
CS153: Compilers
Lecture 23:  
Loop Optimization

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Contains content from lecture notes by Greg Morrisett

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Pre-class Puzzle

•For each of these Control Flow Graphs (CFGs), what is a C program that
corresponds to it?

2

A B C

D

Stephen Chong, Harvard University

Announcements

•HW5: Oat v.2 due today (Tue Nov 19)
•HW6: Optimization and Data Analysis

•Due: Tue Dec 3 (in 2 weeks)

•Final exam
•9am-12pm Thursday December 19
•Extension school: online exam, 24 hour window
•Open book, open note, open laptop
•No communication, no searching for answers on internet

•~30 multiple choice or short answer questions
•Comprehensive exam (i.e., all material covered in course)
•Won’t need to program, won’t depend on

•We will release some study material in a few weeks
3

Stephen Chong, Harvard University

Announcements: Upcoming Lectures

•Thursday Nov 21: Embedded EthiCS module
•Ethics of Open Source
•Guest lecturer Meica Magnani
•Pre-lecture viewing/thinking posted on Piazza
•Will be a brief assignment posted on Piazza after lecture

•Tuesday Dec 3: The Economics of Programming
Languages
•Evan Czaplicki ’12, creator of the Elm programming

language
• https://elm-lang.org/

4

https://elm-lang.org/

Stephen Chong, Harvard University

Today

•Loop optimization
•Examples
•Identifying loops
•Dominators

•Loop-invariant removal
•Induction variable reduction

•Loop fusion
•Loop fission
•Loop unrolling
•Loop interchange
•Loop peeling
•Loop tiling

•Loop parallelization

5

Stephen Chong, Harvard University

Loop Optimizations

•Vast majority of time spent in loops
•So we want techniques to improve loops!

•Loop invariant removal
•Induction variable elimination
•Loop unrolling
•Loop fusion
•Loop fission
•Loop peeling
•Loop interchange
•Loop tiling
•Loop parallelization
•Software pipelining

6

Stephen Chong, Harvard University

Example 1: Invariant Removal

7

L0: t := 0

 t := a + b
L1: i := i + 1

 *i := t
 if i<N goto L1 else L2

L2: x := t

Stephen Chong, Harvard University

Example 1: Invariant Removal

8

L0: t := 0
 t := a + b

L1: i := i + 1

 *i := t
 if i<N goto L1 else L2

L2: x := t

Stephen Chong, Harvard University

Example 2: Induction Variable

9

L0: i := 0
 s := 0
 jump L2

s=0;
for (i=0; i < 100; i++)
 s += a[i];

L1: t1 := i*4
 t2 := a+t1
 t3 := *t2
 s := s + t3
 i := i+1
L2: if i < 100 goto L1 else goto L3
L3: ...

Stephen Chong, Harvard University

Example 2: Induction Variable

10

L0: i := 0
 s := 0

L1:

L2: if i < 100 goto L1 else goto L3
L3: ...

t1 is always equal
to i*4 !

 t1 := i*4
 t2 := a+t1
 t3 := *t2
 s := s + t3
 i := i+1

 jump L2

Stephen Chong, Harvard University

Example 2: Induction Variable

11

L0: i := 0
 s := 0

L1:

L2: if i < 100 goto L1 else goto L3
L3: ...

t1 is always equal
to i*4 !

 t2 := a+t1
 t3 := *t2
 s := s + t3
 i := i+1

 t1 := 0

 t1 := t1+4

 jump L2

Stephen Chong, Harvard University

Example 2: Induction Variable

12

L0: i := 0
 s := 0

L1:

L2: if i < 100 goto L1 else goto L3
L3: ...

 t2 := a+t1
 t3 := *t2
 s := s + t3
 i := i+1

 t1 := 0

 t1 := t1+4

 jump L2

Stephen Chong, Harvard University

Example 2: Induction Variable

13

L0: i := 0
 s := 0

L1:

L2: if i < 100 goto L1 else goto L3
L3: ...

t2 is always equal
to a+t1 == a+i*4 !

 t2 := a+t1
 t3 := *t2
 s := s + t3
 i := i+1

 t1 := 0

 t1 := t1+4

 jump L2

Stephen Chong, Harvard University

Example 2: Induction Variable

14

L0: i := 0
 s := 0

L1:

L2: if i < 100 goto L1 else goto L3
L3: ...

t2 is always equal
to a+t1 == a+i*4 !

 t3 := *t2
 s := s + t3
 i := i+1

 t1 := 0

 t1 := t1+4

 jump L2
 t2 := a

 t2 := t2+4

Stephen Chong, Harvard University

Example 2: Induction Variable

15

L0: i := 0
 s := 0

L1:

L2: if i < 100 goto L1 else goto L3
L3: ...

t1 is no
longer used!

 t3 := *t2
 s := s + t3
 i := i+1

 t1 := 0

 t1 := t1+4

 jump L2
 t2 := a

 t2 := t2+4

Stephen Chong, Harvard University

Example 2: Induction Variable

16

L0: i := 0
 s := 0

L1:

L2: if i < 100 goto L1 else goto L3
L3: ...

 t3 := *t2
 s := s + t3
 i := i+1

 jump L2
 t2 := a

 t2 := t2+4

Stephen Chong, Harvard University

Example 2: Induction Variable

17

 i := 0

L1:

L2: if i < 100 goto L1 else goto L3
L3: ...

i is now used just to
count 100 iterations.
But t2 = 4*i + a

so i < 100
when

t2 < a+400
 i := i+1

 jump L2
 t2 := a

 t2 := t2+4

 s := 0
L0:

 t3 := *t2
 s := s + t3

Stephen Chong, Harvard University

Example 2: Induction Variable

18

 i := 0

L1:

L2: if t2 < t5 goto L1 else goto L3
L3: ...

 i := i+1

 t2 := a

 t2 := t2+4

 s := 0
L0:

 t3 := *t2
 s := s + t3

 jump L2
 t5 := t2 + 400 i is now used just to

count 100 iterations.
But t2 = 4*i + a

so i < 100
when

t2 < a+400

Stephen Chong, Harvard University

Example 2: Induction Variable

19

L1:

L2: if t2 < t5 goto L1 else goto L3
L3: ...

 t2 := a

 t2 := t2+4

 s := 0L0:

 t3 := *t2
 s := s + t3

 jump L2
 t5 := t2 + 400

i is now used just to
count 100 iterations.
But t2 = 4*i + a

so i < 100
when

t2 < a+400

Stephen Chong, Harvard University

Loop Analysis

•How do we identify loops?
•What is a loop?

•Can't just “look” at graphs
•We're going to assume some additional structure

•Definition: a loop is a subset S of nodes where:
•S is strongly connected:
• For any two nodes in S, there is a path from one to the
other using only nodes in S

•There is a distinguished header node h∈S such that
there is no edge from a node outside S to S\{h}

20

Stephen Chong, Harvard University

Examples

21

Stephen Chong, Harvard University

Examples

22

Stephen Chong, Harvard University

Examples

23

Stephen Chong, Harvard University

Non-example

•Consider the following:

•a can’t be header
•No path from b to a or c to a

•b can’t be header
•Has outside edge from a

•c can’t be header
•Has outside edge from a

•So no loop...
•But clearly a cycle!

24

a

b c

Stephen Chong, Harvard University

Reducible Flow Graphs

•So why did we define loops this way?
•Loop header gives us a “handle” for the loop

•e.g., a good spot for hoisting invariant statements

•Structured control-flow only produces reducible graphs
•a graph where all cycles are loops according to our definition.
•Java: only reducible graphs
•C/C++: goto can produce irreducible graph

•Many analyses & loop optimizations depend upon
having reducible graphs

25

Stephen Chong, Harvard University

Finding Loops

•Definition: node d dominates node n if every path
from the start node to n must go through d

•Definition: an edge from n to a dominator d is
called a back-edge

•Definition: a loop of a back edge n→d is the set
of nodes x such that d dominates x and there is a
path from x to n not including d

•So to find loops, we figure out dominators, and
identify back edges

26

Stephen Chong, Harvard University

Example

•a dominates a,b,c,d,e,f,g,h
•b dominates b,c,d,e,f,g,h
•c dominates c,e
•d dominates d
•e dominates e
•f dominates f,g,h
•g dominates g,h
•h dominates h
•back-edges?

•g→b

•h→a

•loops?

27

a

b

c d

fe

g

h

Stephen Chong, Harvard University

Calculating Dominators

•D[n] : the set of nodes that dominate n
•D[n] = {n} ∪ (D[p1] ∩ D[p2] ∩ … ∩ D[pm]) 

 where pred[n] = {p1,p2,…,pm}
•It's pretty easy to solve this equation:

•start off assuming D[n] is all nodes.
• except for the start node (which is dominated only by itself)

•iteratively update D[n] based on predecessors until you
reach a fixed point

28

Stephen Chong, Harvard University

Representing Dominators

•Don’t actually need to keep set of all dominators
for each node

•Instead, construct a dominator tree
•Insight: if both d and e dominate n, then either d

dominates e or vice versa
•So that means that node n has a “closest” or

immediate dominator

29

Stephen Chong, Harvard University

Example

30

a

b

c d

fe

g

h

CFG Immediate
Dominator Tree

a

b

c

fe

d

g

h

a dominates a,b,c,d,e,f,g,h
b dominates b,c,d,e,f,g,h
c dominates c,e
d dominates d
e dominates e
f dominates f,g,h
g dominates g,h
h dominates h

a dominated by a
b dominated by b,a
c dominated by c,b,a
d dominated by d,b,a
e dominated by e,c,b,a
f dominated by f,b,a
g dominated by g,f,b,a
h dominated by h,g,f,b,a

Stephen Chong, Harvard University

Nested Loops

•If loops A and B have distinct headers and all
nodes in B are in A (i.e., B⊆A), then we say B is
nested within A

•An inner loop is a nested loop that doesn’t
contain any other loops

•We usually concentrate our attention on nested
loops first (since we spend most time in them)

31

Stephen Chong, Harvard University

Loop-Invariant Removal

32

Stephen Chong, Harvard University

Loop Invariants

•An assignment x := v1 op v2 is invariant for
a loop if for each operand v1 and v2 either
•the operand is constant, or
•all of the definitions that reach the assignment are

outside the loop, or
•only one definition reaches the assignment and it is a

loop invariant

33

Stephen Chong, Harvard University

Example

34

L0: t := 0
 a := x
L1: i := i + 1
 b := 7
 t := a + b
 *i := t
 if i<N goto L1 else L2

L2: x := t

Stephen Chong, Harvard University

Hoisting

•We would like to hoist invariant computations
out of the loop

•But this is trickier than it sounds:
•We need to potentially introduce an extra node in the

CFG, right before the header to place the hoisted
statements (the pre-header)

•Even then, we can run into trouble…

35

Stephen Chong, Harvard University

Valid Hoisting Example

36

L0: t := 0

L1: i := i + 1

 *i := t
 if i<N goto L1 else L2

L2: x := t

 t := a + b

Stephen Chong, Harvard University

Valid Hoisting Example

37

L0: t := 0

L1: i := i + 1

 *i := t
 if i<N goto L1 else L2

L2: x := t

 t := a + b

Stephen Chong, Harvard University

Invalid Hoisting Example

38

L0: t := 0

L1: i := i + 1
 *i := t

 if i<N goto L1 else L2

L2: x := t

 t := a + b

Although t’s
definition is loop
invariant, hoisting
conflicts with this

use of t

Stephen Chong, Harvard University

Conditions for Safe Hoisting

•An invariant assignment d: x:= v1 op v2 is safe
to hoist if:
•d dominates all loop exits at which x is live and

•there is only one definition of x in the loop, and
•x is not live at the entry point for the loop (the pre-

header)

39

Stephen Chong, Harvard University

Induction Variable Reduction

40

Stephen Chong, Harvard University

Induction Variables

•Can express j and k as linear functions of i where the coefficients are
either constants or loop-invariant

•j = 4*i + 0
•k = 4*i + a

41

 s := 0
 i := 0
L1: if i >= n goto L2
 j := i*4
 k := j+a
 x := *k
 s := s+x
 i := i+1
L2: ...

Stephen Chong, Harvard University

Induction Variables

•Note that i only changes by the same amount each iteration of the loop

•We say that i is a linear induction variable

•It’s easy to express the change in j and k
•Since j = 4*i + 0 and k = 4*i + a, if i changes by c, j and k change by 4*c

42

 s := 0
 i := 0
L1: if i >= n goto L2
 j := i*4
 k := j+a
 x := *k
 s := s+x
 i := i+1
L2: ...

Stephen Chong, Harvard University

Detecting Induction Variables

•Definition: i is a basic induction variable in a loop L if the
only definitions of i within L are of the form i:=i+c or i:=i-
c where c is loop invariant

•Definition: k is a derived induction variable in loop L if:
•1.There is only one definition of k within L of the form k:=j*c or
k:=j+c where j is an induction variable and c is loop invariant; and

•2.If j is an induction variable in the family of i (i.e., linear in i) then:
• the only definition of j that reaches k is the one in the loop; and

• there is no definition of i on any path between the definition of j and the
definition of k

•If k is a derived induction variable in the family of j and  
j = a*i+b and, say, k:=j*c, then k = a*c*i+b*c

43

Stephen Chong, Harvard University

Strength Reduction

•For each derived induction variable j where j =
e1*i + e0 make a fresh temp j'

•At the loop pre-header, initialize j' to e0
•After each i:=i+c, define j':=j'+(e1*c)

•note that e1*c can be computed in the loop header
(i.e., it’s loop invariant)

•Replace the unique assignment of j in the loop
with j := j'

44

Stephen Chong, Harvard University

Example

•i is basic induction
variable

•j is derived
induction variable
in family of i
•j = 4*i + 0

•k is derived
induction variable
in family of j
•k = 4*i + a

45

 s := 0
 i := 0
L1: if i >= n goto L2
 j := i*4
 k := j+a
 x := *k
 s := s+x
 i := i+1

L2: ...

Stephen Chong, Harvard University

Example

•i is basic induction
variable

•j is derived
induction variable
in family of i
•j = 4*i + 0

•k is derived
induction variable
in family of j
•k = 4*i + a

46

 s := 0
 i := 0

L1: if i >= n goto L2
 j := i*4
 k := j+a
 x := *k
 s := s+x
 i := i+1

L2: ...

 j’:= 0
 k’:= a

Stephen Chong, Harvard University

Example

•i is basic induction
variable

•j is derived
induction variable
in family of i
•j = 4*i + 0

•k is derived
induction variable
in family of j
•k = 4*i + a

47

 s := 0
 i := 0

L1: if i >= n goto L2
 j := i*4
 k := j+a
 x := *k
 s := s+x
 i := i+1

L2: ...

 j’:= j’+4
 k’:= k’+4

 j’:= 0
 k’:= a

Stephen Chong, Harvard University

Example

•i is basic induction
variable

•j is derived
induction variable
in family of i
•j = 4*i + 0

•k is derived
induction variable
in family of j
•k = 4*i + a

48

 s := 0
 i := 0

L1: if i >= n goto L2
 j := j’
 k := k’
 x := *k
 s := s+x
 i := i+1

L2: ...

 j’:= j’+4
 k’:= k’+4

 j’:= 0
 k’:= a

Stephen Chong, Harvard University

Example

•i is basic induction
variable

•j is derived
induction variable
in family of i
•j = 4*i + 0

•k is derived
induction variable
in family of j
•k = 4*i + a

49

 s := 0
 i := 0

L1: if i >= n goto L2
 x := *k
 s := s+x
 i := i+1

L2: ...

 j’:= j’+4
 k’:= k’+4

 ’

 j’:= 0
 k’:= a

Stephen Chong, Harvard University

Useless Variables

•A variable is
useless for L 
if it is dead at all
exits from L and its
only use is in a
definition of itself
•E.g., j’ is useless

•Can delete useless
variables

50

 s := 0
 i := 0

L1: if i >= n goto L2
 x := *k
 s := s+x
 i := i+1

L2: ...

 j’:= j’+4

 ’

 k’:= k’+4

 j’:= 0
 k’:= a

Stephen Chong, Harvard University

Useless Variables

•A variable is
useless for L 
if it is dead at all
exits from L and its
only use is in a
definition of itself
•E.g., j’ is useless

•Can delete useless
variables

51

 s := 0
 i := 0

L1: if i >= n goto L2
 x := *k
 s := s+x
 i := i+1

L2: ...

 j’:= 0

 ’

 k’:= k’+4

 k’:= a

Stephen Chong, Harvard University

Useless Variables

•A variable is
useless for L 
if it is dead at all
exits from L and its
only use is in a
definition of itself
•E.g., j’ is useless

•Can delete useless
variables

52

 s := 0
 i := 0

L1: if i >= n goto L2
 x := *k
 s := s+x
 i := i+1

L2: ...

 ’

 k’:= k’+4

 k’:= a

Stephen Chong, Harvard University

Almost Useless Variables

•A variable is almost useless
for L 
if it is used only in
comparison against loop
invariant values and in
definitions of itself, and
there is some other non-
useless induction variable
in same family

•E.g., i is almost useless

•An almost-useless variable
may be made useless by
modifying comparison

•See Appel for details
53

 s := 0
 i := 0

L1: if i >= n goto L2
 x := *k
 s := s+x
 i := i+1

L2: ...

 ’

 k’:= k’+4

 k’:= a

Stephen Chong, Harvard University

Loop Fusion and Loop Fission

•Fusion: combine two loops into one
•Fission: split one loop into two

54

Stephen Chong, Harvard University

Loop Fusion

•Before

•After

•What are the potential benefits? Costs?
•Locality of reference

55

int acc = 0;
for (int i = 0; i < n; ++i) {
 acc += a[i];
 a[i] = acc;
}
for (int i = 0; i < n; ++i) {
 b[i] += a[i];
}

int acc = 0;
for (int i = 0; i < n; ++i) {
 acc += a[i];
 a[i] = acc;
 b[i] += acc;
}

Stephen Chong, Harvard University

Loop Fission

•Before

•After

•What are the potential benefits? Costs?
•Locality of reference

56

for (int i = 0; i < n; ++i) {
 a[i] = e1;
 b[i] = e2; // e1 and e2 independent
}

for (int i = 0; i < n; ++i) {
 a[i] = e1;
}
for (int i = 0; i < n; ++i) {
 b[i] = e2;
}

Stephen Chong, Harvard University

Loop Unrolling

•Make copies of loop body
•Say, each iteration of rewritten loop performs 3

iterations of old loop

57

Stephen Chong, Harvard University

Loop Unrolling

•Before

•After

•What are the potential benefits? Costs?

•Reduce branching penalty, end-of-loop-test costs

•Size of program increased
58

for (int i = 0; i < n; ++i) {
 a[i] = b[i] * 7 + c[i] / 13;
}

for (int i = 0; i < n % 3; ++i) {
 a[i] = b[i] * 7 + c[i] / 13;
}
for (; i < n; i += 3) {
 a[i] = b[i] * 7 + c[i] / 13;
 a[i + 1] = b[i + 1] * 7 + c[i + 1] / 13;
 a[i + 2] = b[i + 2] * 7 + c[i + 2] / 13;
}

Stephen Chong, Harvard University

Loop Unrolling

•If fixed number of iterations, maybe turn loop into
sequence of statements!

•Before

•After

•
59

for (int i = 0; i < 6; ++i) {
 if (i % 2 == 0) foo(i); else bar(i);
}

foo(0);
bar(1);
foo(2);
bar(3);
foo(4);
bar(5);

Stephen Chong, Harvard University

Loop Interchange

•Change order of loop iteration variables

60

Stephen Chong, Harvard University

Loop Interchange

•Before

•After

•What are the potential benefits? Costs?
•Locality of reference

61

for (int j = 0; j < n; ++j) {
 for (int i = 0; i < n; ++i) {
 a[i][j] += 1;
 }
}

for (int i = 0; i < n; ++i) {
 for (int j = 0; j < n; ++j) {
 a[i][j] += 1;
 }
}

Stephen Chong, Harvard University

Loop Peeling

•Split first (or last) few iterations from loop and
perform them separately

62

Stephen Chong, Harvard University

Loop Peeling

•Before

•After

•What are the potential benefits? Costs?

63

for (int i = 0; i < n; ++i) {
 b[i] = (i == 0) ? a[i] : a[i] + b[i-1];
}

b[0] = a[0];
for (int i = 1; i < n; ++i) {
 b[i] = a[i] + b[i-1];
}

Stephen Chong, Harvard University

Loop Tiling

•For nested loops, change iteration order

64

Stephen Chong, Harvard University

Loop Tiling

•Before

•After:

•What are the potential benefits? Costs?
65

for (i = 0; i < n; i++) {
 c[i] = 0;
 for (j = 0; j < n; j++) {
 c[i] = c[i] + a[i][j] * b[j];
 }
}

for (i = 0; i < n; i += 4) {
 c[i] = 0;
 c[i + 1] = 0;
 for (j = 0; j < n; j += 4) {
 for (x = i; x < min(i + 4, n); x++) {
 for (y = j; y < min(j + 4, n); y++) {
 c[x] = c[x] + a[x][y] * b[y];
 }
 }
 }
 }

Stephen Chong, Harvard University

Loop Parallelization

•Before

•After

•What are the potential benefits? Costs?
66

for (int i = 0; i < n; ++i) {
 a[i] = b[i] + c[i]; // a, b, and c do not overlap
}

for (int i = 0; i < n % 4; ++i) a[i] = b[i] + c[i];
for (; i < n; i = i + 4) {
 __some4SIMDadd(a+i,b+i,c+i);
}

