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Pre-class Puzzle

•For each of these Control Flow Graphs (CFGs), what is a C program that 
corresponds to it?
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Announcements

•HW5: Oat v.2 due today (Tue Nov 19) 
•HW6: Optimization and Data Analysis 

•Due: Tue Dec 3 (in 2 weeks) 

•Final exam 
•9am-12pm Thursday December 19 
•Extension school: online exam, 24 hour window 
•Open book, open note, open laptop 
•No communication, no searching for answers on internet 

•~30 multiple choice or short answer questions 
•Comprehensive exam (i.e., all material covered in course) 
•Won’t need to program, won’t depend on  

•We will release some study material in a few weeks
3
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Announcements: Upcoming Lectures

•Thursday Nov 21: Embedded EthiCS module 
•Ethics of Open Source 
•Guest lecturer Meica Magnani 
•Pre-lecture viewing/thinking posted on Piazza 
•Will be a brief assignment posted on Piazza after lecture 

•Tuesday Dec 3: The Economics of Programming 
Languages 
•Evan Czaplicki ’12, creator of the Elm programming 

language 
• https://elm-lang.org/
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Today

•Loop optimization 
•Examples 
•Identifying loops 
•Dominators 

•Loop-invariant removal 
•Induction variable reduction 

•Loop fusion 
•Loop fission 
•Loop unrolling 
•Loop interchange 
•Loop peeling 
•Loop tiling 

•Loop parallelization

5
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Loop Optimizations

•Vast majority of time spent in loops 
•So we want techniques to improve loops! 

•Loop invariant removal 
•Induction variable elimination 
•Loop unrolling 
•Loop fusion 
•Loop fission 
•Loop peeling 
•Loop interchange 
•Loop tiling 
•Loop parallelization 
•Software pipelining

6
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Example 1: Invariant Removal

7

L0:  t := 0

     t := a + b
L1:  i := i + 1

     *i := t
     if i<N goto L1 else L2

L2:  x := t
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Example 1: Invariant Removal
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L0:  t := 0
     t := a + b

L1:  i := i + 1

     *i := t
     if i<N goto L1 else L2

L2:  x := t
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Example 2: Induction Variable

9

L0:  i := 0 
     s := 0 
     jump L2 

s=0;
for (i=0; i < 100; i++) 
  s += a[i];

L1:  t1 := i*4       
     t2 := a+t1      
     t3 := *t2
     s  := s + t3
     i  := i+1
L2:  if i < 100 goto L1 else goto L3
L3:  ...
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Example 2: Induction Variable
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L0:  i := 0
     s := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

t1 is always equal 
to i*4 !

     t1 := i*4       
     t2 := a+t1      
     t3 := *t2
     s  := s + t3
     i  := i+1

     jump L2 
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Example 2: Induction Variable
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L0:  i := 0
     s := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

t1 is always equal 
to i*4 !

     t2 := a+t1      
     t3 := *t2
     s  := s + t3
     i  := i+1

     t1 := 0

     t1 := t1+4

     jump L2 
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Example 2: Induction Variable
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L0:  i := 0
     s := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

     t2 := a+t1      
     t3 := *t2
     s  := s + t3
     i  := i+1

     t1 := 0

     t1 := t1+4

     jump L2 
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Example 2: Induction Variable
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L0:  i := 0
     s := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

t2 is always equal 
to a+t1 == a+i*4 !

     t2 := a+t1      
     t3 := *t2
     s  := s + t3
     i  := i+1

     t1 := 0

     t1 := t1+4

     jump L2 
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Example 2: Induction Variable
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L0:  i := 0
     s := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

t2 is always equal 
to a+t1 == a+i*4 !

     t3 := *t2
     s  := s + t3
     i  := i+1

     t1 := 0

     t1 := t1+4

     jump L2 
     t2 := a

     t2 := t2+4
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Example 2: Induction Variable

15

L0:  i := 0
     s := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

t1 is no 
longer used!

     t3 := *t2
     s  := s + t3
     i  := i+1

     t1 := 0

     t1 := t1+4

     jump L2 
     t2 := a

     t2 := t2+4
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Example 2: Induction Variable
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L0:  i := 0
     s := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

     t3 := *t2
     s  := s + t3
     i  := i+1

     jump L2 
     t2 := a

     t2 := t2+4
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Example 2: Induction Variable
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     i := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

i is now used just to 
count 100 iterations. 
But t2 = 4*i + a 

so i < 100  
when  

t2 < a+400
    i  := i+1

     jump L2 
     t2 := a

     t2 := t2+4

     s := 0
L0:

     t3 := *t2
     s  := s + t3
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Example 2: Induction Variable
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     i := 0

L1:

L2:  if t2 < t5 goto L1 else goto L3
L3:  ...

    i  := i+1

     t2 := a

     t2 := t2+4

     s := 0
L0:

     t3 := *t2
     s  := s + t3

     jump L2 
     t5 := t2 + 400 i is now used just to 

count 100 iterations. 
But t2 = 4*i + a 

so i < 100  
when  

t2 < a+400
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Example 2: Induction Variable

19

L1:

L2:  if t2 < t5 goto L1 else goto L3
L3:  ...

     t2 := a

     t2 := t2+4

     s := 0L0:

     t3 := *t2
     s  := s + t3

     jump L2 
     t5 := t2 + 400

i is now used just to 
count 100 iterations. 
But t2 = 4*i + a 

so i < 100  
when  

t2 < a+400



Stephen Chong, Harvard University

Loop Analysis

•How do we identify loops? 
•What is a loop? 

•Can't just “look” at graphs 
•We're going to assume some additional structure 

•Definition: a loop is a subset S of nodes where: 
•S is strongly connected: 
• For any two nodes in S, there is a path from one to the 
other using only nodes in S 

•There is a distinguished header node h∈S such that 
there is no edge from a node outside S to S\{h}

20
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Examples
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Examples
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Examples
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Non-example

•Consider the following: 

•a can’t be header 
•No path from b to a or c to a 

•b can’t be header 
•Has outside edge from a 

•c can’t be header 
•Has outside edge from a 

•So no loop... 
•But clearly a cycle!

24
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Reducible Flow Graphs

•So why did we define loops this way? 
•Loop header gives us a “handle” for the loop 

•e.g., a good spot for hoisting invariant statements 

•Structured control-flow only produces reducible graphs 
•a graph where all cycles are loops according to our definition. 
•Java: only reducible graphs 
•C/C++: goto can produce irreducible graph 

•Many analyses & loop optimizations depend upon 
having reducible graphs

25
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Finding Loops

•Definition: node d dominates node n if every path 
from the start node to n must go through d 

•Definition: an edge from n to a dominator d is 
called a back-edge 

•Definition:  a loop of a back edge n→d is the set 
of nodes x such that d dominates x and there is a 
path from x to n not including d 

•So to find loops, we figure out dominators, and 
identify back edges

26
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Example

•a dominates a,b,c,d,e,f,g,h 
•b dominates b,c,d,e,f,g,h 
•c dominates c,e 
•d dominates d 
•e dominates e 
•f dominates  f,g,h 
•g dominates g,h 
•h dominates h 
•back-edges? 

•g→b 

•h→a 

•loops?

27
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Calculating Dominators

•D[n] :  the set of nodes that dominate n 
•D[n] = {n} ∪ (D[p1] ∩ D[p2] ∩ … ∩ D[pm]) 

           where pred[n] = {p1,p2,…,pm} 
•It's pretty easy to solve this equation: 

•start off assuming D[n] is all nodes.  
• except for the start node (which is dominated only by itself) 

•iteratively update D[n] based on predecessors until you 
reach a fixed point

28
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Representing Dominators

•Don’t actually need to keep set of all dominators 
for each node 

•Instead, construct a dominator tree 
•Insight: if both d and e dominate n, then either d 

dominates e or vice versa 
•So that means that node n has a “closest” or 

immediate dominator

29
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Example

30

a

b

c d

fe

g

h

CFG Immediate 
Dominator Tree

a

b

c

fe

d

g

h

a dominates a,b,c,d,e,f,g,h 
b dominates b,c,d,e,f,g,h 
c dominates c,e 
d dominates d 
e dominates e 
f dominates  f,g,h 
g dominates g,h 
h dominates h

a dominated by a 
b dominated by b,a 
c dominated by c,b,a 
d dominated by d,b,a 
e dominated by e,c,b,a 
f dominated by f,b,a 
g dominated by g,f,b,a 
h dominated by h,g,f,b,a
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Nested Loops

•If loops A and B have distinct headers and all 
nodes in B are in A (i.e., B⊆A), then we say B is 
nested within A 

•An inner loop is a nested loop that doesn’t 
contain any other loops 

•We usually concentrate our attention on nested 
loops first (since we spend most time in them)

31
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Loop-Invariant Removal

32
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Loop Invariants

•An assignment x := v1 op v2 is invariant for 
a loop if for each operand v1 and v2 either 
•the operand is constant, or 
•all of the definitions that reach the assignment are 

outside the loop, or 
•only one definition reaches the assignment and it is a 

loop invariant

33



Stephen Chong, Harvard University

Example

34

L0:  t := 0
     a := x
L1:  i := i + 1
     b := 7
     t := a + b
     *i := t
     if i<N goto L1 else L2

L2:  x := t
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Hoisting

•We would like to hoist invariant computations 
out of the loop 

•But this is trickier than it sounds: 
•We need to potentially introduce an extra node in the 

CFG, right before the header to place the hoisted 
statements (the pre-header) 

•Even then, we can run into trouble…

35
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Valid Hoisting Example

36

L0:  t := 0

L1:  i := i + 1

     *i := t
     if i<N goto L1 else L2

L2:  x := t

     t := a + b
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Valid Hoisting Example

37

L0:  t := 0

L1:  i := i + 1

     *i := t
     if i<N goto L1 else L2

L2:  x := t

     t := a + b
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Invalid Hoisting Example

38

L0:  t := 0

L1:  i := i + 1
     *i := t

     if i<N goto L1 else L2

L2:  x := t

     t := a + b

Although t’s 
definition is loop 
invariant, hoisting 
conflicts with this 

use of t
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Conditions for Safe Hoisting

•An invariant assignment d: x:= v1 op v2 is safe 
to hoist if: 
•d dominates all loop exits at which x is live and 

•there is only one definition of x in the loop, and 
•x is not live at the entry point for the loop (the pre-

header)

39
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Induction Variable Reduction

40
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Induction Variables

•Can express j and k as linear functions of i where the coefficients are 
either constants or loop-invariant 

•j = 4*i + 0 
•k = 4*i + a

41

     s := 0
     i := 0
L1:  if i >= n goto L2
     j := i*4
     k := j+a
     x := *k
     s := s+x
     i := i+1
L2:  ...
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Induction Variables

•Note that i only changes by the same amount each iteration of the loop 

•We say that i is a linear induction variable 

•It’s easy to express the change in j and k
•Since j = 4*i + 0 and k = 4*i + a, if i changes by c, j and k change by 4*c

42

     s := 0
     i := 0
L1:  if i >= n goto L2
     j := i*4
     k := j+a
     x := *k
     s := s+x
     i := i+1
L2:  ...
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Detecting Induction Variables

•Definition: i is a basic induction variable in a loop L if the 
only definitions of i within L are of the form i:=i+c or i:=i-
c where c is loop invariant 

•Definition: k is a derived induction variable in loop L if: 
•1.There is only one definition of k within L of the form k:=j*c or 
k:=j+c where j is an induction variable and c is loop invariant; and 

•2.If j is an induction variable in the family of i (i.e., linear in i) then: 
• the only definition of j that reaches k is the one in the loop; and 

• there is no definition of i on any path between the definition of j and the 
definition of k

•If k is a derived induction variable in the family of j and  
j = a*i+b and, say, k:=j*c, then k = a*c*i+b*c

43
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Strength Reduction

•For each derived induction variable j where j = 
e1*i + e0 make a fresh temp j' 

•At the loop pre-header, initialize j' to e0 
•After each i:=i+c, define j':=j'+(e1*c) 

•note that e1*c can be computed in the loop header 
(i.e., it’s loop invariant) 

•Replace the unique assignment of j in the loop 
with j := j'

44
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Example

•i is basic induction 
variable 

•j is derived 
induction variable 
in family of i
•j = 4*i + 0 

•k is derived 
induction variable 
in family of j
•k = 4*i + a

45

     s := 0
     i := 0
L1:  if i >= n goto L2
     j := i*4
     k := j+a
     x := *k
     s := s+x
     i := i+1

L2:  ...
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Example

•i is basic induction 
variable 

•j is derived 
induction variable 
in family of i
•j = 4*i + 0 

•k is derived 
induction variable 
in family of j
•k = 4*i + a

46

     s := 0
     i := 0

L1:  if i >= n goto L2
     j := i*4
     k := j+a
     x := *k
     s := s+x
     i := i+1

L2:  ...

     j’:= 0
     k’:= a
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Example

•i is basic induction 
variable 

•j is derived 
induction variable 
in family of i
•j = 4*i + 0 

•k is derived 
induction variable 
in family of j
•k = 4*i + a

47

     s := 0
     i := 0

L1:  if i >= n goto L2
     j := i*4
     k := j+a
     x := *k
     s := s+x
     i := i+1

L2:  ...

     j’:= j’+4
     k’:= k’+4

     j’:= 0
     k’:= a
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Example

•i is basic induction 
variable 

•j is derived 
induction variable 
in family of i
•j = 4*i + 0 

•k is derived 
induction variable 
in family of j
•k = 4*i + a

48

     s := 0
     i := 0

L1:  if i >= n goto L2
     j := j’
     k := k’
     x := *k
     s := s+x
     i := i+1

L2:  ...

     j’:= j’+4
     k’:= k’+4

     j’:= 0
     k’:= a
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Example

•i is basic induction 
variable 

•j is derived 
induction variable 
in family of i
•j = 4*i + 0 

•k is derived 
induction variable 
in family of j
•k = 4*i + a

49

     s := 0
     i := 0

L1:  if i >= n goto L2
     x := *k
     s := s+x
     i := i+1

L2:  ...

     j’:= j’+4
     k’:= k’+4

            ’

     j’:= 0
     k’:= a
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Useless Variables

•A variable is 
useless for L 
if it is dead at all 
exits from L and its 
only use is in a 
definition of itself 
•E.g., j’ is useless 

•Can delete useless 
variables

50

     s := 0
     i := 0

L1:  if i >= n goto L2
     x := *k
     s := s+x
     i := i+1

L2:  ...

     j’:= j’+4

            ’

     k’:= k’+4

     j’:= 0
     k’:= a
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Useless Variables

•A variable is 
useless for L 
if it is dead at all 
exits from L and its 
only use is in a 
definition of itself 
•E.g., j’ is useless 

•Can delete useless 
variables

51

     s := 0
     i := 0

L1:  if i >= n goto L2
     x := *k
     s := s+x
     i := i+1

L2:  ...

     j’:= 0

            ’

     k’:= k’+4

     k’:= a
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Useless Variables

•A variable is 
useless for L 
if it is dead at all 
exits from L and its 
only use is in a 
definition of itself 
•E.g., j’ is useless 

•Can delete useless 
variables

52

     s := 0
     i := 0

L1:  if i >= n goto L2
     x := *k
     s := s+x
     i := i+1

L2:  ...

            ’

     k’:= k’+4

     k’:= a
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Almost Useless Variables

•A variable is almost useless 
for L 
if it is used only in 
comparison against loop 
invariant values and in 
definitions of itself, and 
there is some other non-
useless induction variable 
in same family 

•E.g., i is almost useless 

•An almost-useless variable 
may be made useless by 
modifying comparison 

•See Appel for details
53

     s := 0
     i := 0

L1:  if i >= n goto L2
     x := *k
     s := s+x
     i := i+1

L2:  ...

            ’

     k’:= k’+4

     k’:= a
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Loop Fusion and Loop Fission

•Fusion: combine two loops into one 
•Fission: split one loop into two

54
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Loop Fusion

•Before 

•After 

•What are the potential benefits? Costs? 
•Locality of reference

55

int acc = 0;
for (int i = 0; i < n; ++i) {
  acc += a[i];
  a[i] = acc;
} 
for (int i = 0; i < n; ++i) {
  b[i] += a[i];
}

int acc = 0;
for (int i = 0; i < n; ++i) {
  acc += a[i];
  a[i] = acc;
  b[i] += acc;  
}
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Loop Fission

•Before 

•After 

•What are the potential benefits? Costs? 
•Locality of reference

56

for (int i = 0; i < n; ++i) {
  a[i] = e1;
  b[i] = e2;  // e1 and e2 independent 
}

for (int i = 0; i < n; ++i) {
  a[i] = e1;
}
for (int i = 0; i < n; ++i) {
  b[i] = e2;  
}
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Loop Unrolling

•Make copies of loop body 
•Say, each iteration of rewritten loop performs 3 

iterations of old loop

57
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Loop Unrolling

•Before 

•After 

•What are the potential benefits? Costs? 

•Reduce branching penalty, end-of-loop-test costs 

•Size of program increased
58

for (int i = 0; i < n; ++i) {
  a[i] = b[i] * 7 + c[i] / 13;
} 

for (int i = 0; i < n % 3; ++i) {
   a[i] = b[i] * 7 + c[i] / 13;
}
for (; i < n; i += 3) {
  a[i] = b[i] * 7 + c[i] / 13;
  a[i + 1] = b[i + 1] * 7 + c[i + 1] / 13;
  a[i + 2] = b[i + 2] * 7 + c[i + 2] / 13;
}
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Loop Unrolling

•If fixed number of iterations, maybe turn loop into 
sequence of statements!  

•Before 

•After 

•
59

for (int i = 0; i < 6; ++i) {
  if (i % 2 == 0) foo(i); else bar(i);
} 

foo(0);
bar(1);
foo(2);
bar(3);
foo(4);
bar(5);
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Loop Interchange

•Change order of loop iteration variables

60
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Loop Interchange

•Before 

•After 

•What are the potential benefits? Costs? 
•Locality of reference

61

for (int j = 0; j < n; ++j) {
  for (int i = 0; i < n; ++i) {
    a[i][j] += 1; 
  }
}

for (int i = 0; i < n; ++i) {
  for (int j = 0; j < n; ++j) {
    a[i][j] += 1; 
  }
}
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Loop Peeling

•Split first (or last) few iterations from loop and 
perform them separately

62
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Loop Peeling

•Before 

•After 

•What are the potential benefits? Costs?

63

for (int i = 0; i < n; ++i) {
  b[i] = (i == 0) ? a[i] : a[i] + b[i-1];
} 

b[0] = a[0];
for (int i = 1; i < n; ++i) {
  b[i] = a[i] + b[i-1];
} 
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Loop Tiling

•For nested loops, change iteration order

64
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Loop Tiling

•Before 

•After: 

•What are the potential benefits? Costs?
65

for (i = 0; i < n; i++) {
  c[i] = 0;
  for (j = 0; j < n; j++) {
    c[i] = c[i] + a[i][j] * b[j];
  }
}

for (i = 0; i < n; i += 4) {
    c[i] = 0;
    c[i + 1] = 0;
    for (j = 0; j < n; j += 4) {
      for (x = i; x < min(i + 4, n); x++) {
        for (y = j; y < min(j + 4, n); y++) {
          c[x] = c[x] + a[x][y] * b[y];
        }
      }
    }
  }
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Loop Parallelization

•Before 

•After 

•What are the potential benefits? Costs?
66

for (int i = 0; i < n; ++i) {
  a[i] = b[i] + c[i]; // a, b, and c do not overlap  
}

for (int i = 0; i < n % 4; ++i) a[i] = b[i] + c[i];
for (; i < n; i = i + 4) {
  __some4SIMDadd(a+i,b+i,c+i);  
}


