John A. Paulson

School of Engineering
and Applied Sciences

HARVARD

CS153: Compilers
Lecture 25:
Garbage Collection

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

Contains content from lecture notes by Greg Morrisett

https://www.seas.harvard.edu/courses/cs153

Annou

e Embedded EthiCS assignment
e Due: Friday Dec 29
* Posted on Piazza

e HW6: Optimization and Data Analysis
*Due: Tue Dec 3

Stephen Chong, Harvard University 2

Announcements: Upcoming Lectures

* Tuesday Dec 3: The Economics of Programming
Languages

eEvan Czaplicki "12, creator of the EIm programming
anguage

* https://elm-lang.org/

https://elm-lang.org/

To

e Garbage collection
eKey idea
e Mark and sweep
e Stop and copy
e Generational collection
e Reference counting
e Incremental collection, concurrent collection
e Boehm collector

Stephen Chong, Harvard University 4

Runtime System

e Runtime system: all the stuff that the language implicitly
assumes and that is not described in the program

e Handling of POSIX signals

* POSIX = Portable Operating System Interface
* [EEE Computer Society standards for OS compatibility

e Automated memory management (garbage collection)

e Automated core management (work stealing)
Virtual machine execution (just-in-time compilation)

*Class loading

* Also known as “language runtime” or just “runtime”

Automated Memory Management

* Manual memory management: programmers
explicitly call malloc () and free ()

* Automatic memory management: runtime system
looks after allocation and garbage collection

e Garbage collection: free memory that is no longer in
use

Garbage Collection

e Runtime frees heap memory that is no longer in use
e How do we determine what is no longer in use?

e|deally: any piece of memory that will not be used
in the future of the computation

*|n practice: any piece of memory that is not
reachable

* Reachable = can be accessed through some chain of
pointers starting from program variables

e This is a subset of the memory that will not be used in the
future

Garbage Collection: Basic Idea

e Start from stack, registers, & globals (roots) and follow pointers to
determine which objects in heap are reachable

*Reclaim any object that isn't reachable

Sa0 @— v v Heap
global var @ e 4 v
\V
|V >V
Stack 4
-
o >
\ ~
v —Iy/

* Problem: How do we know which values are pointers and which are
non-pointers (e.g., ints)?

Identifying pointers

e OCaml uses the low bit: 1 it's a scalar, O it's a
pointer

*Why the low bit? Why not the high bit?
*|n Java, we put tag bits in the meta-data

°In C (e.g., Boehm collector), typically use
heuristics

e|f value doesn’t point into an allocated object, it's not a
pointer

Mark and Sweep Collector

e Reserve a mark-bit for each object.
* Mark phase * Sweep phase

For each root v:

DFS(v) p < first address in heap

while p < last address in heap
if record p is marked

function DFS(x):

Qo | | unmark p
if x is a pointer into heap else let f1 be the first field in p
if record x is not marked p.f1 « freelist
mark x freelist + p

for each field f; of record x

«— p + (size of record p)
DFS(x.1)) PR i

Explicit Stack

e DFS is recursive function

e Stack frame for each invocation!

e Use explicit stack instead...

function DFS(x):
if x is a pointer into heap and x not marked
t « 1
stack[t] « x
while t > O:
x + stack[t]; t « t -1
for each field f; of record x
if x.fi is a pointer into heap and x.f; not marked:
mark x.f;
t — t+ 1; stack[t] « x.f;

How Big Can the Stack Get?

*\Worst case: stack can be as big as the heap!

e Trick: pointer reversal
e Don’t use explicit stack

*|nstead, when visiting x.f;, use x.f; to store element of
stack!

» Specifically, store x in x.f;

*\When stack is popped, restore original value of x.f;

eKey idea: track how many pointers point to each object

* The reference count of the object, stored with object

Reference Counting

e Compiler modifies stores to increment/decrement reference counts

*|f reference count reaches 0O, free object!

$t0 @
St1 @

/

rd

St2 @

/'

Heap

Reference Counting

* Any problems!?
*\What about cycles of garbage?

*Require programmer to break cycles
e Or do occasional mark-sweep collection

Heap

P 3
N

$t0 @
St1 @

St2 @

Costs of Referenc

*\WWhenever program wants to x.fi + p
* Must execute

°7 + X.1j
c + z.count
ce—c—1
z.count « ¢
if c = 0 then call putOnFreelist
x.fi = p
C & p.count
cec+ 1
p.count « ¢

e Dataflow analysis can reduce costs by aggregating updates
e But still expensive and not generally used

Stephen Chong, Harvard University 15

Stop and Copy Collector

Split the heap into two pieces.

e Allocate in Tst piece until it fills up.

e Copy the reachable data into t
holes corresponding to garbage objects.

e Can now reclaim all of the 1st piece!
* Allocate in 2nd piece until it fills up

ne 2nd area, compressing out the

—

sto @1

Stl @—

\

—

—

/’

st2 @

1N

>
|

N\

Heap

Stop and Copy Collector

Split the heap into two pieces.
e Allocate in Tst piece until it fills up.

e Copy the reachable data into the 2nd area, compressing out the
holes corresponding to garbage objects.

e Can now reclaim all of the 1st piece!
* Allocate in 2nd piece until it fills up

o Heap

rad
$t0 @ i s ~
St1 @ >

St2 @ T \S

/|

Stop and Copy Collector

Split the heap into two pieces.
e Allocate in Tst piece until it fills up.

e Copy the reachable data into the 2nd area, compressing out the
holes corresponding to garbage objects.

e Can now reclaim all of the 1st piece!
* Allocate in 2nd piece until it fills up

o Heap

rad
$t0 @ > —> —p> —> <
Stl1 @

St2 @

Generational Collection

°|n many programs,

newly created objects are likely to die soon

e Conversely, objects that survive many collections will probably
survive many more collections

*So: collector shou
there is higher pro

d concentrate effort on “young” data (where

ortion of garbage)

*Key idea: Divide heap into generations

* Allocate new objects into generation Go

*Collect Gy frequently, G less frequently, G, even less so, ...

*|If object survives 2-3 collections in G;, copy it into Gjs1

* Roots now include pointers from older generations to younger ones

e Relatively rare

e But need mechanism to remember them

Incremental Collection
Concurrent Collection

e Collector will occasionally interrupt program for
long periods of time for garbage collection

e Problem for interaction or realtime programs!

* Incremental collection performs some work on
garbage collection when the program requests it

* Concurrent collection performs garbage
collection concurrently with program

e Can greatly reduce latency!

Reality

| arge objects (e.g., arrays) can be copied “virtually" without a
ohysical copy.

e Some systems use mix of copying collection and mark/sweep
with compaction.

* A real challenge is scaling to server-scale systems with
terabytes of memory...

e nteractions with OS matter a lot: cheaper to do GC than to
start paging...
eJava has a variety of GCs available with different tradeoffs
e Default is generational collector that uses multiple threads when it runs

e OCaml uses a generational/incremental collector, invoked only
in allocation

Conservative Collectors

e Work without help from the compiler.

ee.g., legacy C/C++ code.

e Cannot accurately determine which values are
pointers.

*But can rule out some values (e.g., if they don't point into the
data segment.)

*So they must conservatively treat anything that looks

like a
e \What

nhointer as such.

nappens if we have a value we aren’t sure is a

pointer or not?

*Two bad things: leaks, can't move the object!

The Boehm Collector

e Based on mark/sweep.

 Performs sweep lazily

e Organizes free lists as we saw earlier.

e Different lists for different sized objects.

e Relatively fast (single-threaded) allocation.
* Most of the cleverness is in finding roots:

eolobal variables, stack, registers, etc.

* And determining values aren't pointers:

ee.g., blacklisting (recording values that aren’t pointers
but are in vicinity of heap)

