s 8 HARVARD

School of Engineering
and Applied Sciences

Symbolic Execution

C5252r Spring 2011

Contains content from
slides by Jeff Foster

Static analysis

e Static analysis allows us to reason about all
possible executions of a program

e Gives assurance about any execution, prior to

deployment

e ots of interesting static analysis ideas and tools

 But difficult for developers to use

e Commercial tools spend a
developer confusion, false

ot of effort dealing with

nositives, etc.

* See A Few Billion Lines of Code Later: Using Static Analysis
to Find Bugs in the Real World in CACM 53(2), 2010

» http://bit.ly/aedM3k

http://bit.ly/aedM3k
http://bit.ly/aedM3k

One issue is abstraction

* Abstraction lets us scale and model all possible
runs

e But must be conservative

*Try to balance precision and scalability
* Flow-sensitive, context-sensitive, path-sensitivity, ...

e And static analysis abstractions do not cleanly
match developer abstractions

y

Testing

e Fits well with developer intuitions
*|n practice, most common form of bug-detection

* But each test explores only one possible
execution of the system

e Hopefully, test cases generalize

© 2011 Stephen Chong, Harvard University

Symbolic execution

* King, CACM 1976.

* Key idea: generalize testing by using unknown
symbolic variables in evaluation

* Symbolic executor executes program, tracking
symbolic state.

e [f execution path depends on unknown, we fork
symbolic executor

e at least, conceptually

Symbolic execu
V

.inta=qa,b=p,c=Y;
// symbolic
. Intx=0,y=0,z=0;

. if(a){
X =-2;
.}

. 1f (b <5){
if (la&&c) {y=1;}
Z=2;

O 00 N O U1l A W N B

10.}
11.assert(x+y+z!=3)

© 2011 Stephen Chong, Harvard University

Symbolic executior

.inta=q,b=B,c=Y; x=0, y=0, z=0
// symbolic cll
.intx=0,y=0,z=0; / |

. |f (a) { X='2
X = -2; |
.}

. 1f (b <5){
if (la&&c) {y=1;}
Z=2;

O 00 N O U1l A W N B

10.}
11.assert(x+y+z!=3)

path condition

© 2011 Stephen Chong, Harvard University

Symbolic execution e

.inta=q,b=B,c=Y;
// symbolic
. Intx=0,y=0,z=0;

. if (a) {
X = -2;
-}

. 1f (b <5){
if (la&&c) {y=1;}
Z=2;

O 00 N O U1l A W N B

10.}
11.assert(x+y+z!=3)

© 2011 Stephen Chong, Harvard University

x=0, y=0, z=0
|

t a
/ \
X=-2 B<5

| RN
B<5 “OAY v

2N ¢/ \d
B -aA(B=5)
z=2 Vv y=1 Zz=2

| an(B=5) 7| |
v Z=2 v

Cl/\(B<5) |

X —aA(B<B)Ay
\ —aA(B<5)AY

path condition

What's going on here?

e During symbolic execution, we are trying to determine if
certain formulas are satisfiable
e E.g., is a particular program point reachable?
* Figure out if the path condition is satisfiable

e E.g., is array access ali] out of bounds?

* Figure out if conjunction of path condition and i<0 v i > a.length is
satisfiable

* E.g., generate concrete inputs that execute the same paths

e This is enabled by powerful SMT/SAT solvers
e SAT = Satisfiability
e SMT = Satisfiability modulo theory = SAT++
* E.g. Z3,Yices, STP

SM'T

e Satisfiability Modulo Theory

e SMT instance is a formula in first-order logic, where some
function and predicate symbols have additional meaning

e The “additional meaning” depends on the theory being used
e E.g., Linear inequalities
« Symbols with extra meaning include the integers, +, -, x, <
A richer modeling language than just Boolean SAT

e Some commonly supported theories: Uninterpreted functions; Linear real and
integer arithmetic; Extensional arrays; Fixed-size bit-vectors; Quantifiers;
Scalar types; Recursive datatypes, tuples, records; Lambda expressions;

Dependent types

* A lot of recent success using SMT solvers

* In symbolic execution and otherwise...

Predicate transformer semantics

* Predicate transformer semantics give semantics to
programs as relations from logical formulas to
logical formulas

* Strongest post-condition semantics: if formula is true

before program c executes, then formula P is true after c
executes

« Like forward symbolic execution of program

* \Weakest pre-condition semantics: if formula ¢ is true after

program c executes, then formula P must be true before c
executes

- Like backward symbolic execution of program

Predicate transformer semantics

e Predicate transformers operationalize Hoare Logic

e Hoare Logic is a deductive system

e AXioms anc

inference rules for deriving proofs of Hoare

triples (aka

hartial correctness assertion)

°{ @} c{yY}saysthatif ¢ holds before execution of
program c and c terminates, then P holds after c

terminates

e Predicate transformers provide a way of producing

valid Hoare

triples

Hoare logic

*First we need a language for the assertions
oE.g., first order logic

assertions P, € Assn .= true | false | a1 < as
| PLAPy, | PPV Py | Py = Py | -P
| Vi. P | di. P

arithmetic expressions a € Aexp

logical variables i,J € LVar

e \We also need a semantics for assertions

*For state g:Var—Int and interpretation l:LVar—Int we
write 0, | = P if P is true when interpreted under o, |

Rules of Hc

SKI ASSIGN

" (P} skip (P} (Plajal} o = a {P}

o Pra (B (R e (Q) L APAB Q) (PAb e Q)
{P} C1;C2 {Q} {P} if b then c; else ¢, {Q}

=(P=r) {P}ci@} F(@Q =Q)
1Py c{Q]

CONSEQUENCE

(PADY ¢ {P)
(P} while bdo ¢ {P A —b}

WHILE

© 2011 Stephen Chong, Harvard University

Soundness and completeness of
Hoare Logic

e Semantics of Hoare Triples
°g, |={P}c{Q} % ifo, I=Pandlc]o=0’,thenao’, |
e={P}c{Q} % forall o Iwehaveo,IE{P}c{Q]}

e Soundness: If there is a proof of {P} c {QQ}, then = {P} c {Q}

e Relative completeness: If = {P} c {Q} then there is a proof of
P} c {Q}

* (assuming you can prove the implications in the rule of
consequence).

Back to predicate transtormers

* Weakest pre-condition semantics

e Function wp takes command c and assertion QQ and returns
assertion P such that = {P}c{Q]}

e wp(c, Q) is the weakest such condition
= {P}c{Q} ifandonlyif P= wp(c, Q)

What about loops?

* Two possibilities: do we want the weakest
precondition to guarantee termination of the loop?

* Weakest liberal precondition: does not guarantee
termination

e Corresponds to partial correctness of Hoare triples

*wp(while b do ¢, Q) = vieNat. Li(Q)
where Lo(Q) = true
Li1(Q) = (=b=Q) A (b=wp(c, Li(Q)))

* Ensures loop terminates in a state that satisfies Q or runs
forever

What about loops?

* Weakest precondition: guarantees termination

e Corresponds to total correctness of Hoare triples

wp(while b do ¢, Q) = 3ieNat. Li(Q)
where Lo(QQ) = false
Li1(Q) = (=b=Q) A (b=wp(c, Li(Q))

* Ensures loop terminates in a state that satisfies Q

Strongest post condition

 Function sp takes command c and assertion P and
returns assertion Q such that = {P}c{Q]}

*sp(c, P) is the strongest such condition
e ={P}c{Q} ifandonlyif sp(c, P)=Q

Strongest post condition

P) = sp(cz, sp(ci, P))
if b then ¢ else ¢, P) = sp(c1, bAP) v sp(ca, =bAP))
nile b do ¢, P) = =ba3i. Li(P)
where Lo(P) =P
Li+1(P) = sp(c, bALi(P))

* Weakest preconditions are typically easier to use than
strongest postconditions

Symbolic execution

e Symbolic execution can be viewed as a predicate
transformation semantics

e Symbolic state and path condition correspond to a
formula that is true at a program point

°e.g., Symbolic state

x~0a, y~P+7] and path condition

a>0 may correspond to a>0 A x=0. A y=p+7

e Strongest post condition transformations gives us a
forward symbolic execution of a program

* Weakest pre condition transformations gives us a
backward symbolic execution of a program

Symbolic exe

e Recall
* sp(x:=e, P) = an. x=e[n/x] A Ply/x]
* sp(ci;ca2, P) = sp(cy, sp(ci, P))
e sp(if b then c1 else ¢z, P) = sp(c1, bAP) v sp(c2, =baP))

e sp(while b do ¢, P) = =ba3i. Li(P)
where Lo(P) = true
Li+1(P) = sp(c, bALi(P))

e Disjunction encoded by multiple states
* (if b then c1 else cp, P> U (skip, {bAP, =bAP}))

e or equivalently with non-deterministic semantics?

* (if b then ¢y else ¢, P) = <(c1, bAP)) and
(if b then ¢ else c2, P) = <(c2, =bAP))

e While loops simply unrolled (may fail to terminate)

© 2011 Stephen Chong, Harvard University

Symbolic execution and
abstract interpretation

e Can we use logical formulas as an abstract domain?

* Yes! See Sumit Gulwani’s paper next week, which uses logical
abstract interpretation

e Also makes use of SMT solvers

e Can perhaps be seen as an abstract semantics for a concrete
predicate transformer semantics?

Summary

e Symbolic execution
e Predicate transformation semantics

e Allows us to reason about multiple concrete
executions

 But may not allow us to reason about all possible
executions

eEnabled by recent advances in SMT solvers
e Next class: two symbolic execution papers
* Next week: logical abstract interpretation

