

Symbolic Execution

CS252r Spring 2011

Contains content from slides by Jeff Foster

Static analysis

- Static analysis allows us to reason about all possible executions of a program
 - Gives assurance about any execution, prior to deployment
 - Lots of interesting static analysis ideas and tools
- But difficult for developers to use
 - Commercial tools spend a lot of effort dealing with developer confusion, false positives, etc.
 - See A Few Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World in CACM 53(2), 2010
 - http://bit.ly/aedM3k

One issue is abstraction

- Abstraction lets us scale and model all possible runs
 - But must be conservative
 - Try to balance precision and scalability
 - Flow-sensitive, context-sensitive, path-sensitivity, ...

 And static analysis abstractions do not cleanly match developer abstractions

Testing

- Fits well with developer intuitions
- In practice, most common form of bug-detection
- But each test explores only one possible execution of the system
 - Hopefully, test cases generalize

Symbolic execution

- King, CACM 1976.
- Key idea: generalize testing by using unknown symbolic variables in evaluation

- Symbolic executor executes program, tracking symbolic state.
- If execution path depends on unknown, we fork symbolic executor
 - at least, conceptually

Symbolic execution example

```
1. int a = \alpha, b = \beta, c = \gamma;
2. // symbolic
3. int x = 0, y = 0, z = 0;
4. if (a) {
5. x = -2;
6. }
7. if (b < 5) {
8. if (!a \&\& c) \{ y = 1; \}
9. z = 2;
10.}
11. assert(x+y+z!=3)
```

Symbolic execution example

```
1. int a = \alpha, b = \beta, c = \gamma;
2. // symbolic
3. int x = 0, y = 0, z = 0;
4. if (a) {
5. x = -2;
6. }
7. if (b < 5) {
8. if (!a \&\& c) \{ y = 1; \}
9. z = 2;
10.}
11. assert(x+y+z!=3)
```


Symbolic execution example

```
1. int a = \alpha, b = \beta, c = \gamma;
   // symbolic
3. int x = 0, y = 0, z = 0;
4. if (a) {
5. x = -2;
7. if (b < 5) {
8. if (!a \&\& c) \{ y = 1; \}
9. z = 2;
10.}
11. assert(x+y+z!=3)
```


What's going on here?

- During symbolic execution, we are trying to determine if certain formulas are satisfiable
 - E.g., is a particular program point reachable?
 - Figure out if the path condition is satisfiable
 - E.g., is array access a[i] out of bounds?
 - Figure out if conjunction of path condition and i<0 v i > a.length is satisfiable
 - E.g., generate concrete inputs that execute the same paths
- This is enabled by powerful SMT/SAT solvers
 - SAT = Satisfiability
 - SMT = Satisfiability modulo theory = SAT++
 - E.g. Z3, Yices, STP

SMT

- Satisfiability Modulo Theory
- SMT instance is a formula in first-order logic, where some function and predicate symbols have additional meaning
- The "additional meaning" depends on the theory being used
 - E.g., Linear inequalities
 - Symbols with extra meaning include the integers, +, -, ×, ≤
 - A richer modeling language than just Boolean SAT
 - Some commonly supported theories: Uninterpreted functions; Linear real and integer arithmetic; Extensional arrays; Fixed-size bit-vectors; Quantifiers; Scalar types; Recursive datatypes, tuples, records; Lambda expressions; Dependent types
- A lot of recent success using SMT solvers
 - In symbolic execution and otherwise...

Predicate transformer semantics

- Predicate transformer semantics give semantics to programs as relations from logical formulas to logical formulas
 - Strongest post-condition semantics: if formula ϕ is true before program c executes, then formula ψ is true after c executes
 - Like forward symbolic execution of program
 - Weakest pre-condition semantics: if formula ϕ is true after program c executes, then formula ψ must be true before c executes
 - Like backward symbolic execution of program

Predicate transformer semantics

- Predicate transformers operationalize Hoare Logic
- Hoare Logic is a deductive system
 - Axioms and inference rules for deriving proofs of Hoare triples (aka partial correctness assertion)
 - { ϕ } c { ψ } says that if ϕ holds before execution of program c and c terminates, then ψ holds after c terminates
- Predicate transformers provide a way of producing valid Hoare triples

Hoare logic

- First we need a language for the assertions
 - E.g., first order logic

assertions	$P,Q\in\mathbf{Assn}$	$P ::= $ true false $a_1 < a_2$
		$ P_1 \wedge P_2 P_1 \vee P_2 P_1 \Rightarrow P_2 \neg P$
		$\mid \forall i. \ P \mid \exists i. \ P$
arithmetic expressions	$a \in \mathbf{Aexp}$	$a ::= \ldots$

- logical variables $i, j \in \mathbf{LVar}$
 - We also need a semantics for assertions
 - For state σ : Var \rightarrow Int and interpretation I:LVar \rightarrow Int we write σ , I \models P if P is true when interpreted under σ , I

Rules of Hoare Logic

$$\frac{\text{SKIP}}{\{P\} \text{ skip } \{P\}}$$

ASSIGN
$$\frac{}{\{P[a/x]\} \ x := a \ \{P\}}$$

SEQ
$$\frac{\{P\} c_1 \{R\} \{R\} c_2 \{Q\}}{\{P\} c_1; c_2 \{Q\}}$$

$$\text{IF} \frac{ \{P \wedge b\} \ c_1 \ \{Q\} \qquad \{P \wedge \neg b\} \ c_2 \ \{Q\} }{ \{P\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \ \{Q\} }$$

$$\frac{ \vdash (P \Rightarrow P') \qquad \{P'\} \ c \ \{Q'\} \qquad \vdash (Q' \Rightarrow Q) }{ \{P\} \ c \ \{Q\} }$$

WHILE
$$\frac{\{P \wedge b\} \ c \ \{P\}}{\{P\} \text{ while } b \text{ do } c \ \{P \wedge \neg b\}}$$

Soundness and completeness of Hoare Logic

- Semantics of Hoare Triples
 - σ , $I \models \{P\} \in \{Q\} \quad \triangleq \quad \text{if } \sigma$, $I \models P \text{ and } [\![c]\!] \sigma = \sigma'$, then σ' , $I \models P$
 - \models {P} c {Q} \triangleq for all σ , I we have σ , I \models {P} c {Q}
- Soundness: If there is a proof of $\{P\}$ c $\{Q\}$, then $\models \{P\}$ c $\{Q\}$
- Relative completeness: If \models {P} c {Q} then there is a proof of {P} c {Q}
 - (assuming you can prove the implications in the rule of consequence).

Back to predicate transformers

- Weakest pre-condition semantics
 - Function wp takes command c and assertion Q and returns assertion P such that $\models \{P\}c\{Q\}$
 - wp(c, Q) is the weakest such condition
 - $\models \{P\}c\{Q\}$ if and only if $P \Rightarrow wp(c, Q)$
 - wp(skip, Q) = Q
 - wp(x:=a, Q) = Q[a/x]
 - $wp(c_1; c_2, Q) = wp(c_1, wp(c_2, Q))$
 - wp(if b then c_1 else c_2 , Q) = $(b \Rightarrow wp(c_1, Q) \land (\neg b \Rightarrow wp(c_2, Q))$

What about loops?

- Two possibilities: do we want the weakest precondition to guarantee termination of the loop?
- Weakest liberal precondition: does not guarantee termination
 - Corresponds to partial correctness of Hoare triples
 - •wp(while b do c, Q) = $\forall i \in Nat. L_i(Q)$ where $L_0(Q) = true$ $L_{i+1}(Q) = (\neg b \Rightarrow Q) \land (b \Rightarrow wp(c, L_i(Q)))$
 - Ensures loop terminates in a state that satisfies Q or runs forever

What about loops?

- Weakest precondition: guarantees termination
 - Corresponds to total correctness of Hoare triples
 - •wp(while b do c, Q) = $\exists i \in Nat. L_i(Q)$ where $L_0(Q) = false$ $L_{i+1}(Q) = (\neg b \Rightarrow Q) \land (b \Rightarrow wp(c, L_i(Q)))$
 - Ensures loop terminates in a state that satisfies Q

Strongest post condition

- Function sp takes command c and assertion P and returns assertion Q such that ⊨ {P}c{Q}
- sp(c, P) is the strongest such condition
 - $\models \{P\}c\{Q\}$ if and only if $sp(c, P) \Rightarrow Q$

Strongest post condition

- sp(skip, P) = P
- $sp(x:=a, P) = \exists n. \ x=a[n/x] \land P[n/x]$
- $sp(c_1;c_2, P) = sp(c_2, sp(c_1, P))$
- sp(if b then c_1 else c_2 , P) = sp(c_1 , $b \land P$) \lor sp(c_2 , $\neg b \land P$))
- sp(while b do c, P) = $\neg b \land \exists i$. $L_i(P)$ where $L_0(P) = P$ $L_{i+1}(P) = sp(c, b \land L_i(P))$
- Weakest preconditions are typically easier to use than strongest postconditions

Symbolic execution

- Symbolic execution can be viewed as a predicate transformation semantics
- Symbolic state and path condition correspond to a formula that is true at a program point
 - •e.g., Symbolic state [$x\mapsto \alpha$, $y\mapsto \beta+7$] and path condition $\alpha>0$ may correspond to $\alpha>0$ \land $x=\alpha$ \land $y=\beta+7$
- Strongest post condition transformations gives us a forward symbolic execution of a program
- Weakest pre condition transformations gives us a backward symbolic execution of a program

Symbolic execution

Recall

- $sp(x:=e, P) = \exists n. \ x=e[n/x] \land P[y/x]$
- $sp(c_1;c_2, P) = sp(c_2, sp(c_1, P))$
- sp(if b then c_1 else c_2 , P) = sp(c_1 , $b \land P$) \lor sp(c_2 , $\neg b \land P$))
- sp(while b do c, P) = $\neg b \land \exists i$. $L_i(P)$ where $L_0(P)$ = true $L_{i+1}(P)$ = sp(c, $b \land L_i(P)$)
- Disjunction encoded by multiple states
 - $\langle \text{if b then } c_1 \text{ else } c_2, P \rangle \downarrow \langle \text{skip}, \{b \land P, \neg b \land P\} \rangle \rangle$
 - or equivalently with non-deterministic semantics?
 - \langle if b then c_1 else c_2 , $P\rangle \mapsto \langle c_1, b \land P\rangle \rangle$ and \langle if b then c_1 else c_2 , $P\rangle \mapsto \langle c_2, \neg b \land P\rangle \rangle$
- While loops simply unrolled (may fail to terminate)

Symbolic execution and abstract interpretation

- Can we use logical formulas as an abstract domain?
 - Yes! See Sumit Gulwani's paper next week, which uses logical abstract interpretation
 - Also makes use of SMT solvers
- Can perhaps be seen as an abstract semantics for a concrete predicate transformer semantics?

Summary

- Symbolic execution
 - Predicate transformation semantics
 - Allows us to reason about multiple concrete executions
 - But may not allow us to reason about all possible executions
 - Enabled by recent advances in SMT solvers
- Next class: two symbolic execution papers
- Next week: logical abstract interpretation