Vgt HARVARD

School of Engineering
and Applied Sciences

Dataflow analysis

C5252r Spring 2011
(Based on lecture notes by Jeff Foster)

Control flow graph

* A control flow graph is a representation of
program that makes certain analyses (inclt
dataflow analyses) easier

* A directed graph where

e Each node represents a statement

* Edges represent control flow

e Statements may be
e Assignments: X :=y Or X:=yOp ZOrx:=opy
e Branches: goto L or if b then goto L
® etc.

Control-tlow graph ¢ s

X := a + b;

y := a * b;

while (y > a) {
a := a + 1;

X t= a + b
}
a

Variations on CFGs

e Usually don’t include declarations (e.g., int x;) in
the CFG

e But there’s usually something in the implementation

* May want a unique entry and exit node

*\Won't matter for the examples we give

* May group statements into basic blocks

* A sequence of instructions with no branches into or
out of the block

Control-flow graph with basic blocks

X = a + b;

y = a * b;
while (y > a) {
a = a + 1;
X = a+ b

}

e Can lead to more efficient
implementations

e More complicated to
explain, so for the meantime
we'll use single statement

blocks

Graph example with entry and exit

a
1;
b

* All nodes without a normal
predecessor should be
pointed to by entry

e All nodes with a successor
should point to exit

CFG vs AST

e CFGs are much simpler than ASTs

e Fewer forms, less redundancy, only simple
expressions

e Bu

t AST is a more faithful representation

e CFGs introduce temporaries

e Lose block structure of program

e ASTs are

Fasier to report error + other messages

Fasier to explain to programmer
Fasier to unparse to produce readable code

Datatlow analysis

e A framework for proving facts about programs

e Reasons about lots of little facts

o | ittle or no interaction between facts

o \\or
com

s best on properties about how program

outes

*Based on all paths through program

*|Including infeasible paths

e | et’s consider some dataflow analyses

Available expressions

e An expression e is available at program point p if

ee is computed on every path to p,and

ethe value of e has not changed since the last time e was
computed on the paths to p

* Available expressions can be used to optimize

CO

o

de

" an expression is available, don’t need to recompute it

(

orovided it is stored in a register somewhere)

Data flow facts

*|s expression e available?
* Facts

°“a + b is available”

°“a * b is available”

°“a + 1 is available”

* For each program
point, we will
compute which facts

hold.

Gen and Kill

e \What is the effect of each
statement on the facts?

Stmt Kill

X:=a+b

y:=a*b

Computing available

X =
la+b} >

© 2010 Stephen Chong, Harvard University

Terminology

* A join point is a program point where two or
more branches meet

* Available expressions is a forward must analysis

e Forward = Data flow from in to out

e Must = At join points, only keep facts that hold on all
paths that are joined

Data flow equations

o| et s be a statement

esuccs(s) = { immediate successor stmts of s }

epreds(s) = { immediate predecessor stmts of s }
°|n(s) = program point just before executing s
e Out(s) = program point just after executing s

®In(s) = ns’epreds(s.) Out(s’)
e Out(s) = Gen(s) u (In(S) - Kill(s))

Liveness analysis

* A variable v is live at program point p if

ev will be used on some execution path originating
from p before v is overwritten

* Optimization
f a variable is not live, no need to keep it in a register

f variable is dead at assignment, can eliminate
assignment

Data flow equations

* Available expressions is a forward must analysis

* Propagate facts in same direction as control flow

 Expression is available only if available on all paths

e Liveness is a backwards may analysis

e To know if a variable is live, we need to look at the future
uses of it. We propagate facts backwards, from Out to In

e Variable is live if it is used on some path

*Out(s) = Us’esuccs(s) In(s’)
* In(s) = Gen(s) u (Out(S) - Kill(s))

Gen and Kill

e \What is the effect of each
statement on the facts?

Stmt Kill

X:=a+b

y:=a*b

y>a

a:=a+ |

Computing live

© 2010 Stephen Chong, Harvard Universi

Very busy expressions

* An expression e is very busy at point p if

*On every path from p, expression e is evaluated before
the value of e is changed

* Optimization
e Can hoist very busy expression computation

e What kind of problem?

e Forward or backward?
* May or must¢

Reaching definitions

* A definition of a variable v is an assignment to v
* A definition of variable v reaches point p if

e There is no intervening assignment to v
e Also called def-use information

e What kind of problem?

e Forward or backward?
* May or must¢

Space of data tlow analyses

May Must

Reaching Available

Forward . .
definitions expressions

Very busy

Backward Live variables .
expressions

* Most dataflow analyses can be categorized in
this way

* A few don’t fit, need bidrectional flow

e ots of literature on data flow analyses

Data flow facts

* Typically, data flow facts form lattices

eE.g., available expressions
—l— //top//

a+b, a*b, a+1

T

a+b, a*b

a*b

/

1 “bottom”

%)

© 2010 Stephen Chong, Harvard University

Partial orders and lattices

e A partial order is a pair (P<) such that
e < is a relation over P (< C PxP)

e < s reflexive, anti-symmetric, and transitive

e A partial order is a lattice if every two elements of P have
a unique least upper bound and greatest lower bound.

* N is the meet operator: x n vy is the greatest lower bound of x and y
exny<x and xny<y
cifz<xandz<ythenz<xny

* U is the join operator: x u v is the least upper bound of x and y
ex<xuy and y<xuy
cifx<zandy<zthenxuy<z

e A join semi-lattice (meet semi-lattice) has only the join (meet) operator defined

Complete lattices

* A partially ordered set is a complete lattice if
meet and join are defined for all subsets (i.e., not
just for all pairs)

e A complete lattice always has a bottom element
and a top element

* A finite lattice always has a bottom element and
a top element

Useful lattr

(2>, C) forms a lattice for any set S

2> is powerset of S, the set of all subsets of S.
olf (S, <) is a lattice, so is (S, >)
ei.e., can “flip” the lattice

e Lattice for constant propagation

© 2010 Stephen Chong, Harvard University

Forward must data flow

Out(s) = T for all statements s

W :={ all statements } (worklist)
repeat {
Take s from W

Iﬂ(S) .= ﬂs' e pred(s) OUt(S,)

temp := Gen(s) u (In(s) - Kill(s))
if (temp != Out(s)) {

Out(s) := temp

W := W u succ(s)

}
Yuntil W = @

© 2010 Stephen Chong, Harvard Universi

Monotonicity

* A function f on a partial order is monotonic if
oif x <y then f(x) < f(y)

 Functions for computing In(s) and Out(s) are
monotonic

®In(s) := Ny e pred(s) OUt()

*temp = Gen(s) u (In(s) - Kill(s)) A function fs of In(s)

® Putting them together: temp := fo(Ns’ ¢ predis) Out(s”))

© 2010 Stephen Chong, Harvard University

Termination

rC)ut(s) ‘

= T for all statements s
W := { all statements }
repeat {
Take s from W

e We know the algorithm
terminates

e [n each iteration, either

|ﬂ(S) .= r']s' e pred(s) OUt(S,>
W gets smal er, or Out(s) temp := Gen(s) u (In(s) - Kill(s))

decreases for some s if (temp != Out(s)) |

. . . , Out(s) := tem
e Since function is monotonic W <=)vv 0 Sucpc(s)

e Lattice has only finite } IR
height, so for each s, B

Out(s) can decrease only
finitely often

Termination

* A descending chain in a lattice is a sequence
Xo < X1 < ...

*The height of a lattice is the length of the longest

descending chain in the lattice

e Then, dataflow must terminate in O(nk) time

°n = # of statements in program

ek = height of lattice

eassumes meet operation and transfer function takes
O(T) time

Fixpoints

e Dataflow tradition: Start with Top, use meet

*To do this, we need a meet semilattice with top
« complete meet semilattice = meets defined for any set

- finite height ensures termination

e Computes greatest fixpoint

e Denotational semantics tradition: Start with
Bottom, use join

e Computes least fixpoint

Forward must data flow

Out(s) = T for all statements s

W :={ all statements } (worklist)
repeat {
Take s from W

Iﬂ(S) .= ﬂs' e pred(s) OUt(S,)

temp := Gen(s) u (In(s) - Kill(s))
if (temp != Out(s)) {

Out(s) := temp

W := W u succ(s)

}
Yuntil W = @

© 2010 Stephen Chong, Harvard Universi

Forward data flown

Out(s) = T for all statements s

W :={ all statements }
repeat {
Take s from W

temp ::ECS(I_IS' « pred(s) OUt(s")) J
if (temp != Out(s)) { \

OUt(S) .= temp Transtfer function for
W := W u succ(s) statement s

]
Yuntil W = @

© 2010 Stephen Chong, Harvard Universi

Which lattice to use?

* Available expressions
e P = sets of expressions
* Meet operation m Is set intersection n

e T is set of all expressions

* Reaching definitions
e P = sets of definitions (assignment statements)
* Meet operation m Is set union u
* T IS empty set
* Monotonic transfer function fs is defined based on
gen and kill sets.

Distributive data floy

o|f f is monotonic, then we have

f(x ny) <f(x) nf(y)

o[f f is distributive then we have

f(x my) =1f(x) nf(y)

Benefit of distri

eJoins lose no information

(

Accuracy of data tlow analysis

e |deally we would like to compute the meet over all
paths (MOP) solution:

et fs be the transfer function for statement s

f p is a path s1,...,5n, let fy = fon;.. 151

_et paths(s) be the set of paths from the entry to s

.MOP<) = rlpepaths(s) fp(T>

' the transfer functions are distributive, then solving

U

sing the data flow equations in the standard way

produces the MOP solution

What problems are distributive?

* Analyses of how the program computes
°k.g.,

* Live variables

* Available expressions
* Reaching definitions

* Very busy expressions

* All Gen/Kill problems are distributive

Non-distributive example

* Constant propagation

Ge=z) Gen)

(s =% ty)

* In general, analysis of what the program computes is
not distributive

e Thm: MOP for In(s) will always be C iterative dataflow
solution

Practical implementation

e Data flow facts are assertions that are true or
false at a program point

e Can represent set of facts as bit vector
eFact i represented by bit |
e Intersection=bitwise and, union=Dbitwise or, etc

*“Only” a constant factor speedup
eBut very useful in practice

Basic blocks

* A basic block is a sequence of statements such
that

* No branches to any statement except the first
e No statement in the block branches except the last

e|n practical data flow implementations

e Compute Gen/Kill for each basic block
« Compose transfer functions

e Store only In/Out for each basic block

e Typical basic block is about 5 statements

Order is important

e Assume forward data flow problem
ol et G=(V,E) be the CFG
| et k be the height of the lattice

e|f G acyclic, visit in topological order
*Visit head before tail of edge
e Running time O(|E|)

e No matter what size the lattice

Order is important

e |If G has cycles, visit in reverse postorder
* Order from depth-first search

eLet Q = max # back edges on cycle-free path
* Nesting depth
*Back edge is from node to ancestor on DFS tree
eThen it Wvx. f(x) <x (sufficient, but not necessary)
eRunning time is O((Q + 1)|E|)

Flow sensitivity

e Data flow analysis is flow sensitive

* The order of statements is taken into account
* |.e., we keep track of facts per program point

* Alternative: Flow-insensitive analysis

* Analysis the same regardless of statement order

e Standard example: types describe facts that are true at
all program points

o /*x:int*/ x:=... /*x:int*/

A proble

 Consider following program

FILE *pFile = NULL;
if (debug) {

pFile = fopen(“debuglog.txt”, “a”)
J

if (debug) {
fputs(“foo”, pFile);
}

e Can pFile be NULL when used for fputs?

*\What dataflow analysis could we use to
determine if it is?

© 2010 Stephen Chong, Harvard University

pFile # NULL

© 2010 Stephen Chong, Harvard University

Path sensitivity

e A path-sensitive analysis tracks data flow facts depending on
the path taken

e Path often represented by which branches of conditionals taken

e Can reason more accurately about correlated conditionals (or
dependent conditionals) such as in previous example

* How can we make a path sensitive analysi
e Could do a dataflow analysis where we track facts for each possible path

e But exponentially many paths make it difficult to scale

e Some research on scalable path sensitive analyses. We will
discuss one next week

Terminology review

* Must vs. May

*(Not always followed in literature)
e Forwards vs. Backwards
e Flow-sensitive vs. Flow-insensitive
e Path-sensitive vs Path-insensitive
e Distributive vs. Non-distributive

Datatlow analysis and the heap

e Data Flow is good at analyzing local variables

e But what about values stored in the heap?

e Not modeled in traditional data flow
*[n practice: *x :=e
e Assume all data flow facts killed (!)

*Or, assume write through x may affect any variable
whose address has been taken

*|n general, hard to analyze pointers

