John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 26:

The Economics of Programming Languages
Guest Lecturer: Evan Czaplicki

HARVARD

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Ann

e HW6: Optimization and Data Analysis
e Due today (Tue Dec 3)

Stephen Chong, Harvard University 2

The Economics of P
Lang
e Evan Czaplicki "12

e Creator of the Elm programming language
e https://elm-lang.org/

Stephen Chong, Harvard University 3

https://elm-lang.org/

(WJhat is this course about?
Source Code

A(Expressive,

high-level/abstract

\

Compiler!

Low-level,
hard to read,
not much ambiguity

-

or redundancy

v

(Target Code J

Basic

(Sou rce CodeJ

A
Code Generation
-------- { Target CodeJ

Stephen Chong, Harvard University 5

eLectures 2 + 3: Assembly

eTurning C into machine code
eIntel x86

*x86lite

*C memory layout

eCalling convention

eLecture 4,5,6: Intermediate Representation

e Compiling expressions directly to assembly
* Motivating Intermediate Representations (IRs)
eSimple Let Language

Top

* Lecture 9: Recursive Parsing
e Context-free grammars
*Derivations

*Parse trees

* Ambiguous grammars
*Recursive descent parsing
e Parser combinators

e Lecture 10: LL Parsing

eNullable, First, Follow sets
e Constructing an LL parsing table

*Basic blocks eLecture 11: LR Parsing
e Control-flow graphs

e ecture 7: LLVM, Structured Data in LLVM
*Arrays e Lecture 12: First-class Functions
e Tagged datatypes (and switches)
*Datatypes in LLVM

*Lecture 8: Lexing
e Tokens e Lecture 13: Compiling Functions

*Constructing a DFA and LR parsing table
e Using Menhir

e Nested functions
e Substitution semantics
e Environment semantics and closures

*Closure conversion
eImplementing environments and variables
*DeBruijn indices

*Regular Expressions
e Deterministic Finite Automata

e Nondeterministic Finite Automata
eNFA to DFA *Nested environments vs flat environments

e| exer Generator

Stephen Chong, Harvard University 6

Top1

e Lecture 14: Type Checking e Lecture 19: Optimizations
eJudgments and inference rules o Safety
eLecture 15, 16: Subtyping *Constant folding
*Types as sets of values e Algebraic simplification
*Subtyping eStrength reduction
eSubsumption e Constant propagation
eDowncasting *Copy propagation
eFunctions eDead code elimination
eRecords eInlining and specialization
eReferences eRecursive function inlining
eLecture 17, 18: Compiling Objects *Tail call elimination
*What is object oriented programming e Common subexpression elimination
eDynamic dispatch e Lecture 20: Dataflow Analysis
e Code generation for methods and method calls *Liveness analysis
eFields e Worklist algorithm
eCreating objects e Generalizing dataflow analysis
eExtensions e Available expressions
e Type system eReaching definitions

Stephen Chong, Harvard University 7

electure 21, 22: Register allocation

e Graph coloring by simplification

e Coalescing

e Coloring with coalescing

* Pre-colored nodes to handle callee-save,

caller-save, and special purpose registers

*Lecture 23: Loop Optimizations

e Examples

e|dentifying loops

* Dominators

e oop-invariant removal

eInduction variable reduction

e oop fusion

e oop fission

Loop unrolling

eLoop interchange

eLoop peeling

eLoop tiling

eLoop parallelization

Stephen Chong, Harvard University

Topic

e ecture 24: Embedded EthiCS module

e Ethics of Open Source

* Free/Open Source Software
e Short History

e Argument from Freedom

* Economic Arguments

e |dentifying Possible Ethical Concerns
Philosophical Tools: Compensation of
Maintainers

e Lecture 25: Garbage Collection

*Key idea

e Mark and sweep

e Stop and copy

e Generational collection

e Reference counting

e Incremental collection, concurrent collection
* Boehm collector

What Next?

efExam

* Will release some practice questions later this week

* Will arrange review session, likely Monday Dec 16

e Other courses

*(C5152: Programming Languages
* Spring. Prof Nada Amin

* CS252r: Advanced Topics in PL
* Spring 2020: Building a Verified Compiler

e Research

e Come and chat!

