

John A. Paulson School of Engineering and Applied Sciences

CS153: Compilers Lecture 26:

The Economics of Programming Languages **Guest Lecturer: Evan Czaplicki**

> Stephen Chong https://www.seas.harvard.edu/courses/cs153

Announcements

HW6: Optimization and Data AnalysisDue today (Tue Dec 3)

The Economics of Programming Languages

- Evan Czaplicki '12
 - Creator of the Elm programming language
 - https://elm-lang.org/

Basic Architecture

Topics

- Lectures 2 + 3: Assembly
 - Turning C into machine code
 - Intel x86
 - •x86lite
 - •C memory layout
 - Calling convention
- Lecture 4,5,6: Intermediate Representation
 - Compiling expressions directly to assembly
 - Motivating Intermediate Representations (IRs)
 - Simple Let Language
 - Basic blocks
 - Control-flow graphs
- Lecture 7: LLVM, Structured Data in LLVM
 - Arrays
 - Tagged datatypes (and switches)
 - Datatypes in LLVM
- Lecture 8: Lexing
 - Tokens
 - Regular Expressions
 - Deterministic Finite Automata
 - Nondeterministic Finite Automata
 - •NFA to DFA
 - •Lexer Generator

- Lecture 9: Recursive Parsing
 - Context-free grammars
 - Derivations
 - Parse trees
 - Ambiguous grammars
 - Recursive descent parsing
 - Parser combinators
- Lecture 10: LL Parsing
 - Nullable, First, Follow sets
 - Constructing an LL parsing table
- Lecture 11: LR Parsing
 - Constructing a DFA and LR parsing table
 - Using Menhir
- Lecture 12: First-class Functions
 - Nested functions
 - Substitution semantics
 - Environment semantics and closures
- Lecture 13: Compiling Functions
 - Closure conversion
 - Implementing environments and variables
 - DeBruijn indices
 - Nested environments vs flat environments

Topics

- Lecture 14: Type Checking
 - Judgments and inference rules
- Lecture 15, 16: Subtyping
 - •Types as sets of values
 - Subtyping
 - Subsumption
 - Downcasting
 - Functions
 - Records
 - References
- Lecture 17, 18: Compiling Objects
 - •What is object oriented programming
 - Dynamic dispatch
 - •Code generation for methods and method calls
 - Fields
 - Creating objects
 - Extensions
 - •Type system

- Lecture 19: Optimizations
 - Safety
 - Constant folding
 - Algebraic simplification
 - Strength reduction
 - Constant propagation
 - Copy propagation
 - Dead code elimination
 - Inlining and specialization
 - Recursive function inlining
 - Tail call elimination
 - •Common subexpression elimination
- Lecture 20: Dataflow Analysis
 - •Liveness analysis
 - Worklist algorithm
 - Generalizing dataflow analysis
 - Available expressions
 - Reaching definitions

Topics

- Lecture 21, 22: Register allocation
 - Graph coloring by simplification
 - Coalescing
 - Coloring with coalescing
 - Pre-colored nodes to handle callee-save, caller-save, and special purpose registers
- Lecture 23: Loop Optimizations
 - Examples
 - Identifying loops
 - Dominators
 - Loop-invariant removal
 - Induction variable reduction
 - Loop fusion
 - Loop fission
 - •Loop unrolling
 - Loop interchange
 - •Loop peeling
 - Loop tiling
 - Loop parallelization

- Lecture 24: Embedded EthiCS module
 - Ethics of Open Source
 - Free/Open Source Software
 - Short History
 - Argument from Freedom
 - Economic Arguments
 - Identifying Possible Ethical Concerns Philosophical Tools: Compensation of Maintainers
- Lecture 25: Garbage Collection
 - Key idea
 - Mark and sweep
 - Stop and copy
 - Generational collection
 - Reference counting
 - Incremental collection, concurrent collection
 - Boehm collector

What Next?

• Exam

- Will release some practice questions later this week
- •Will arrange review session, likely Monday Dec 16

• Other courses

- CS152: Programming Languages
 - Spring. Prof Nada Amin
- CS252r: Advanced Topics in PL
 - Spring 2020: Building a Verified Compiler

Research

• Come and chat!