
CS153: Compilers
Lecture 25:
Garbage Collection

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Contains content from lecture notes by Greg Morrisett

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Announcements

•Embedded EthiCS assignment
•Due: Friday Dec 29
•Posted on Piazza

•HW6: Optimization and Data Analysis
•Due: Tue Dec 3

2

Stephen Chong, Harvard University

Announcements: Upcoming Lectures

•Tuesday Dec 3: The Economics of Programming
Languages
•Evan Czaplicki ’12, creator of the Elm programming

language
• https://elm-lang.org/

3

https://elm-lang.org/

Stephen Chong, Harvard University

Today

•Garbage collection
•Key idea
•Mark and sweep
•Stop and copy
•Generational collection
•Reference counting
•Incremental collection, concurrent collection
•Boehm collector

4

Stephen Chong, Harvard University

Runtime System

•Runtime system: all the stuff that the language implicitly
assumes and that is not described in the program
•Handling of POSIX signals
• POSIX = Portable Operating System Interface
• IEEE Computer Society standards for OS compatibility

•Automated memory management (garbage collection)

•Automated core management (work stealing)
•Virtual machine execution (just-in-time compilation)

•Class loading
•…

•Also known as “language runtime” or just “runtime”
5

Stephen Chong, Harvard University

Automated Memory Management

•Manual memory management: programmers
explicitly call malloc() and free()

•Automatic memory management: runtime system
looks after allocation and garbage collection
•Garbage collection: free memory that is no longer in

use

6

Stephen Chong, Harvard University

Garbage Collection

•Runtime frees heap memory that is no longer in use
•How do we determine what is no longer in use?
•Ideally: any piece of memory that will not be used

in the future of the computation
•In practice: any piece of memory that is not

reachable
•Reachable = can be accessed through some chain of

pointers starting from program variables
•This is a subset of the memory that will not be used in the

future

7

Stephen Chong, Harvard University

Garbage Collection: Basic Idea

•Start from stack, registers, & globals (roots) and follow pointers to
determine which objects in heap are reachable

•Reclaim any object that isn't reachable 
 
 

•Problem: How do we know which values are pointers and which are
non-pointers (e.g., ints)?

8

$a0

global_var

Stack

✔

✔

✔

✔

✔

✔

✔

✔

✔✔

Heap

Stephen Chong, Harvard University

Identifying pointers

•OCaml uses the low bit: 1 it's a scalar, 0 it's a
pointer
•Why the low bit? Why not the high bit?

•In Java, we put tag bits in the meta-data
•In C (e.g., Boehm collector), typically use

heuristics
•If value doesn’t point into an allocated object, it’s not a

pointer

9

Stephen Chong, Harvard University

Mark and Sweep Collector

•Reserve a mark-bit for each object.
•Mark phase

10

For each root v:
 DFS(v)

function DFS(x):
 if x is a pointer into heap
 if record x is not marked
 mark x
 for each field fi of record x
 DFS(x.fi)

p ← first address in heap
while p < last address in heap
 if record p is marked
 unmark p
 else let f1 be the first field in p
 p.f1 ← freelist
 freelist ← p
 p ← p + (size of record p)

•Sweep phase

Stephen Chong, Harvard University

Explicit Stack

•DFS is recursive function
•Stack frame for each invocation!

•Use explicit stack instead...

11

function DFS(x):
 if x is a pointer into heap and x not marked
 t ← 1
 stack[t] ← x
 while t > 0:
 x ← stack[t]; t ← t – 1
 for each field fi of record x
 if x.fi is a pointer into heap and x.fi not marked:
 mark x.fi
 t ← t + 1; stack[t] ← x.fi

Stephen Chong, Harvard University

How Big Can the Stack Get?

•Worst case: stack can be as big as the heap!
•Trick: pointer reversal

•Don’t use explicit stack
•Instead, when visiting x.fi, use x.fi to store element of

stack!
• Specifically, store x in x.fi

•When stack is popped, restore original value of x.fi

•

12

Stephen Chong, Harvard University

Reference Counting

•Key idea: track how many pointers point to each object
•The reference count of the object, stored with object
•Compiler modifies stores to increment/decrement reference counts
•If reference count reaches 0, free object!

13

$t0

$t1

$t2

Heap
01 12 1

Stephen Chong, Harvard University

Reference Counting

•Any problems?
•What about cycles of garbage?

•Require programmer to break cycles
•Or do occasional mark-sweep collection

14

$t0

$t1

$t2

Heap
1 1

1

2

Stephen Chong, Harvard University

Costs of Reference Counting

•Whenever program wants to x.fi ← p
•Must execute

•z ← x.fi 
c ← z.count 
c ← c – 1 
z.count ← c 
if c = 0 then call putOnFreelist 
x.fi ← p  
c ← p.count  
c ← c + 1 
p.count ← c

•Dataflow analysis can reduce costs by aggregating updates
•But still expensive and not generally used

15

Stephen Chong, Harvard University

Stop and Copy Collector

•Split the heap into two pieces.

•Allocate in 1st piece until it fills up.
•Copy the reachable data into the 2nd area, compressing out the

holes corresponding to garbage objects.
•Can now reclaim all of the 1st piece!
•Allocate in 2nd piece until it fills up
•...

16

$t0

$t1

$t2

Heap

Stephen Chong, Harvard University

Stop and Copy Collector

•Split the heap into two pieces.

•Allocate in 1st piece until it fills up.
•Copy the reachable data into the 2nd area, compressing out the

holes corresponding to garbage objects.
•Can now reclaim all of the 1st piece!
•Allocate in 2nd piece until it fills up
•...

17

$t0

$t1

$t2

Heap

Stephen Chong, Harvard University

Stop and Copy Collector

•Split the heap into two pieces.

•Allocate in 1st piece until it fills up.
•Copy the reachable data into the 2nd area, compressing out the

holes corresponding to garbage objects.
•Can now reclaim all of the 1st piece!
•Allocate in 2nd piece until it fills up
•...

18

$t0

$t1

$t2

Heap

Stephen Chong, Harvard University

Generational Collection

•In many programs, newly created objects are likely to die soon

•Conversely, objects that survive many collections will probably
survive many more collections

•So: collector should concentrate effort on “young” data (where
there is higher proportion of garbage)

•Key idea: Divide heap into generations
•Allocate new objects into generation G0
•Collect G0 frequently, G1 less frequently, G2 even less so, ...
•If object survives 2-3 collections in Gi, copy it into Gi+1

•Roots now include pointers from older generations to younger ones
•Relatively rare
•But need mechanism to remember them

19

Stephen Chong, Harvard University

Incremental Collection  
Concurrent Collection

•Collector will occasionally interrupt program for
long periods of time for garbage collection
•Problem for interaction or realtime programs!

•Incremental collection performs some work on
garbage collection when the program requests it

•Concurrent collection performs garbage
collection concurrently with program

•Can greatly reduce latency!

20

Stephen Chong, Harvard University

Reality

•Large objects (e.g., arrays) can be copied “virtually" without a
physical copy.

•Some systems use mix of copying collection and mark/sweep
with compaction.

•A real challenge is scaling to server-scale systems with
terabytes of memory…

•Interactions with OS matter a lot: cheaper to do GC than to
start paging…

•Java has a variety of GCs available with different tradeoffs
•Default is generational collector that uses multiple threads when it runs

•OCaml uses a generational/incremental collector, invoked only
in allocation

21

Stephen Chong, Harvard University

Conservative Collectors

•Work without help from the compiler.
•e.g., legacy C/C++ code.

•Cannot accurately determine which values are
pointers.
•But can rule out some values (e.g., if they don't point into the

data segment.)

•So they must conservatively treat anything that looks
like a pointer as such.

•What happens if we have a value we aren’t sure is a
pointer or not?
•Two bad things: leaks, can't move the object!

22

Stephen Chong, Harvard University

The Boehm Collector

•Based on mark/sweep.
•Performs sweep lazily

•Organizes free lists as we saw earlier.
•Different lists for different sized objects.

•Relatively fast (single-threaded) allocation.

•Most of the cleverness is in finding roots:
•global variables, stack, registers, etc.

•And determining values aren't pointers:
•e.g., blacklisting (recording values that aren’t pointers

but are in vicinity of heap)
23

