0 100y ES;

HARVARD

School of Engineering
and Applied Sciences

Pointer Analysis

C5252r Spring 2011

Today: pointer

e\What is it? Why? Different dimensions
* Andersen analysis

e Steensgard analysis

* One-level flow

e Pointer analysis for Java

© 2010 Stephen Chong, Harvard University

Pointer analysis

*\What memory locations can a pointer expression
refer to?

* Alias analysis: When do two pointer expressions
refer to the same storage location?

**p and *q alias,
as do x and *p, and x and *q

Aliase

e Aliasing can arise due to

e Pointers
ce.g., Int*p, 1, p=&i;
e Call-by-reference

 void m(Object a, Objectb) { ... }
m(x,x); // a and b alias in body of m
m(x,y); // 'y and b alias in body of m

* Array indexing

*Int 1,},a[100];
| = j; // ali] and alj] alias

© 2010 Stephen Chong, Harvard University

Why do we want to know?

e Pointer analysis tells us what memory locations code uses
or modifies

e Useful in
°F.g., Avai

O*p:a—|—

many analyses

able expressions

D,

y =a + b;

e If *p aliases a or b, then second computation of a+b is not redundent

e E.g., Constant propagation

°x=3,*p=4,y=x

e Is y constant? If *p and x do not alias each other, then yes. If *p and x
always alias each other, then yes. If *p and x sometimes alias each
other, then no.

Some dimensions of pointer analysis

e |ntraprocedural / interprocedural

e Flow-sensitive / flow-insensitive

e Context-sensitive / context-insensitive
e Definiteness

* May versus must

e Heap modeling
* Representation

Flow-sensitive vs flow-insensitive

e Flow-sensitive pointer analysis computes for each program
point what memory locations pointer expressions may refer to

e Flow-insensitive pointer analysis computes what memory
ocations pointer expressions may refer to, at any time in
program execution

-low-sensitive pointer analysis is (traditionally) too expensive
to perform for whole program

* Flow-insensitive pointer analyses typically used for whole
orogram analyses

Flow-sensitive pointer analysis is

hard

Alias Mechanism

Intraprocedural
May Alias

Intraprocedural
Must Alias

Interprocedural
May Alias

Interprocedural
Must Alias

Reference Formals,
No Pointers,

No Structures

Polynomial[l, 5]

Polynomial[1l, 5]

Single level pointers,
No Reference Formals,
No Structures

Polynomial

Polynomial

Polynomial

Polynomial

Single level pointers,
Reference Formals,

No Pointer Reference Formals,
No Structures

Polynomial

Polynomial

Multiple level pointers,
No Reference Formals,
No Structures

Complement

is AN P-hard

NP-hard

Complement,

is A'P-hard

Single level pointers,
Pointer Reference Formals,
No Structures

NP-hard

Complement

is N'P-hard

- Single level pointers,
Structures,
No Reference Formals

N'P-hard[14]

Complement

is NP-hard

N'P-hard{14]

Complement

is N P-hard

Table 1: Alias problem decomposition and classification

Pointer-induced Aliasing: A Problem Classification, Landi and Ryder, POPL 1990

Context sensiti

* Also difficult, but success in scaling up to
hundreds of thousands LOC

*BDDs see Whaley and Lam PLDI 2004

* Doop, Bravenboer and Smaragdakis OOPSLA 2009
(see Thurs)

© 2010 Stephen Chong, Harvard University

Definiteness

e May analysis: aliasing that may occur during

execution

e (cf. must-not alias, although often has different
representation)

e Must analysis: aliasing that must occur during

execution

e Sometimes both are usef

oE.g., Consic
f *p must a

er liveness ana

J|

ysis for *p = *q + 4;

ias X, then x in kill set for statement

f *g may alias y, then y in gen set for statement

Representatio

* Possible representations

e Points-to pairs: first element points to the second

*e.g., (p = b),(q—b)
*p and b alias, as do *g and b, as do *p and *q

e Pairs that refer to the same memory
*e.g., (*p,b), (*q,b), (*p,*q), (**r, b)

* General, may be less concise than points-to pairs
e Equivalence sets: sets that are aliases
*e.g., {*p,*q,b}

© 2010 Stephen Chong, Harvard University

Modeling memory locations

*\We want to describe what memory locations a
pointer expression may refer to

e How do we model memory locations?

*For global varia
*For local variab

bles, no troub

es, use a sing

e, use a single “node”
e “node” per context

*i.e., just one node if context insensitive

e For dynamically allocated memory

* Problem: Potentially unbounded locations created at

runtime

* Need to model locations with some finite abstraction

Modeling dynamic memory locations

e Common solution:

e For each allocation statement, use one node per context

* (Note: could choose context-sensitivity for modeling heap
locations to be less precise than context-sensitivity for
modeling procedure invocation)

e Other solutions:

* One node for entire heap

* One node for each type

e Nodes based on analysis of “shape” of heap
* More on this in later lecture

Problem statement

e Let’s consider flow-insensitive may pointer analysis

e Assume program consists of statements of form

e p = &a (address of, includes allocation statements)

e Assume pointers p,qeP and address-taken variables a,beA are disjoint

e Can transform program to make this true

e For any variable v for which this isn’t true, add statement p, = &ay, and
replace v with *p,

* Want to compute relation pts : PUA — 24

e Essentially points to pairs

Andersen-style pointer analysis

*View pointer assignments as subset constraints

* Use constraints to propagate points-to
information

Constraint type

Assighment

Constraint

Meaning

Base

a = &b

a 2 {b}

loc(b) € pts(a)

Simple

pts(a) 2 pts(b)

Complex

vvepts(b). pts(a) 2 pts(v)

Complex

vvepts(a). pts(v) 2 pts(b)

4
Andersen-style point:

e Can solve these constraints directly on sets pts(p)

&d; p 2 {a}

P> q2p
&b ; p 2 {b}
P> r2p

{a, b}
@, b}

© 2010 Stephen Chong, Harvard University

Another e

pts(p) =
pts(q) =
pts(r) =

pts(s) =

ots(t) =

pts(b) =
pts(c) =

© 2010 Stephen Chong, Harvard University

How preci:

© 2010 Stephen Chong, Harvard Universi

Andersen-style as graph closure

e Can be cast as a graph closure problem

e One node for each pts(p), pts(a)

Assgmt. (Constraint Meaning
a = &b a 2 {b} b € pts(a)
a=b a2b pts(a) 2 pts(b)

a="b a2* |vvepts(b). pts(a) 2 pts(v)

*a=b a2 b |vvepts(a). pts(v) 2 pts(b)

e Each node has an associated points-to set

e Compute transitive closure of graph, and add edges
according to complex constraints

Workqueue algorithm

e Initialize graph and points to sets using base and simple constraints
o letW={VvV ‘ ptS(V) +@ } (all nodes with non-empty points to sets)
e While W not empty

oy + select from W

e for each a € pts(v) do
» for each constraint p 2*v

»add edge a— p, and add a to W if edge is new
» for each constraint *v 2 g

»add edge g—a, and add g to W if edge is new

e for each edge v—q do
* pts(q) = pts(q) u pts(v), and add g to W if pts(q) changed

Same example

p 21a; p ‘

q 2 {b} o e

. {a}
p=2(q

/

r 2 {c} /}ab'}\
S2p o -

t2*p ()
*SDr

© 2010 Stephen Chong, Harvard University

Same example

p 21a; p ‘

q 2 {b} o e

. {a}
p=2(q

/’{B, C}

d
M2 1iC) /{bN
5 2
X o (b}

t2*p ()
*SDr

© 2010 Stephen Chong, Harvard University

Cycle elimination

e Andersen-style pointer analysis is O(n?), for number of

nodes in graph (Actually, quadratic in practice [Sridharan and Fink,
SAS 09])

e Improve scalability by reducing n

e Cycle elimination

e Important optimization for Andersen-style analysis
* Detect strongly connected components in points-to graph, collapse
to single node

* Why? All nodes in an SCC will have same points-to relation at end of analysis

e How to detect cycles efficiently?

« Some reduction can be done statically, some on-the-fly as new edges added

* See The Ant and the Grasshopper: Fast and Accurate Pointer Analysis for Millions
of Lines of Code, Hardekopf and Lin, PLDI 2007

Steensgaard-style analysis

e Also a constraint-based analysis

e Uses equality constraints instead of subset constraints

* Originally phrased as a type-inference problem

e Less precise than Andersen-style, thus more scalable

Constraint type

Assignment

Constraint

Meaning

Base

a = &b

a 2 {b}

loc(b) € pts(a)

Simple

pts(a) = pts(b)

Complex

vvepts(b). pts(a) = pts(v)

Complex

vvepts(a). pts(v) = pts(b)

Implementing Steensgaard-style analysis

e Can be efficiently implemented using Union-
Find algorithm

*Nearly linear time: O(na(n))
e Fach statement needs to be processed just once

One-level flow

e Unification-based Pointer Analysis with Directional
Assignment, Das, PLDI 2000

e Observation: common use of poin
to pass the address of composite o
ts; multi-

argumen

e Uses unij

fication (

ers In C programs s
njects or updateable

evel use of poin

ike Steensgaard)

pointed to by other pointers)

‘ers not as common

but avoids unification

of top-level pointers (pointers that are not themselves

*i.e., Use Andersen’s rules at top level, Steensgaard’s elsewhere

7z
7

googgségf 1 1 fl / y
bar(&s3). Oﬂe- ecve O
4

foo(struct s *p)
bar(struct s *q)

Figure 1: Two programs that illustrate the difference between the algorithms of Steensgaard and Andersen. The program in
(a) above represents the common case in C programs, while the program in (b) above is a variant of the program without
procedure calls. Figures (c), (d) and (e) above show the points-to graphs computed by Steensgaard’s algorithm, Andersen’s
algorithm, and our one level flow algorithm, respectively, for the program in (b) above. The edge labeled with * is a flow
edge.

e Precision close to Andersen’s, scalability close to Steensgaard’s

e At least, for programs where observation holds.

e Doesn’t hold in Java, C++, ...

© 2010 Stephen Chong, Harvard University

Pointer analysis in Java

e Different languages use pointers differently
e Scaling Java Points-To Anlaysis Using SPARK Lhotak & Hendren CC 2003

e Most C programs have many more occurrences of the address-of (&) operator than
dynamic allocation

» & creates stack-directed pointers; malloc creates heap-directed pointers

e Java allows no stack-directed pointers, many more dynamic allocaiton sites than
similar-sized C programs

e Java strongly typed, limits set of objects a pointer can point to
« Can improve precision

e Call graph in Java depends on pointer analysis, and vice-versa (in context sensitive
pointer analysis)

e Dereference in Java only through field store and load

e And more...

* Larger libraries in Java, more entry points in Java, can’t alias fields in Java, ...

Object-sensitive pointer analysis

e Milanova, Rountev, and Ryder. Parameterized object

sensitivity for points-to analysis for Java. ACM Trans. Softw.
Eng. Methodol., 2005.

e Context-sensitive interprocedural pointer analysis
e For context, use stack of receiver objects

e (More next week?)

| hotak and Hendren. Context-sensitive points-to analysis: is it
worth it? CC 06

e Object-sensitive pointer analysis more precise than call-stack contexts
for Java

e Likely to scale better

Closing remarks

e Pointer analysis: important, challenging, active area

e Many clients, including call-graph construction, live-variable analysis, constant
propagation, ...

e Inclusion-based analyses (aka Andersen-style)

e Equality-based analyses (aka Steensgaard-style)
e Requires a tradeoff between precision and efficiency

e Ultimately an empirical question. Which clients, which code bases?

e Recent results promising
e Scalable flow-sensitivity (see Thurs, and Hardekopf and Lin, POPL 09)

e Context-sensitive Andersen-style analyses seem scalable (See Thurs)

e Other issues/questions (see Hind, PASTE'O1)

e How to measure/compare pointer analyses? Different clients have different needs

e Demand-driven analyses? May be more precise/scalable...

