g8t HARVARD

School of Engineering
and Applied Sciences

Control-Flow Analysis

C5252r Spring 2011

Includes (a lot of) material from slides for
Principles of Program Analysis
by Nielson, Nielson, and Hankin

http://www2.imm.dtu.dk/~riis/PPA/ppasup2004.html

http://www2.imm.dtu.dk/~riis/PPA/ppasup2004.html
http://www2.imm.dtu.dk/~riis/PPA/ppasup2004.html

O

*\What’s the problem?
*0-CFA

e Uniform k-CFA

* The k-CFA paradox

© 2011 Stephen Chong, Harvard University

What is control-tlow analysis?

Data-f

ow analysis relied on a control-flow graph

How do we construct CFG?

-or intra-procedural analysis, relatively straightforward

e [dentify basic blocks, control-flow structures

 We will not delve into this

e For inter-procedural analysis

e If functions/procedures are not first-class, relatively simple

* For languages with dynamic dispatch, it’s harder

* Dynamic dispatch: which procedure/function gets invoked depends on
runtime values

* Functional languages, OO, imperative languages with procedures as
parameters, ...

CFA in higher-order languages

*We'll mostly focus today on control-flow analysis
of functional languages

e For each function application, which functions may be

applied?
®
Eig;° fn x => x 1;
fn y => y+2;
fn z => z+3
in (£ g) + (£ h)

Syntax of

expressions (or labelled terms)
terms (or unlabelled expressions)

variables
constants

binary operators
labels

4

clx|fnx =>eqg|fun f x =>eg|eq e

if ep then e] else ep |let x = e in ep | e1 OpP en

© 2011 Stephen Chong, Harvard University

Exe

((fn x => x1)? (fn y => y3)4)5

(let £ = (fn x => (x! 12)3)4,
in (let g = (fn y => y2);

in (let h = (fn z => z/)°
in ((f9 g10)11 + (f12 h13)14)15)16)17)18

(let g = (fun f x => (f1 (fn y => y2)3)4)"
in (g (fn z => z7)%8)9)!0

© 2011 Stephen Chong, Harvard University

0-CFA

e O-CFA Is an context-insensitive CFA.

e Result of a 0-CFA analysis is pair (C, p)

e C is an abstract cache

* “p is an abstract environment /Actua//% just functions

c Val — P(Term) abstract values
p € Env — Var — Val abstract environments

C € Cache = Lab — Val abstract caches
e Notes:

* Could combine these into one entity: (Var u Lab) = "Val

e Could also require A-normal form, where all subterms are
appropriately labeled by variables

Example

((fn x => x1)? (fny => y°)%)°

(Ce, Pe (CE, Pe)
{fn y => y3} {fn Xl,fn
{fn x => x1} | {fn x1 fn

) {fn x1 fn
{fn y => y3} x1 fn
{fn y => y3} | {fn x1 fn

0 Xl,fn
0 Xl,fn y

Acceptable Not acceptable Acceptable but less precise

© 2011 Stephen Chong, Harvard University

Abstract specification

*What does it mean for (C, “p) to be acceptable?

* Define relation indicating when (C, "p) is
acceptable 0-CFA of expression e

(C,p) =e

=5 (Cgc\he x Env X Exp) — {true, false}

Abstract st

— £ always

L iff p(z) C C0)

— (let = = 61 int 2)
<€ﬁ>— A (Cp) ELR A
€<61>Cp<a:> A C(la) C C(e)

© 2011 Stephen Chong, Harvard University

Abstract

(C,p) = (if tgo then tﬁ else t 2)¢
ﬂ (E)ﬁ) — t?O A R
(€)=t A (€ p) =2

C(f1) CC) A Ctr) CC)

AN

(C,p) = (¢! op t2)!
iff (G EtE A ()=

© 2011 Stephen Chong, Harvard University

Abstract spe

_(fna:->t 0)¢ jff {fn:r;—>t 01 C C(¥)

— (tl

Fa
Y | Y

Cla) C p(x) A C(Lg) C C(O)

© 2011 Stephen Chong, Harvard University

Abstract spe

(C,p) = (fun f x => eg)? iff {fun f x => eg} C C(0)

I 0 L
(C,p) = (tll t22)£
it (Cp) =t A (Gp) EER A

Co(ERRERED < ce: [N

Ct2) € (=) A Cllg) CC(O)) A

o (RSN < oo (RIS

C(l2) C p(z) A Cllg) CC) A
{fun f z => t2} C 5(f))

© 2011 Stephen Chong, Harvard University

What's acce

((fn x => x1)2 (fn y => y3)4)5

(Eea ﬁe) (E/ea ﬁ/e

{fny => y°} | {fn y => y°}
{fn x => x!} | {fn x => x1}
) 0
=y} | {fny = y7}
=> y3} | {fn y = y3}

=> y3} D
) 0

© 2011 Stephen Chong, Harvard Universi

= ((Enx=>x1)? (fny=>y3)")°

£ ((fn x => x1)? (fny => y3)%)°

Abstract specifice

e Note that we can’t define = by structural induction on
expressions

= b1 0
(Cvp) |: (tll t22)£
ifft (G En A G ELR A

o (R < con: [N

C(L2) C p(x) A C(o) CCO)) A

oo (RSN <) (IR

C(t2) C p(x) A Cltg) CC(O) A
{fun f = => t} C ()

e Instead, define = coinductively

e Want the greatest fixed point that satisfies equations for =

e Note: not an algorithm for solving, but a specification

© 2011 Stephen Chong, Harvard University

Semantic corre

* Also need to show that acceptability of analysis
results implies semantic correctness

eThat is, "C and "p accurately describe the concrete
execution.

e|ike a type-soundness statement

© 2011 Stephen Chong, Harvard University

Syntax-directe

e Another formulation of 0-CFA that approximates
the abstract specification

oj.e., Define & such that
if (C, "p) = e then (C, "p)

© 2011 Stephen Chong, Harvard University

Syntax-directe

—_ ! always

—_ 2! iff p(z) C C(0)

—, (if téo then t% else t 2)¢
ﬂ (Caﬁ) —S t?O A

(C,0) st A (Cp)
C(e1) CC) A C(L) C C(0)

—; (let x = tl in t 2)¢

iff (G, p) —, 21 A (C, p)
C(¢1) C p(x) A C(ea) C C¥)

N

— (te opt 24 iff (C,p) =5 til A (C,p)

© 2011 Stephen Chong, Harvard University

y

a

Syntax-directed |

AN

(C,p) =s (fn = => eg)*
iff {fn x => eg} C C(£) A

(671/0\) —s €0 €

—, (fun f = => eg)’
iff {fun f x => eg} C C(¥) A

Note: may check some
function bodies that
aren’t reachable, in
return for enabling
induction on syntax

(C,p) FEseg A {fun f @ => eg} C (£)

— (tlil téz)e
iff (Cp) Est A (Cp) =t A
(V(fn z => £0) € C(¢y) :
C(£2) C p(z) A C(fo) CC(O)
(V(fun f =z => téo) C E(El) :
C(£2) C p(z) A C(o) CC(O)

© 2011 Stephen Chong, Harvard University

Syntax-directed 0-CFA

*For any expression e, there is a least (C, "p)
such that (C, "p) &5 e

e(Can turn

this syntax-directed 0-CFA specification

into an equivalent algorithm that generates a set
of constraints

e| east soO

syntax-c

ution to set of constraints is least solution to
irected 0-CFA

Constraint-k

Cx[lex] is a set of constraints of the form

lhs C rhs

{t} C rhs’ = Ihs C rhs

rhs = C(¢) | r(x)

lhs 1= C(¢) | r(x) | {t}

and all occurrences of t are of the form fn x => eg Or fun f x => eg

© 2011 Stephen Chong, Harvard University

Constraint-basec /

Cillct] = 0
Cx[z] = {r(z) C C(¥) }

Co[(if £ then ti! else t2)!] = Cu[[t2] U Cu[£1] U Cul[t2]
U {C(¢) € C) }
U { Clé2) C C(4) }

Cil[(let z = tl in t) = C*IItll]] UC*IIt 2]
U {C) Cr(z) }U{C() C C) }

C*[[(tll op t) = C*IItl JuU C*[[t 2]]

© 2011 Stephen Chong, Harvard University

Constraint-basec

Cll(n @ => e0)] = {{fn @ => €0} CC(&) } U Culleol

Col[(fun f z => e0)’] = {{fun f = => eo} C C(£) } U Cileol
U {{fun f = => eg} Cr(f) }

C*[[(t£1 tez)e]] = C*[[t]] U C*[[t

U {_ |t = (fn = => too) € Term, }
U {ENECE=IE@IEE@N | ¢ = (fn = => t) € Term,}
U {EECEISIE@IER@) |t = (fun f z => tQ) € Term,}
U {ECE=SIENEE@N | ¢ = (fun f « => tQ) € Term,}

© 2011 Stephen Chong, Harvard Universi

Examr

C«[((fn x => x1)? (fn y => y3)*)°] =

{ {fn x => x'} C C(2),
r(x) C C(1),
{fn y => y>} C C(4),
r(y) C C(3),
{fn x => x1} C C(2) = C(4) C r(»),
{fn x => x1} C C(2) = C(1) C C(5),
{fn y => y3} C C(2) = C(4) C r(y),
{fn y => y3} C C(2) = C(3) C C(5) }

Correctr

Translating syntactic entities to sets of terms:

(€, DICOT = C©)
CAM@] = (x)
CAKB] = {8

Satisfaction relation for constraints: (C,p) . (lhs C rhs)

(C,p) ¢ (Ihs C rhs)
iff (C,p)[!hs] € (C,p)[rhs]

(C,0) = ({t} C rhs' = Ihs C rhs)
iff ({t} € (C,p)Irhs'IA(C, p)[hs] € (C, p)[rhs])
({t} Z (C,p)[rhsT)

Proposition: (C,p) =5 ex if and only if (C,5) =c Cullex].

© 2011 Stephen Chong, Harvard University

Adding data-tlow analysis

e Current domain equations

/Actuall% just functions

c Val — P(Term) abstract values
p € Env — Var — Val abstract environments

C € Cache = Lab — Val abstract caches

e |dea: extend abstract values to include other
things than just functions

°E.g., let Data be set of abstract data values
.e'gv {tt/ ff/ "/ O/ +}

c \7§1d — P(Term U) abstract values

Abstract data values

e For each constant ¢, need abstract data value d.

* For each operator op need abstract operator
op : DataxData—P(Data)

= {tt, ff, -, 0, +}

= tt

= +

is defined from

Data-tflow and control-flow spec

=g ¢ iff {de} C C(O)

—, ' iff p(z) C C)

— 4 (if téo then til else téz)é
m: (C7ﬁ> —d tOO A

(derue € Clg) = (| (C, p) A C(01) CC))) A

(dearse € C(L0) = (| (C, p) A C(n) C C0)))
—, (let © = £3! in t2)
iff (C,0) E=att A (Cp) =gt A Cey) Caz) A Ce) C C)

— (t?_l op téQ)f
it (Cp) Eat?t A (Gp)Eatd A C(l) op C(k2) € C(0)

e |s flow sensitive: can determine whether true or false
branches can be taken

//

Arbitrary
y

"Val = P(Term u Data) = P(Term) x P(Data)

e Could also use an arbitrary lattice
“Val = P(Term u Data) = P(Term) x L

© 2011 Stephen Chong, Harvard University

Adding contexts

¢ 0-CFA is a context-insensitive (or mono-variant)
analysis
* Does not distinguish various instances of program
variables and program points from each other

* Context-sensitive (or poly-variant) analysis does
distingtuish

Uniform k-CFA

c Val P(Term) abstract values

Var — Val abstract environments

Lab — Val abstract caches

‘mation

¢ [dea: extend "Val to include context info

e Contexts © will record last k dynamic call-sites

5 € A = Lab<SF context information

ce € CEnv Var — [A context environments

Definition point / \
Val P(Term x CEnv) abstract values

of free variables c
of terms

5 € Env (Var x) — Val abstract environments

C € Cache (Lab x [A) — Val abstract caches

e Called “uniform” because both environment and cache use

same precision

Acceptability re

®ce Is current context environment

ei.e., for free variables of e, in which context were they
bound?

e Changes as variables are bound

*9d is current context

e Changes as functions are applied

© 2011 Stephen Chong, Harvard University

Acceptabilit

—¢¢ ¢t always

=5 at iff (=, ce(x)) C C(,6)

—<© (if t then tl else t 2)¢
it (C,) =cc 1 A (C ﬁ) =¢c it A (Cp)
C(€1,5) C C(f 5) A C(f2,5) C C(f J)

—C€ (let x = tl in t 214

it (C,p) =5t A (Cp) =5t A
C(fl,(S) C p(az 5) A C(€2,5) C C(ﬁ J)
where ce’ = ce[z — J]

P

=g (11 op t2)tiff (Cp) =5t A (Cp)

© 2011 Stephen Chong, Harvard University

Acceptability

—c¢ (fn ¢ => eg)! iff {(fn z => g, ce)} C C(4,)

—c¢ (fun f x => eg)! iff {(fun f = => g, ce)} C C(4,6)

—ce (tg_l t)6

it (C.p) =5 11 A (C,p) 2 A

(V(fn z => tO L ceg) € C(£1,6) :
(C.5) =0 1 A C(2,8) € il 00) A Cllo, 00) € CE,6)
where 6o = [5 /], and ceo = cegle — dp]) A

(V(fun f = => tO , ceg) € C(¢y,8) :
(C,p) =, 0 ¢ A Ct2,6) € (a,00) A Cllo, 00) C(£,6) A

A ~
{(fun f = => ¢35, ceg)} C p(f,00)
where 6y = [§,£];, and cel, = ceg[f — dg,z — o))

© 2011 Stephen Chong, Harvard University

Example

(let £ = (fn x => x1)2 in ((£3 £9° (fn y => y©))%)?

e Contexts of interest for uniform 1-CFA

A: the initial context
5: the context when the application point labelled 5 has been passed
8: the context when the application point labelled 8 has been passed

e Context environments of interest for uniform 1-CFA

ceg = |] the initial (empty) context environment
ce; = cegl[f — A] the context environment for the analysis of the body of

the let-construct
cer = ceg[x — 5] the context environment used for the analysis of the body

of f initiated at the application point 5
ce3 = ceg[x — 8] the context environment used for the analysis of the body

of f initiated at the application point 8.

Examrp

Ciy' (1,5) = {(n xl,ceg)} Gy (1,8) = {(fn y => yO,ceq)}

Cig'(2,A) = {(¢n xtce)} Cig/(3,A) = {(fn x => x!,cep)}

Cig'(4,A) = {(£n xtce0)} Cig/(5,A) = {(fn x => x',cep)}
J(T,A) = {(fn yO.ce0)} Cid'(8,A) = {(fn y => yO,ceq)}
4 (9,A) = {(fn y°,cen)}

pid (£,A) = {(£n xt,cep) }
pid (%,5) = {(fn xl,ceg)} pid ((,8) ={(fn y => y®.ceq)}

This is an acceptable analysis result:

(Cd', i) =R (et £ = (fn x => x1)2 in ((£3 £4)° (fn y => y©)7)%)"

© 2011 Stephen Chong, Harvard University

CEnv
c Val
p € Env

C € Cache

y

%

Complexity

P(Term x CEnv)
(Var x &) — Val

(Lab x &) — Val

context information

context environments

abstract values

abstract environments

abstract caches

e k-CFA has worst-case exponential complexity in size of program

e Size n program, p variables

e A has O(n) elements
e Size of CEnv is O(nP)

e “Val is powerset of pairs (t, ce), and there are O(n x nP) pairs, so Val has height

O(n x nP)
* p=0I(n)

e 0-CFA has worst-case polynomial complexity

© 2011 Stephen Chong, Harvard University

Variations on k

Uniform k-CFA

CEnv Var — [A context environments
Val P(Term x CEnv) abstract values
Env (Var x [A) — Val abstract environments
Cache (Lab x [A&A) — Val abstract caches

C € Cache = (LabeEnv)—>\//'§l abstract caches

Polynomial k-CFA

A

o € Val = P(Term x &) abstract values

© 2011 Stephen Chong, Harvard University

k-CFA Paradox

e [Might, Smaragdakis, van Horn, PLDI 10}

* k-CFA is exponential for k> 1

* But k-CFA is like using context of kK most recent
call-sites

e Polynomial for OO languages

* Doop implemented in Datalog, which only allows polynomial
time alogrithms

* OO has dynamic dispatch

e \What gives?

Wait, which k-CFA?

°In OO world, translate k-CFA to

“k-call-site sensitive interprocedural pointer
analysis with a k-context-sensitive heap and on-
the-fly call-graph construction”

ei.e., data flow (points-to relation) and call-graph
dependent on each other

*[s it the same analysis? Yes. And paradox still holds.

Paradox resol

* In functional languages, closures are created incrementally

e Fach variable in a closure could be bound in a different context

e Source of exponentiallity
5 € [Lab<F context information

ce € CEnv Var — [A&A context environments
€ Val P(Term x CEnv) abstract values
5 € Env (Var x) — Val abstract environments

C € Cache (Lab x [A&) — Val abstract caches
e In OO languages, closures created explicitly by invoking constructor

e Variables are copied, and so effectively all variables bound in same
context

e CEnv = A instead of Var = A

© 2011 Stephen Chong, Harvard University

Examrp

* OO program

class ClosureX {

Object x;
caller () { ClosureX (Object x0) class Closurexy ({
foo (ox1) ; +— foo (Object x) { x = x0; Object x,y;

S ClosureX cx = } // constructor ClosureXY (Object xO0,
)

foo (oxN) ; new ClosureX (x) ; Object y0) {

} cx.bar (oyl) ;) bar (Object y) { x = x0; y = y0;

ce / ClosureXY cxy = } // constructor
cx.bar (oyM) ; new ClosureXY(x,V) ;

} cxy.baz(..) ; —_— baz(..) {
X ...
}

!

e Equivalent functional program

caller() {
foo (ox1) ; -—) foo (Object x) {

/ Closure cx =
foo (oxN) ; ‘

} cx (oyl) ; } lambda (Object y)

L. Closure cxy = ﬁ
cx (oyM) ; /

} cxy () ; —_— lambda (..) {
DX .Y .
}

© 2011 Stephen Chong, Harvard University

m-CEFA

e From this insight, Might, Smaragdakis and Van
Horn develop m-CFA

e Contexts are the top m stack frames

e (Different from last k call sites when in continuation-
passing style)

*Essentially CEnv = A instead of Var = A

* Polynomial-time analysis, seems as precise a k-
CFA for significantly less time

