(\mathrm{x}:=\mathrm{k}^{\prime}\)
s : = s+x
i \(:=\) i+1
\(\mathrm{k}^{\prime}:=\mathrm{k}^{\prime}+4\)
```

L2: ...

- A variable is almost useless for L if it is used only in comparison against loop invariant values and in definitions of itself, and there is some other nonuseless induction variable in same family
- E.g., i is almost useless
- An almost-useless variable may be made useless by modifying comparison
- See Appel for details

Loop Fusion and Loop Fission

- Fusion: combine two loops into one
- Fission: split one loop into two

Loop Fusion

- Before

```
int acc = 0;
for (int i = 0; i < n; ++i) {
    acc += a[i];
    a[i] = acc;
}
for (int i = 0; i < n; ++i) {
    b[i] += a[i];
}
```

- After

```
int acc = 0;
for (int i = 0; i < n; ++i) {
    acc += a[i];
    a[i] = acc;
    b[i] += acc;
}
```

-What are the potential benefits? Costs?
-Locality of reference

Loop Fission

- Before for (int $i=0$; $i<n$; ++i) \{

$$
a[i]=e 1 ;
$$

$$
\mathrm{b}[\mathrm{i}]=\mathrm{e} 2 ; / / \mathrm{e} 1 \text { and e2 independent }
$$

$$
\}
$$

- After for (int $i=0$; $i<n$; ++i) \{

$$
\begin{aligned}
& a[i]=e 1 ; \\
& \text { for (int } i=0 ; i<n ;++i)\{ \\
& b[i]=e 2 ;
\end{aligned}
$$

-What are the potential benefits? Costs?
-Locality of reference

Loop Unrolling

- Make copies of loop body
- Say, each iteration of rewritten loop performs 3 iterations of old loop

Loop Unrolling

- Before for (int i $=0$; $\mathrm{i}<\mathrm{n}$; ++i) \{

$$
\mathrm{a}[\mathrm{i}]=\mathrm{b}[\mathrm{i}] * 7+\mathrm{c}[\mathrm{i}] / 13 ;
$$

\}

- After for (int i = 0; i $<\mathrm{n}$ \% 3; ++i) \{

$$
a[i]=b[i] * 7+c[i] / 13 ;
$$

\}
for (; i < n; i += 3) \{

$$
a[i]=b[i] * 7+c[i] / 13 ;
$$

$$
a[i+1]=b[i+1] * 7+c[i+1] / 13 ;
$$

$$
a[i+2]=b[i+2] * 7+c[i+2] / 13 ;
$$

-What are the potential benefits? Costs?

- Reduce branching penalty, end-of-loop-test costs
- Size of program increased

Loop Unrolling

- If fixed number of iterations, maybe turn loop into sequence of statements!
- Before

$$
\begin{aligned}
& \text { for (int i }=0 ; i<6 ;++i)\{ \\
& \text { if }(i \% 2==0) \text { foo(i); else bar(i); }
\end{aligned}
$$

- After foo(0);
bar(1);
foo(2);
bar(3);
foo(4);
bar(5);

Loop Interchange

- Change order of loop iteration variables

Loop Interchange

- Before

$$
\begin{aligned}
& \text { for (int } j=0 ; j<n ;++j)\{ \\
& \quad \text { for (int } i=0 ; i<n ;++i)\{ \\
& \quad \text { a[i][j] }+=1 ;
\end{aligned}
$$

- After

$$
\begin{aligned}
& \text { for (int } i=0 ; i<n ;++i)\{ \\
& \quad \text { for (int } j=0 ; j<n ;++j)\{ \\
& \quad \text { a[i][j] }+=1 ;
\end{aligned}
$$

-What are the potential benefits? Costs?

- Locality of reference

Loop Peeling

- Split first (or last) few iterations from loop and perform them separately

Loop Peeling

- Before for (int $i=0$; $i<n$; ++i) \{

$$
\text { \} } b[i]=(i==0) ? a[i]: a[i]+b[i-1] ;
$$

- After $b[0]=a[0]$;

$$
\begin{aligned}
& \text { for (int } i=1 ; i<n ;++i)\{ \\
& b[i]=a[i]+b[i-1] ;
\end{aligned}
$$

-What are the potential benefits? Costs?

Loop Tiling

- For nested loops, change iteration order

Loop Tiling

- Before for (i = 0; $i<n$; i++) \{

$$
c[i]=0 ;
$$

$$
\text { for }(j=0 ; j<n ; j++)\{
$$

$$
c[i]=c[i]+a[i][j] * b[j] ;
$$

$$
\}
$$

$$
\}
$$

- After:

$$
\begin{aligned}
& \text { for } \begin{array}{l}
(i=0 ; i<n ; i+=4)\{ \\
\quad c[i]=0 ; \\
\quad c[i+1]=0 ; \\
\text { for }(j=0 ; j<n ; j+=4)\{ \\
\quad \text { for }(x=i ; x<\min (i+4, n) ; x++)\{ \\
\quad \text { for }(y=j ; y<\min (j+4, n) ; y++)\{ \\
\quad c[x]=c[x]+a[x][y] * b[y] ;
\end{array} \\
& \quad\}
\end{aligned}
$$

-What are the potential benefits? Costs?

Loop Parallelization

- Before

```
for (int i = 0; i < n; ++i) {
    a[i] = b[i] + c[i]; // a, b, and c do not overlap
}
```

- After

```
for (int \(i=0 ; i<n \% 4 ;++i) a[i]=b[i]+c[i] ;\)
for (; \(\mathrm{i}<\mathrm{n}\); \(\mathrm{i}=\mathrm{i}+4\) ) \{
__some4SIMDadd(a+i,b+i,c+i);
```

\}
-What are the potential benefits? Costs?

