
Interprocedural Analysis

CS252r Spring 2011

© 2010 Stephen Chong, Harvard University

Procedures

•So far looked at intraprocedural analysis: analyzing a
single procedure

•Interprocedural analysis uses calling relationships among
procedures

•Enables more precise analysis information

2

© 2010 Stephen Chong, Harvard University

Call graph

•First problem: how do we know what procedures are
called from where?
•Especially difficult in higher-order languages, languages where

functions are values

•We’ll ignore this for now, and return to it later in course…

•Let’s assume we have a (static) call graph
•Indicates which procedures can call which other procedures, and

from which program points.

3

© 2010 Stephen Chong, Harvard University

Call graph example

4

f() {
 1: g();
 2: g();
 3: h();
}

g() {
 4: h();
}

h() {
 5: f();
 6: i();
}

i() { … }

1
2

3 5

6

4

f

g
h

i

© 2010 Stephen Chong, Harvard University

Interprocedural dataflow analysis

• How do we deal with procedure calls?

• Obvious idea: make one big CFG

5

main() {
 x := 7;
 r := p(x);
 x := r;
 z := p(x + 10);
}

p(int a) {
 if (a < 9)
 y := 0;
 else
 y := 1;
 return a;
}

Exit main

Enter main

x := 7

Call p(x)

r:=Return p(x)

x := r

Call p(x + 10)

z:=Return p(x+10)

Enter p

a < 9

y := 0 y := 1

Exit p

return a;

© 2010 Stephen Chong, Harvard University

Interprocedural CFG

• CFG may have additional
nodes to handle call and
returns
• Treat arguments, return

values as assignments

• Note: a local program
variable represents
multiple locations

6

Set up environment for calling p
a := x, ...

Restore calling environment
z := a

Exit main

Enter main

x := 7

Call p(x)

r:=Return p(x)

x := r

Call p(x + 10)

z:=Return p(x+10)

Enter p

a < 9

y := 0 y := 1

Exit p

return a;

© 2010 Stephen Chong, Harvard University

Example

7

Exit main

Enter main

x := 7

Call p(x)

r:=Return p(x)

x := r

Call p(x + 10)

z:=Return p(x+10)

Enter p

a < 9

y := 0 y := 1

Exit p

return a;

x=7

a=7

a=7

a=7

r=7, x=7

r=7, x=7

a=17

a=⊥

a=⊥

r=7, x=8

r=⊥, x=7

r=⊥, x=⊥

a=⊥

© 2010 Stephen Chong, Harvard University

Invalid paths

•Problem: dataflow facts from one call site
“tainting” results at other call site
•p analyzed with merge of dataflow facts from all call

sites

•How to address?

8

© 2010 Stephen Chong, Harvard University

Inlining

• Inlining
• Use a new copy of a

procedure’s CFG at each call
site

• Problems? Concerns?
• May be expensive! Exponential

increase in size of CFG
• p() { q(); q(); } q() { r(); r() }

r() { … }

• What about recursive
procedures?
• p(int n) { … p(n-1); … }

• More generally, cycles in the call
graph

9

Exit

Enter

x := 7

Call p

r:=Return p
(x)

x := 8

Call p(x +

z:=Return p(x

Enter p

a < 9

y := 0 y := 1

Exit p

return
Enter p

a < 9

y := 0 y := 1

Exit p

return

© 2010 Stephen Chong, Harvard University

Context sensitivity

•Solution: make a finite number of copies
•Use context information to determine when to

share a copy
•Results in a context-sensitive analysis

•Choice of what to use for context will produce
different tradeoffs between precision and
scalability

•Common choice: approximation of call stack

10

© 2010 Stephen Chong, Harvard University

Context sensitivity example

11

main() {
 1: p();
 2: p();
}

p() {
 3: q();
}
q() {
 …
}

Exit p

Enter p

3: Call q()

3: Return q()

Context: 1

Exit q

Enter q

...

Context: 3

Exit main

Enter main

1: Call p()

1: Return p()

2: Call p()

2: Return p()

Context: -

Exit p

Enter p

3: Call q()

3: Return q()

Context: 2

© 2010 Stephen Chong, Harvard University

Context sensitivity example

12

main() {
 1: p();
 2: p();
}

p() {
 3: q();
}
q() {
 …
}

Exit p

Enter p

3: Call q()

3: Return q()

Context: 1::-

Exit q

Enter q

...

Context: 3::1

Exit main

Enter main

1: Call p()

1: Return p()

2: Call p()

2: Return p()

Context: -

Exit p

Enter p

3: Call q()

3: Return q()

Context: 2::-

Exit q

Enter q

...

Context: 3::2

© 2010 Stephen Chong, Harvard University

Fibonacci: context insensitive

13

main() {
 1: fib(7);
}

fib(int n) {
 if n <= 1
 x := 0
 else
 2: y := fib(n-1);
 3: z := fib(n-2);
 x:= y+z;
 return x;
}

Exit

Enter

2

Exit

Enter

1: call

1: return

© 2010 Stephen Chong, Harvard University

Fibonacci: context sensitive,
stack depth 1

14

main() {
 1: fib(7);
}

fib(int n) {
 if n <= 1
 x := 0
 else
 2: y := fib(n-1);
 3: z := fib(n-2);
 x:= y+z;
 return x;
}

Exit

Enter

1: call

1: return

Context: -

Exit

Enter

Context: 1

2

Exit

Enter

Context: 2

2

Exit

Enter

Context: 3

2

© 2010 Stephen Chong, Harvard University

Fibonacci: context sensitive,
stack depth 2

15

main() {
 1: fib(7);
}

fib(int n) {
 if n <= 1
 x := 0
 else
 2: y := fib(n-1);
 3: z := fib(n-2);
 x:= y+z;
 return x;
}

Exit

Enter

1: call

1: return

Context: -

Context: 1::-

Exit

Enter
2

Context: 2::1

Exit

Enter
2

Context: 3::1

Exit

Enter
2

Context: 2::2

Exit

Enter
2

Context: 3::2

Exit

Enter
2

Context: 2::3

Exit

Enter
2

Context: 3::3

Exit

Enter
2

© 2010 Stephen Chong, Harvard University

Other contexts

• Context sensitivity distinguishes between different calls of
the same procedure
• Choice of contexts determines which calls are differentiated

• Other choices of context are possible
• Caller stack

• Less precise than call-site stack

• E.g., context “2::2” and “2::3” would both be “fib::fib”

• Object sensitivity: which object is the target of the method call?
• For OO languages.

• Maintains precision for some common OO patterns

• Requires pointer analysis to determine which objects are possible targets

• Can use a stack (i.e., target of methods on call stack)

16

© 2010 Stephen Chong, Harvard University

Other contexts

•More choices
•Assumption sets
•What state (i.e., dataflow facts) hold at the call site?
•Used in ESP paper

•Combinations of contexts, e.g., Assumption set and
object

17

© 2010 Stephen Chong, Harvard University

Procedure summaries

• In practice, often don’t construct single CFG and perform
dataflow

• Instead, store procedure summaries and use those

• When call p is encountered in context C, with input D,
check if procedure summary for p in context C exists.
• If not, process p in context C with input D

• If yes, with input D’ and output E’
• if D’ ⊑ D, then use E’

• if D’ ⋢ D, then process p in context C with input D’⊓D

• If output of p in context C changes then may need to reprocess anything
that called it

• Need to take care with recursive calls

18

© 2010 Stephen Chong, Harvard University

Flow-sensitivity

•Recall: in a flow insensitive analysis, order of
statements is not important
•e.g., analysis of c1;c2 will be the same as c2;c1

•Flow insensitive analyses typically cheaper than
flow sensitive analyses

•Can have both flow-sensitive interprocedural
analyses and flow-insensitive interprocedural
analyses
•Flow-insensitivity can reduce the cost of

interprocedural analyses
19

© 2010 Stephen Chong, Harvard University

Infeasible paths

•Context sensitivity increases precision by analyzing the
same procedure in possibly many contexts

•But still have problem of infeasible paths
•Paths in control flow graph that do not correspond to actual

executions

20

© 2010 Stephen Chong, Harvard University

Infeasible paths example

21

main() {
 1: p(7);
 2: x:=p(42);
}

p(int n) {
 3: q(n);
}
q(int k) {
 return k;
}

Exit p

Enter p

3: Call q(n)

3: Return q(n)

Context: 1

Exit p

Enter q

return k

Context: 3

Exit main

Enter main

1: Call p(7)

1: Return p(7)

2: Call p(42)

2: Return p(42)

Context: -

Exit p

Enter p

3: Call q(n)

3: Return q(n)

Context: 2

© 2010 Stephen Chong, Harvard University

Realizable paths

• Idea: restrict attention to realizable paths: paths that have proper nesting of
procedure calls and exits

• For each call site i, let’s label the call edge “(i” and the return edge “)i”

• Define a grammar that represents balanced paren strings
 matched ::= ∈	 	 	 	 	 	 	 empty string

 | e	 	 	 	 	 	 	 anything not containing parens

 | matched matched
 | (i matched)i
• Corresponds to matching procedure returns with procedure calls

• Define grammar of partially balanced parens (calls that have not yet returned)
 realizable ::= ∈
 | (i realizable
 | matched realizable

22

© 2010 Stephen Chong, Harvard University

Example

23

main() {
 1: p(7);
 2: x:=p(42);
}

p(int n) {
 3: q(n);
}
q(int k) {
 return k;
}

Exit p

Enter p

3: Call q(n)

3: Return q(n)

Exit p

Enter q

return k

Exit main

Enter main

1: Call p(7)

1: Return p(7)

2: Call p(42)

2: Return p(42)

(1
(3

(2

)1

)2

)3

© 2010 Stephen Chong, Harvard University

Meet over Realizable Paths

•Previously we wanted to calculate the dataflow facts
that hold at a node in the CFG by taking the meet over
all paths (MOP)

•But this may include infeasible paths

•Meet over all realizable paths (MRP) is more precise
•For a given node n, we want the meet of all realizable paths

from the start of the CFG to n

•May have paths that don’t correspond to any execution, but
every execution will correspond to a realizable path

•realizable paths are a subset of all paths

•⇒ MRP sound but more precise: MRP ⊑ MOP

24

© 2010 Stephen Chong, Harvard University

Program analysis as CFL reachability

•Can phrase many program analyses as context-
free language reachability problems in directed
graphs
•“Program Analysis via Graph Reachability” by Thomas

Reps, 1998
• Summarizes a sequence of papers developing this idea

25

© 2010 Stephen Chong, Harvard University

CFL Reachability

• Let L be a context-free language over alphabet Σ
• Let G be graph with edges labeled from Σ
• Each path in G defines word over Σ
• A path in G is an L-path if its word is in L

• CFL reachability problems:
• All-pairs L-path problem: all pairs of nodes n1, n2 such that there is an L-path

from n1 to n2

• Single-source L-path problem: all nodes n2 such that there is an L-path from
given node n1 to n2

• Single-target L-path problem: all nodes n1 such that there is an L-path from
n1 to given node n2

• Single-source single-target L-path problem: is there an L-path from given
node n1 to given node n2

26

© 2010 Stephen Chong, Harvard University

Why bother?

•All CFL-reachability problems can be solved in
time cubic in nodes of the graph

•Automatically get a faster, approximate solution:
graph reachability

•On demand analysis algorithm for free
•Gives insight into program analysis complexity

issues

27

© 2010 Stephen Chong, Harvard University

Encoding 1: IFDS problems

•Interprocedural finite distributive subset
problems (IFDS problems)
•Interprocedural dataflow analysis with
• Finite set of data flow facts
•Distributive dataflow functions (f(a⊓b) = f(a) ⊓ f(b))

•Can convert any IFDS problem as a CFL-graph
reachability problem, and find the MRP solution
with no loss of precision
•May be some loss of precision phrasing problem as

IFDS
28

© 2010 Stephen Chong, Harvard University

Encoding distributive functions

• Key insight: distributive function f:2D→ 2D can be encoded as
graph with 2D+2 nodes

• W.L.O.G. assume ⊓ ≡∪

• E.g., suppose D = {x, g}

• Edge Λ→d means d∈f(S) for all S

• Edge d1→d2 means d2∉f(∅) and d2∈f(S) if d1∈S

• Edge Λ→Λ always in graph (allows composition)

29

Λ x g

Λ x g

Represents inputs

Represents outputs

Represents empty set

© 2010 Stephen Chong, Harvard University

Encoding distributive functions

•λS. {x,g}

•λS. S-{x}

30

Λ x g

Λ x g

Λ x g

Λ x g

© 2010 Stephen Chong, Harvard University

Encoding distributive functions

•λS. S-{x} ○ λS. {x,g}

31

Λ x g

Λ x g

Λ x g

© 2010 Stephen Chong, Harvard University

Exploded supergraph G#

•Let G* be supergraph (i.e., interprocedural CFP)

•For each node n∈G*, there is node ⟨n,Λ⟩∈G#

•For each node n∈G*, and d∈D there is node
⟨n,d⟩∈G#

•For function f associated with edge a→b∈G*
•Edge ⟨a,Λ⟩ → ⟨b,d⟩ for every d∈f(Ø)

•Edge ⟨a, d1⟩ → ⟨b,d2⟩ for every d2∈f({d2}) - f(Ø)

•Edge ⟨a,Λ⟩ → ⟨b, Λ⟩

32

© 2010 Stephen Chong, Harvard University

Possibly uninitialized
variable example

33

! 5 !

declare g: int

procedure main
begin
declare x: int
read(x)
call P (x)
end

procedure P (value a : int)
begin
if (a > 0) then
read(g)
a := a ! g
call P (a)
print(a, g)
fi
end

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

S.S!{x}

S.S!{g}

S.S

S.S

S.S

S.S

S.S!{g}

S.S

S.S!{g}

S.S

ENTER P
P

IF a > 0
n4

ENTER main
main

READ(x)
n1

CALL P
n2

RETURN
FROM P

n3

EXIT main
main

RETURN
FROM P

n8

EXIT P

CALL P
n7

n6
a := a − g

n5
READ(g)

PRINT(a,g)
n9

S.{x,g}

S.if (a S) or (g S)
 then S {a}
 else S!{a}

U
##

S.S<x/a>

S.S!{a}

S.S!{a}

S.S

start

exit

Pexit

start

(

)

(

)

1

1

2

2

(a) Example program (b) Supergraph G*

Fig. 1. An example program and its supergraph G* . The supergraph is annotated with the dataflow functions for the
“possibly-uninitialized variables” problem. The notation S<x/a> denotes the set S with x renamed to a.

balanced by a preceding left parenthesis “(i”, but the converse need not hold.
To understand these concepts, it helps to examine a few of the paths that occur in Fig. 1.
The path “startmain $ n1$ n2$ startP $ n4$ exitP $ n3”, which has word “ee(1ee)1”, is a matched
path (and hence a realizable path, as well). In general, a matched path from m to n, where m and n are in
the same procedure, represents a sequence of execution steps during which the call stack may tem-
porarily grow deeper—because of calls—but never shallower than its original depth, before eventually
returning to its original depth.
The path “startmain $ n1$ n2$ startP $ n4”, which has word “ee(1e”, is a realizable path but not a
matched path: The call-to-start edge n2$ startP has no matching exit-to-return-site edge. A realizable
path from the program’s start node smain to a node n represents a sequence of execution steps that ends,
in general, with some number of activation records on the call stack. The pending activation records
correspond to the unmatched (i’s in the path’s word.
The path “startmain $ n1$ n2$ startP $ n4$ exitP $ n8”, which has word “ee(1ee)2”, is neither a
matched path nor a realizable path: The exit-to-return-site edge exitP $ n8 does not correspond to the
preceding call-to-start edge n2$ startP. This path represents an infeasible execution path.

! 10 !

a g

ENTER P
P

IF a > 0
n4

ENTER main
main

READ(x)
n1

CALL P
n2

RETURN
FROM P

n3

EXIT main
main

RETURN
FROM P

n8

EXIT P
P

CALL P
n7

n6
a := a − g

n5
READ(g)

PRINT(a,g)
n9

x g

x g

x g

x g

x g

a g

a g

a g

a g

a g

a g

a g

start

exit

exit

start"

"

"

"

"

"

"

"

"

"

"

"

"

(

)

(
1

)
1

2

2

Fig. 4. The exploded supergraph that corresponds to the instance of the possibly-uninitialized variables problem shown
in Fig. 1. Closed circles represent nodes of G# that are reachable along realizable paths from #startmain ,"$. Open cir-
cles represent nodes not reachable along such paths.

nodes #n8,g$ and #n9,g$ are reachable only along non-realizable paths from #startmain,"$.) This informa-
tion indicates the nodes’ values in the meet-over-all-realizable-paths solution to the dataflow-analysis prob-
lem. For instance, the meet-over-all-realizable-paths solution at node exitP is the set {g}. (That is, variable
g is the only possibly-uninitialized variable just before execution reaches the exit node of procedure P.) In
Fig. 4, this information can be obtained by determining that there is a realizable path from #startmain,"$ to
#exitP,g$, but not from #startmain ,"$ to #exitP,a$.

4.2. Interprocedural Program Slicing
Slicing is an operation that identifies semantically meaningful decompositions of programs, where the
decompositions consist of elements that are not necessarily textually contiguous [98,72,32,46,77,92,19].
Slicing, and subsequent manipulation of slices, has applications in many software-engineering tools,

Program Analysis via Graph Reachability by Reps, Information and Software Technology 40(11-12) 1998

• Closed circles represent nodes
reachable along realizable paths from
⟨startmain, Λ⟩

http://www.cs.wisc.edu/wpis/papers/tr1386.pdf
http://www.cs.wisc.edu/wpis/papers/tr1386.pdf

© 2010 Stephen Chong, Harvard University

Encoding 2: IDE problems

•Interprocedural Distributive Environment
problems (IDE problems)
•Interprocedural dataflow analysis with
•Dataflow info at program point represented as a finite
environment (i.e., mapping from variables/locations to
finite height domain of values)
• Transfer function distributive “environment transformer”

•E.g., copy constant propagation
• interprets assignment statements such as x=7 and y=x

•E.g. linear constant propagation
• also interprets assignment statements such as y = 5*z + 9

34

© 2010 Stephen Chong, Harvard University

Encoding distributive environment-transformers

•Similar trick to encoding distributive functions in
IFDS

•Represent environment-transformer function as
graph with each edge labeled with micro-
function

35

! 23 !

O ((P " E) + (CallSites " Params 2)).
This approach is used in the Wisconsin Program-Slicing Tool, a slicing system that supports essentially

the full C language. (The system is available under license from the University of Wisconsin. It has been
successfully applied to slice programs as large as 51,000 lines.)

6. Program Analysis Using More Than Graph Reachability
The graph-reachability approach offers insight into ways that machinery more powerful than the graph-
reachability techniques described above can be brought to bear on program-analysis problems [78,88].
One way to generalize the CFL-reachability approach stems from the observation that CFL-reachability

problems correspond to chain programs, which are a restricted class of Datalog programs. The fact that
CFL-reachability problems are related to chain programs, together with the fact that chain programs are
just a special case of the logic programs to which tabulation and transformation techniques apply, suggests
that more powerful program-analysis algorithms can be obtained by going outside the class of pure chain
programs [78].
A different way to generalize the CFL-reachability approach so as to bring more powerful techniques to

bear on interprocedural dataflow analysis was presented in [88]. This method applies to problems in which
the dataflow information at a program point is represented by a finite environment (i.e., a mapping from a
finite set of symbols to a finite-height domain of values), and the effect of a program operation is captured
by a distributive “environment-transformer” function. This class of dataflow problems has been called the
Interprocedural Distributive Environment problems (or IDE problems, for short).
Two of the dataflow-analysis problems that the IDE framework handles are (decidable) variants of the

constant-propagation problem: copy-constant propagation and linear-constant propagation. The former
interprets assignment statements of the form x = 7 and y = x. The latter also interprets statements of the
form y = !2*x +5.
By means of an “explosion transformation” similar to the one utilized in Section 4.1, an interprocedural

distributive-environment-transformer problem can be transformed from a meet-over-all-realizable-paths
problem on a program’s supergraph to a meet-over-all-realizable-paths problem on a graph that is larger,
but in which every edge is labeled with a much simpler edge function (a so-called “micro-function”) [88].
Each micro-function on an edge d 1 # d 2 captures the effect that the value of symbol d 1 in the argument
environment has on the value of symbol d 2 in the result environment. Fig. 10 shows the exploded
representations of four environment-transformer functions used in constant propagation. Fig. 10(a) shows
how the identity function $env.env is represented. Figs. 10(b)!(d) show the representations of the func-
tions $env.env [x ||# 7], $env.env [y ||# env (x)], and $env.env [y ||#!2*env (x)+5], which are the dataflow
functions for the statements x = 7, y = x, and y = !2*x +5, respectively. (% is used to represent the effects
of a function that are independent of the argument environment. Each graph includes an edge of the form
%#%, labeled with $v.v; as in Section 4.1, these edges are needed to capture function composition prop-
erly.)
Dynamic programming on the exploded supergraph can be used to find the meet-over-all-realizable-

paths solution to the original problem: An exhaustive algorithm can be used to find the values for all sym-
bols at all program points; a demand algorithm can be used to find the value for an individual symbol at a

%

%

v.v$v.v$v.v$

x y

x y

%

%

v.v$

v.v$$v.7

x y

x y

%

%

v.v$ v.v$

x y

x y

v.v$

%

%

v.v$

$v.!2*v+5

v.v$

x y

x y
(a) $env.env (b) $env.env [x ||# 7] (c) $env.env [y ||# env (x)] (d) $env.env [y ||#!2*env (x)+5]

Fig. 10. The exploded representations of four environment-transformer functions used in constant propagation.

© 2010 Stephen Chong, Harvard University

Solving

•Requirements for class F of micro functions
•Must be closed under meet and composition

•F must have finite height (under pointwise ordering)

•f(l) can be computed in constant time

•Representation of f is of bounded size

•Given representation of f1, f2 ∈ F
• can compute representation of f1 ○ f2 ∈ F in constant time

• can compute representation of f1 ⊓ f2 ∈ F in constant time

• can compute f1 = f2 in constant time

36

© 2010 Stephen Chong, Harvard University

Solving

•First pass computes jump functions and summary
functions
•Summaries of paths within a procedure and of

procedure calls, respectively

•Second pass uses these functions to computer
environments at program points

•More details in “Precise Interprocedural Dataflow
Analysis with Applications to Constant Propagation” by
Sagiv, Reps, and Horwitz, 1996.

37

