Vgt  HARVARD

School of Engineering
and Applied Sciences

Interprocedural Analysis

C5252r Spring 2011




Procedure

e So far looked at intraprocedural analysis: analyzing a
single procedure

e Interprocedural analysis uses calling relationships among
procedures

eEnables more precise analysis information

© 2010 Stephen Chong, Harvard University



Call graph

* First problem: how do we know what procedures are
called from where?

e Especially difficult in higher-order languages, languages where
functions are values

e We'll ignore this for now, and return to it later in course...

* Let’s assume we have a (static) call graph

e Indicates which procedures can call which other procedures, and
from which program points.




Call graph €

O {
5: fO); h J

} 6: i0; je;

| i
10O { ..} {

© 2010 Stephen Chong, Harvard University

(*




Interprocedural datatlow analysis

e How do we deal with procedure calls?

e Obvious idea: make one big CFG

Enter main
{ 2
/; X =7
p(x); Y

e Call p(x)

=
Q
.
>
M\
W/

X

N X 73

p(x + 10);

} r:=Return p(x)

v

X :=r return a;

p(int a) { ¥ ) 2
if (a < 9) Call p(x + 10) Exit p
y = 0;
else z:=Return p(x+10)

y : ; v
return a, Exit main




Interprocedural CFG

e CFG may have additional
nodes to handle call and
returns

Set up environment for calling p

Enter main

* Treat arguments, return
values as assignments

* Note: a local program Call p(x)
variable represents
multiple locations

r:=Return p(x)

Call p(x + 10)

z:=Return p(x+10)
L

Exit main

~ ~ . .
Restore calling environment
z:=a




r=7, x=8

Enter main

v

X =7

> ¥

Call p(x)

r:=Return p(x)

> v

X =7r

> v

return a;

Call p(x + 10)

v €

Exit p

z:=Return p(x+10)

i /

Exit main

© 2010 Stephen Chong, Harvard University




/
44
Invalid pa
=4

7

e Problem: dataflow facts from one call site
“tainting” results at other call site

ep analyzed with merge of dataflow facts from all call
sites

e How to address?

© 2010 Stephen Chong, Harvard University



Inlining
74

7

e Inlining

e Use a new copy of a
procedure’s CFG at each call
site |

X =7

e Problems? Concerns?

\ 4
Call p return
v

* May be expensive! Exponential s

increase in size of CFG T ”L/
X 1= 8

*p0{q0; q0;} qO{r0; r(} 7

r() { } Call p(x +

z:=Return p(x return

* What about recursive ! :
procedures? Exit Exit p

e p(intn) { ... p(n-1); ... }
* More generally, cycles in the call
graph

© 2010 Stephen Chong, Harvard University




Context sensitivity

*Solution: make a finite number of copies

* Use context information to determine when to
share a copy

*Results in a context-sensitive analysis

e Choice of what to use for context will produce
different tradeoffs between precision and
scalability

e Common choice: approximation of call stack




Context sensitivity example

-
Context: 1

Enter p

[Context: - v
3: Call qO)

Enter main

7 3: Return q() |‘;

1: Call pO v .
- Exitp Context: 3

1: Return p()l(’ \_ ﬂl Enter g

L 2
2: Call pQO

-
Context: 2

—> Enter p
Y

N
2: R
etirn p() 3: Call qO j
3: R
S etirn (@) |(‘

Exit p




Context sensitivity example

-
(Context: 1::- Context: 3::1

Enter p _r Enter q

[Context: - v
3: Call qO)

Enter main
\ 3: Return qO)
1: Call pO J,

1: Return p()l(’ \_

v
2: Call pQO)

-
(Context: s Context: 3::2

~>|  Enter p > Enter ¢

Y
3: Call qQO

2: Return p(Q)

y

Exit main

3: Return qQ)

)

Exit p




Fibonacci: context i

main() {
1: f1b(7);
} Enter
v
fib(int n) { 1: call
1f n <=1 1: return
= 0 L

Exit

:= fib(n-1);
= fib(n-2);
X:i= y+Z;
return Xx;

¥

© 2010 Stephen Chong, Harvard University



Fibonacci: context sensitive,

stack depth 1

main() { (Context: - (Context: 1 (Context: 2 )

1: 'F'Lb(7), Ertor /7' Enter /IV Enter |:<
} —
1: t;11 "’/’ ..!-r”” :

1+ |
fibCint n) { _/ ‘\

1: return

1f n <= 1 ¥ A

= Exit
@\ X1

A

fib(n-1);
fib(n-2);
X:i= y+Z;
return Xx;

¥




Fibonacci: context sensitive,

stack depth 2

main() { (Context: -

1: f1ib(7);

Enter

¥

v

1:

call

fib(int n) {

1: return

1f n <= 1

\/

\_

fib(n-1);
fib(n-2);
X:= Y+Z;
return Xx;

¥

B

(Context: 1::- h

.

\

-

Context: 2

(Context 2: 2

fContext: 3::

(Context: 3::3 h




Other contexts

e Context sensitivity distinguishes between different calls of
the same procedure

e Choice of contexts determines which calls are differentiated

e Other choices of context are possible

e Caller stack

* Less precise than call-site stack
* E.g., context “2::2” and “2::3” would both be “fib::fib”
e Object sensitivity: which object is the target of the method call?
 For OO languages.
 Maintains precision for some common OO patterns

« Requires pointer analysis to determine which objects are possible targets

« Can use a stack (i.e., target of methods on call stack)




7z
y

Other con
A

e More choices

* Assumption sets

» What state (i.e., dataflow facts) hold at the call site?
» Used in ESP paper

e Combinations of contexts, e.g., Assumption set and
object

© 2010 Stephen Chong, Harvard University



Procedure summaries

e In practice, often don’t construct single CFG and perform
dataflow

* Instead, store procedure summaries and use those

* When call p is encountered in context C, with input D,
check if procedure summary for p in context C exists.

* If not, process p in context C with input D
e If yes, with input D" and output E’
* if D’C D, then use E’
it D’ Z D, then process p in context C with input D'nD

e If output of p in context C changes then may need to reprocess anything
that called it

e Need to take care with recursive calls




Flow-sensitivity

eRecall: in a flow insensitive analysis, order of
statements Is not important

ee.g., analysis of ci;c2 will be the same as c¢;c;

* Flow insensitive analyses typically cheaper than
flow sensitive analyses

e Can have both flow-sensitive interprocedural
analyses and flow-insensitive interprocedural
analyses

 Flow-insensitivity can reduce the cost of
interprocedural analyses




Infeasible pe

e Context sensitivity increases precision by analyzing the
same procedure in possibly many contexts

e But still have problem of infeasible paths

e Paths in control flow graph that do not correspond to actual
executions

© 2010 Stephen Chong, Harvard University



Infeasible paths example

-
Context: 1

- Enter p
main() { Context: - Y

1- p(7), 3: Call g(n)

Enter main

2. X=p(42), v 3: Return q(n)l«
¥ 1: Call p(?) ) p
- Exitp Context: 3

p(lnt n) '{ 1: Return p(?)l(’ \_ ﬂl Enter g
3: q(n); v Y

-
1 > Call pcad) Context: 2 return k

. v
g(int k) { g Ent:r P Exit p

SN
return k; 2: Return p(42) 3: Call g(n) j
3: Return q(n)l(-

Exit main
v

Exit p




Realizable paths

dea: restrict attention to realizable paths: paths that have proper nesting of
procedure calls and exits

For each call site j, let’s label the call edge “(” and the return edge “)/”

Define a grammar that represents balanced paren strings
matched ::= ¢ empty string
€ anything not containing parens
matched matched
(i matched )i

e Corresponds to matching procedure returns with procedure calls

* Define grammar of partially balanced parens (calls that have not yet returned)

realizable ::= ¢
| (i realizable
|

matched realizable




main() {

1: p(7);

2: x:=p(42);
3

p(lnt n) { 1: Return.o(7)
3: gln); \/

} 2: Call g

q(int k) {
I"etur'n k; 2: Return.n

; v

Exit main

© 2010 Stephen Chong, Harvard University



Meet over Realizable Paths

* Previously we wanted to calculate the dataflow facts

that hold at a no
all paths (MOP)

de in the CFG by taking the meet over

e But this may include infeasible paths

* Meet over all realizable paths (MRP) is more precise

* For a given node
from the start of t

* May have paths t

n, we want the meet of all realizable paths
ne CFG to n

nat don’t correspond to any execution, but

every execution will correspond to a realizable path

e realizable paths are a subset of all paths
* = MRP sound but more precise: MRP E MOP




Program analysis as CFL reachability

* Can phrase many program analyses as context-
free language reachability problems in directed
graphs
e “Program Analysis via Graph Reachability” by Thomas

Reps, 1998

« Summarizes a sequence of papers developing this idea




CFL Reachability

_et | be a context-free language over alphabet Z

et G be graph with edges labeled from 2

Fach path in G defines word over 2
* A path in G is an L-path if its word is in L
e CFL reachability problems:

e All-pairs L-path problem: all pairs of nodes n1, n, such that there is an L-path
from n1 to ny

e Single-source L-path problem: all nodes n; such that there is an L-path from
given node ni to ny

e Single-target L-path problem: all nodes ni such that there is an L-path from
ni to given node n»

e Single-source single-target L-path problem: is there an L-path from given
node n; to given node n>




Why bother?

* All CFL-reachability problems can be solved in
time cubic in nodes of the graph

e Automatically get a faster, approximate solution:
graph reachability

* On demand analysis algorithm for free

e Gives insight into program analysis complexity
Issues




Encoding 1: IFDS problems

* Interprocedural finite distributive subset
problems (IFDS problems)

e Interprocedural dataflow analysis with

* Finite set of data flow facts
 Distributive dataflow functions ( f(anb) = f(a) n f(b) )

e Can convert any IFDS problem as a CFL-graph
reachability problem, and find the MRP solution

with r

*May
IFDS

o loss of precision

pe some loss of precision phrasing problem as



Encoding distributive fur

* Key insight: distributive function f:2°— 2P can be encoded as
graph with 2D+2 nodes

e W.L.O.G. assume n =u

o Eg, SUppoOse D = {X, g} g é D Represents inputs

Represents empty set
O O
A g Represents outputs

* Edge A—d means def(S) for all S
* Edge di—d>» means dr¢f(@) and dx€f(S) if di€$

* Edge A—A always in graph (allows composition)

© 2010 Stephen Chong, Harvard University



Encoding distribt

*AS. {x,g]

© 2010 Stephen Chong, Harvard University



Encoding distribt

*AS. S-{x} o AS. {x,g}

© 2010 Stephen Chong, Harvard University



Exploded supergraph G

et G* be supergraph (i.e., interprocedural CFP)
e For each node neG*, there is node <n,A\)eG*

e For each node neG*, and deD there is node
{n,dyeCG*

* For function f associated with edge a—beG*
*Edge <a,\) = (b,d) for every def(OD)

*Edge <a, di) = <b,d2) for every dr&f({d}) - (D)
*Edge (a,\) = (b, )




Possibly uninitiali
variable exam

declare g: int

procedure main
begin
declare x: int
read(x)
call P (x)
end

procedure P (value a: int)
begin
if (a > 0) then
read(g)
a:=a-g
call P (a)
print(a, g)
fi
end

Closed circles represent nodes

startmal-n

ENTER main

ENTER P

|

|

nl
READ(x)

n4

RETURN
FROM P

|

exit .
main

EXIT main

reachable along realizable paths from

(startmain, \

Program Analysis via Graph Reachability by Reps, Information and Software Technology 40(11-12) 1998

READ(g)

nsS

RETURN
FROM P

'

n9

PR'NT(a,g)/

a g



http://www.cs.wisc.edu/wpis/papers/tr1386.pdf
http://www.cs.wisc.edu/wpis/papers/tr1386.pdf

Encoding 2: IDE problems

e Interprocedural Distributive Environment
problems (IDE problems)

e Interprocedural dataflow analysis with

» Dataflow info at program point represented as a finite
environment (i.e., mapping from variables/locations to
finite height domain of values)

» Transfer function distributive “environment transformer”
°k.g., copy constant propagation
* interprets assignment statements such as x=7 and y=x

eE.g. linear constant propagation
- also interprets assignment statements such asy = 5*z + 9




Encoding distributive environment-transformers

e Similar trick to encoding distributive functions in
IFDS

* Represent environment-transformer function as
graph with each edge labeled with micro-
function

&

X y
(a) henv.env (b) henv.env [x+—>T] | (c) Aenv.env|[y=env(x)] | (d) henv.env [y = -2%env (x)+5]




Solving

e Requirements for class F of micro functions

e Must be closed under meet and composition

e F must have finite height (under pointwise ordering)

e {(I) can be computed in constant time

* Representation of f is of bounded size

e Given representation of f, f, € F

* Can com

°* Can com

°* Can com

oute representation of f1 o f, € F in constant time

pute representation of f1 n f, € F in constant time

oute f1 = > in constant time



Solving

* First pass computes jump functions and summary
functions

e Summaries of paths within a procedure and of
procedure calls, respectively

e Second pass uses these functions to computer
environments at program points

e More details in “Precise Interprocedural Dataflow
Analysis with Applications to Constant Propagation” by
Sagiv, Reps, and Horwitz, 1996.




