0 100y ES;

HARVARD

School of Engineering
and Applied Sciences

Shape Analysis

C5252r Spring 2011

O

* Motivation for shape analysis

* Three-valued logic

e Region-based with tracked locations

© 2011 Stephen Chong, Harvard University

Shape analysis

e [Wilhelm, Sagiv, and Reps, CC 2000]

e Shape analysis: static program analyses for reasoning about
properties of the heap

e Kinds of questions:
e Null pointers: Is pointer expression maybe null at program point?
e May-Alias: Can two pointer expressions reference same heap cell?
e Must-alias: two pointer expression always reference same heap cell
e Sharing: is there more than one pointer expression referencing a heap cell?
e Reachability: is the heap cell reachable from a specific variable? any variable?
e Disjointness: Do two data structures have any common elements?

e Cyclicity: Can a heap cell be part of a cycle?
e Program understanding, debugging, and verification

Shape analysis

e Shape analysis is flow-sensitive

e Computes for each point in program “a finite,

conservative representation of the
structures that could arise when a
point is executed”

neap-allocated data

nath to the program

*Finite representation means must be approximate
°E.g., generally lose info about lengths of lists, depths of

trees

Shape Analysis via 3-valued logic

* [Sagiv, Reps, Wilhelm, POPL 99]

e Framework for shape analysis
*|nstantiate by specifying predicates about the heap

*|n concrete execution, these predicates are either true
or false

*|n static analysis, approximate the predicates using 3-
valued logic

* True, False, Don’t know

3-valued logic

3-valued logic

Individuals and Predicates

e Universe of individuals U

e ueU represents is an abstract location

° Represents one or more concrete locations

* Each concrete location is represented by exactly one abstract location

e Some predicates

e pointed-to-by-variable-x(u)

- Abbreviated to x(u), means that stack variable x points to a concrete location
represented by u

e pointer-component-f-points-to(u1, uz)

 Abbreviated to f(ui, uz), means a concrete object rep. by u; has field f that points
to concrete object rep by u

* sm(u)

* u is summary node, i.e., represents more than 1 concrete location

Meaning of predicates

e (U,U is a 3-valued structure

e U is universe of individuals

* L gives valuation to predicates
° L: p:Pred x UaryP) = {0, 1>, 1}

* A 3-valued structure represents zero or more concrete states

* If formu
©

* If formu

a ¢ evaluates in <U,u) to 1, then
nolds in every concrete store (U, L) represents

a ¢ evaluates in (U,U) to 0, then

¢ never holds in any concrete store (U, L) represents

* |[f formula ¢ evaluates in (U, to 2, then

we don’t know anything about @ in any concrete
store (U, L) represents

Graphical representation

Graphical
Representation

typedef struct node {
struct node *n; :
: data: unary predicates:
int data; indiv.|z|y[t[sm]is

} *List; binary predicates:
n

Structure

/* reverse.c */

#include ‘‘list.h?’’

List reverse(List x) {
List y, t;
assert(acyclic.list(x));

return 3
v Figure 2: The three-valued logical structures that describe all

possible acyclic inputs to reverse.

Graphical representation

Graphical
Representation

typedef struct node {
struct node *n; _
unary predicates:

11“5 data; indiv.|z|y(t|sm|is
} *List; binary predicates:
n
/* reverse.c */ unary predicates:

#iﬂClude ¢ ¢ 1iSt -h,) indiv. T y t sm i,s
List reverse(List x) { 1 1[0{0[0 |0
List y, t; binary predicates:

»]

assert(acyclic._list(x)); 2131

Structure

unary predicates:
indiv.|zlylt |sm |is
u1 1[0]6{0 |0
u 0(0{0f1/2(0
binary predicates:
n (|

w1(0 [1/2
u 10 11/2

return 3
v Figure 2: The three-valued logical structures that describe all

possible acyclic inputs to reverse.

Updating formula

e Key idea: track state of formula at each program point.

e Just like dataflow

unary predicates:
indiv.|z|ylt [sm |is
u1 1(010{0 0
u 0/0{0j1/2{0
binary predicates:
n (ti|u

u1[0 {1/2
w |0 [1/2

statement

formula

st1: y = NULL;

y'(v) =0

structure that arises just after statement

sta: t = y;

t'(v) = y(v)

st3: y = x;

y' (v) = z(v)

8tsy: X = x->n;

z'(v) = vy : (1) A nvy, v)

sts: y=>n = t;

n (v1,v2) = (n(v1,v2) A —y(v1)) V (y(v1) At(vz))

v1 # v2 A n(vy,v) A n{vz,v)
A —y(v1) A ~y(vz)
V (t(v) A vy : n(v1,v) A ~y(v1))

is’ (‘U) _ is(v) A Jvi,ve e

)

Updating formula

' (v1,v2) = (n(v, v2) A —y(v1)) V (y(v1) At(vz))

v # v2 An(v,v) A n(vz,'u))
A —y(v1) A ~y(vz)
V (t{(v) A 3vy : n(v1,v) A ~y(v1))

is' (v) = t8(v) A vy, vg :

t'(v) = y(v)

y (v) = z(v)

s | 2'(v) = 3nn : (1) A n(v1,v)

' (v1,v2) = (n(v1,v2) A ~y(v1)) V (y(vi) A t(v2))

vy # v2 An(vy,v) A n(vg,v))
A —y(v1) A ~y(ve)
V (t(v) A Jui : n(v1,v) A -~y(v1))

Z-SI ('U) —_ Z-S('U) A H'U], y V2 &

t'(v) = y(v)

Y (v) = z(v)

' (v) = 1 : z(v1) A n(v1, v)

n (v1,v2) = (n(v1,v2) A ~y(n1)) V (y(v1) At(vz))

vy # v2 An(vy,v) A n(vz,v))
A =y(v1) A ~y(v2)
V (t(v) A1 : n(vi,v) A ~y(v1))

2‘3’ ('U) — ?:S(v) A 31:1 y U2 2

Instrumentation predicates

e Consider formula
@(v) = 3vi,v2 : n(V1,V) A N(V2, V) A VIEV2

* “There are at least two different objects pointing to v”

* What does @(u) evaluate to, for shape graph above?

e With vi = uy, vo=u, we have
n(ui,u) An(u, Uy Auizu = 2 A2 A1 = 1/

mplies that tail of linked list might be shared

But this is not the case for a linked list!

Instrumentation predicates

* Maintain precision by using instrumentation
predicates

epredicate is(u) represents truth of predicate for nodes
represented by abstract location

* Is Shared
*is(u)=0 implies that S; can only represent acyclic lists

unary predicates:
indiv.|z|ylt [sm |is

U1 110(0|10 |0
u 0(0{0{1/2(0
binary predicates:
n |ui|u

w1 (0 [1/2
u 10 |1/2

Other usetul instrumentation predicates

Pred. | Intended Meaning Purpose Ref.
is(v) | Do two or more fields of lists and 2],
heap elements point to v? | trees 19
r=(v) |Is v (transitively) separating 19]
reachable from disjoint data

pointer variable x7 structures

Is v reachable from some | compile-time

pointer variable (i.e., is v | garbage

a non-garbage element)? collection

Is v on a directed cycle? ref. counting

Does a field-f dereference | doubly-linked
from v, followed by a lists

field-b dereference, yield v?
Does a field-b dereference | doubly-linked
from v, followed by a lists

field-f dereference, yield v?

Focus for precision

e Once the value of a formula is 2, it can be easy

to lose precision.

sty x = x->n; (' (v) = v : z(n1) A nfvy, v)

* Focusing may allow us to maintain precision

*Key idea: if update formula evaluates to 2, try
instantiating it to O and 1

e Focus attention on eac

n of the possible cases

* May need to make sure rest of structure is consistent

Focus €

Ss XY @ T

{p2(v) = 3us: a(w3) An(v1,0), 94(0) = §(0), 91" (v) = £(0)}

Figure 5: The first application of the improved transformer for statement st4: x = x->n in reverse.

© 2011 Stephen Chong, Harvard University

Focus example

411#";‘;
s 0@ 0

{2t (v) = 3v1 : 2(v1) An(vr,v), 93 (v) = ﬂ(v), :4(v) = t(v)}

Ss,50 @a4(u) =0 Ss.51 wai(u) =1 Ss.52 wat(u)=1 4 (u)=0

r~@ r~@—

@34 (v) [0 (v) :E“(ﬂ} o3 ()]0l (v, v2)
EME x(v_}hﬂ(m,v y{v) t{v) sm{v) |n!v1,v-;)

Sﬁ,n, Sﬁ,a 2

y —-—-a-.—“ r—:-.———*.w.,,,
o

Figure 5: The first application of the improved transformer for statement sts: x = x->n in reverse.

Region-based shape analysis with
tracked locations

e Hackett and Rugina, POPL 05
*Key idea: reason about one location at a time

* Allows a decomposition of a state into a set of
tracked locations

 Reason about each tracked location independently of
others

* Better scalability, compact representation, context-sensitive
analysis

* No need to merge abstractions, or keep multiple
abstractions of entire heap

* Easier on-demand and incremental algorithms

Memory regions

* Analysis builds on top of a region analysis

eLacC
ekLac

N region represents a set of concrete locations

n concrete location represented by exactly one

region

e Points-to relation over regions must be sound

eCan use a variety of region analyses

* E.g., flow-sensitive or insensitive
* In paper, they use a flow-insensitive, context-sensitive

analysis that uses an intra-procedural unification-based
analysis, and uses procedure summaries for an
interprocedural analysis

Configurations and shape abstractions

* A configuration is (i, (e *, e))
e i is index, a function from regions to {0,...,k,x}
* i(r) = How many locations in r point to tracked location

» oo means > k+1
et is hit set: expressions that definitely refer to tracked location

* e is miss set: expressions that definitely do not refer to tracked location

e A shape abstraction is a set of configurations
e at most one configuration for each index

e each concrete location should be represented by at least one
configuration

* Treat shape abstraction as partial function from indexes to hit/miss sets

0O o0l WDN R

Example

typedef struct list {
struct list *n;
int data;

} List;

List *splice(List *x, List *y)
List *t = NULL;
List *z = y;
while(x != NULL) {

}

return z;

}

{

Example concrete input

Corresponding output

t

X

N

/

Region
Points-to
Component

Configurations
for input memory

Shape Component

Configurations
for output memory

X', {x}, 0)
Y' {y}, 0)
L', 0, 0)

Ny
%

Y

z',{z}, 0)
(T'LY, {t}, 0)
(Y'L', {y}, 0)
L, 0, 0)

Intra-proced

[a1(4) if i & dom(az)
(a1 U a2)(i) = ¢ az(?) if i & dom(ay)
| a1(i) Uaz(i) ifi € dom(a1) N dom(az)

where (e,)I_|(<92,<f32)—(elﬂe2,e1 Ney)
and J_I_I(+,e):(e)UL=1(e",e)

For all s € Sasgn, Sa € Salloc; Se € Sentry, 1€ 1

[JOIN] Res(0s)i = ||, cpreacs) Res(s'®) i

[TRANSF] Res(se®)i=||.,.;([s](p, (i',Res(®s)i"))) i
[ALLOC] Res(sq®)iq - he, where [sq]7°"(p) = (%a, ha)

[ENTRY] Res(®se)i Jdaoi

© 2011 Stephen Chong, Harvard University

Splice example

Yl

l

1

9:

1

l

Y
Y
vl
Y
Y
Y

l
|
|
|

Zl
Zl
Zl
121
Zl
Zl

y = y->n->n;

1
1
71 YiTIL!

N

71 L1

l
|

l6: return z;

Figure 5: Shape analysis results for splice. Boxes represent configurations and edges show how the state of the tracked location
changes during the execution. We only show field access expressions in the hit and miss sets. We use the abbreviations: tn= t->n
and yn= y->n, and we indicate miss expressions using overlines. For readability, back edges from configurations at the end of the
loop to the corresponding configurations at the beginning of the loop are omitted.

Transfer function for assign

[eo — ex](p, (i, (e e7))) :
case (Dleo](p, (4, (7, €7))), Dlerl(p, (i, (e, €7)))) of

(UO S {_7+}7 v1 € {_7+}) -
assign(eo,e1,p,i,e, e, v0 = +,v1 = +)

<?7 U1 € {+7_}> =
assign(eo, e1,p,i,e” U{eo}, e, true,v; = +) U
assign(eo,e1,p,i,e’, e~ U{eo}, false,v1 = +)

(UO S {_7+}7 ?> =
assign(eo,e1,p,i,e” U{e1},e”,vo = +,true) LI
assign(eo,e1,p,i,e’, e U{e1},vo = +, false)

(‘? ‘?) =
assign(eo, e1, p, i, e U{eo, e1}, e, true, true) U
assign(eo, €1, p, i, e U{eo}, e U {61} true, false) L
assign(eo,e1,p,i,e” U{e1},e” U{eo}, false, true) LI
asszgn(eo,el,p,z et,e” U {eo,el},false,false)

Figure 10: Transfer function for assignments [eo < e1].

assign(eo, e1, p,i,et, e, bo,b1) :

1
2
3
4
5
6
7
8

r = Leo](p)
if (bo A —lbl) then
if (i(r) < k)then S; = {ilr —i(r)—1]}
else S; = { i[r — k|, t[r — oo }
else if (—bo A b1) then
if (i(r) < k) then S; = {ilr — i(r)+1] }
else S; = { i[r — oo] }
else S; = {7}

={ece [Se]u(p,7) V (Sleli(p,) Ab1)}
B V (Sleli(p,m) A —b1)}

return (S;, (e}, en))

Figure 11: Helper function assign.

Interprocedural analysis

e Context-sensitive interprocedural analysis
e A context for a procedure is a single
configuration, output is a set of contexts

*Fine granularity helps scalability

* Less redundant computation

* Allows “incremental” analysis

» E.g., now calling splice with a cyclic list

- Just one new configuration: L?

Uses and limitations

e Can be used for memory error detection
e Double frees, dangling pointer access, memory leak

e Spurious configurations

e Configuration that represents concrete states that cannot occur at
runtime

e Better decision procedure would help

e Complex structural invariants
e e.g., double linked lists

e Sensitive to how program is written

ce.g, X = t->nvs X = X->n treated differently, since analysis doesn’t
know x =t

e Exponential

Verification vs. inference

e Separation logic has shown a lot of success at
verifying programs that destructively update heap

* To what extent can separation logic be used in
inference of heap properties?

