s 8 HARVARD

School of Engineering
and Applied Sciences

KLEE: Unassisted and Automatic
Generation of High-Coverage Tests
for Complex Systems Programs

Cadar, Dunbar, and Engler
OSDI 08

CS5252r Spring 2011

KLEE Overview

e Symbolic execution tool

e Generates tests that achieve high coverage
« Over 90% on average on ~160 user-level programs

e Detect if dangerous operations could cause error

e Challenges:

*|nteracting with the environment
* OS, network, user

*Scaling to real-world code

Exe

llvm-gcc --emit-1llvm -c tr.c -o tr.bc

klee —--max-time 2 --sym-args 1 10 10
——-sym-files 2 2000 --max-fail 1 tr.bc

© 2011 Stephen Chong, Harvard University

Examr

: void expand(char *arg, unsigned char *buffer) { 31: int main(int argc, char* argv[]) {
int 1, ac; 32: int index = 1;
while (*arg) { 33: if (arge > 1 && argv[index][0] == '-") {
if (farg == "\\") { 34:
arg++; 35: }
1 =ac =0; 36: ...
if (farg >= 0’ && *arg <= '7") { 37: expand(argv[index++], index);
do { 38: ...
ac = (ac << 3) + *arg++ — '0’; 39: }
i++;
} while (i<4 && *arg>='0’" && *arg<='7");
*buffer++ = ac;
} else if (*arg != '\0’)
*buffer++ = *arg++;
else if (farg == '[') {
arg++;
i = *arg++;
if (farg++ 1= '-7) {
*buffer++ = '
arg —= 2;
continue;
ic . Constraint solver determines that
while (i <= ac) *buffer++ = i++; execution tr [" " will cause

w4+ /% Skip] ¥ ' '
i‘ife ip '] dereference of invalid memory

*buffer++ = *arg++;

©CoOoONOOOTRA~rWN =

© 2011 Stephen Chong, Harvard University

Architecture

e Operates on LLVM bytecode

e RISC-like virtual instruction set

e Has a gcc frontend

* A symbolic process (or state) is the state of a symbolically executing
process
e Has register file, stack, heap, program counter, path condition

e Storage locations (stack, heap, registers) contain symbolic expressions

« Concrete values/constants, symbolic variables, arithmetic operations, bitwise manipulations, memory
accesses, ...

* Whenever symbolic execution encounters a branch, state is cloned,
updating instruction pointer and path condition appropriately
e If constraint solver determines path condition is false, state can be dropped

e Potential errors are treated as branches

- E.g., division generates a branch that checks for zero divisor

Scaling up

e Compact state representation

e State cloned frequently

- e.g., For Coreutils, average of about 50,000 states generated
(with a cap on memory usage)

e Use copy-on-write at object granularity
* Allows much sharing of state
- Constant-time state cloning

e Symbolic expressions over constants are simplified
ee.g., Add(5, 3) is simplified to 8

Scaling up: query optimization

* Calling constraint solver dominates cost
* So want to reduce/simplify calls
e (is still about 40% of total time, even with optimizations)

* Expression rewriting

* Strength reduction (x * 2" » x << n)
arithmetic simplification (x + 0 » x)
linear simplification (3*x + x » 4*x)

e Constraint set simplification

e Use equality constraints (x=5) to rewrite earlier constraints (x < 10) and
simplify (5 < 10 » true)

e Implied value concretization

e e.g., x+1=10 implies x=9

Scaling up: query optimization

e Constraint independence

e Partition constraints based on which symbolic variables they access

e Only gives relevant partitions to the solver

e Counter-example cache

e Cache results of previous constraint solver queries
e [f constraint set C has no solution and C ¢ C’, then neither does C’
« Need to be able to efficiently search for subsets

o [f constraint set C has solution s and C’ ¢ C, then C’ has solution s

« Need to be able to efficiently search for supersets

e If constraint set C has solution s and C ¢ C’, then C’ likely has
solution s

« Can cheaply check if solution s works for C’

Effect of

Optimizations || Queries STP Time (s)

None 13717 281
Independence 13717 148
Cex. Cache 8174 156
All 699 20 10

Table 1: Performance comparison of KLEE’s solver optimiza-
tions on COREUTILS. Each tool is run for 5 minutes without
optimization, and rerun on the same workload with the given
optimizations. The results are averaged across all applications.

— None
---- Cex. Cache
Independence

Average Time (s)
DO
@]
S

© 2011 Stephen Chong, Harvard University Num. Instructions (normalized)

State exploration

 Many concurrent states, representing different program executions
e Aim: get good coverage of code
e Problem: at each step, which state to choose to run?

e Answer: mix of two strategies

e Random path selection
« Maintain binary tree recording program path followed for all active states
« Choose an active state by randomly traversing tree from root

* Biased towards states higher in the tree; not biased in terms of number of active states

e Coverage-Optimized Search

« Compute weight for each state

» Minimum distance to uncovered instruction, call stack of state, whether state recently
covered new code

« Randomly choose state according to weights

Environment

* Program interactive with environment

e Command line args, environment variables, file data, network packets, ...

e KLEE models semantics, and redirects library calls to these
models

* Models written in C, apparently without much coupling to KLEE internals
e E.g., Symbolic file system
e Single directory with N symbolic files

e Co-exists with real file system

* If open called with concrete file name, will open real file
» int fd = open(“/etc/fstab”, O_RDNLY);

e If open called with symbolic file name, will form and match each of the N
symbolic files (and also fail once)

» int fd = open(argv[1], O_RDNLY);

Evaluation

* Results are reported in line coverage
e Not the best metric. What would be better?

e Several evaluations: Coreutils, Busybox, HiStar

e Punchline: in reasonable time, got better (16.8%)coverage
that tests manually developed over 15 years

100% :

100% I o I
mm Base + Fail gy 'I'I' I |] S
| 31 Base 11_..-..""T1r R
R -

s —50% |

=
R4

—100%

I 10 25 50 75

Coverage (ELOC %)

Figure 6: Relative coverage difference between KLEE and
the COREUTILS manual test suite, computed by subtracting
the executable lines of code covered by manual tests (Lyan)
from KLEE tests (Lgec) and dividing by the total possible:
(Lkiee — Lman)/Ltotar. Higher bars are better for KLEE,
which beats manual testing on all but 9 applications, often
significantly.

Bug findir

* Found ten unique bugs in Coreutils

paste -d\\ abcdefghijklmnopgrstuvwxyz
pr -e t2.txt

tac -r t3.txt t3.txt

mkdir -Z a b

mkfifo -Z a b

mknod -Z a b p

md5sum -c tl.txt

ptx -F\\ abcdefghijklmnopgrstuvwxyz
ptx x t4.txt

seq -f %0 1

tl.axt: "\t \tMD5 ("

2.txt: "\b\b\b\b\b\b\b\t"
3.ext: "\n"

t4.axt: "a"

Figure 7: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes in COREUTILS
version 6.10 when run on Fedora Core 7 with SELinux on a
Pentium machine.

e Found 21 bugs in Busybox and 21 in Minix

eall memory errors

© 2011 Stephen Chong, Harvard University

Some additional points

e Produces test cases that can run outside of KLEE

e Reduces impact of bugs in KLEE and non-determinism

e Symbolic execution for functional correctness?

e Symbolic execution of two implementations of same
interface

eFind inputs on which functionality differs

s 8 HARVARD

School of Engineering
and Applied Sciences

Mixing Type Checking and
Symbolic Execution

Phang, Chang, and Foster
PLDI 2010

C5252r Spring 2011

Mix Overview

* Type checking: imprecise but scalable

e (Typically) Flow- and context-insensitive
e Symbolic execution: precise but inefficient

e Mix: combines symbolic execution and type checking

* More precise than just type checking, more efficient than
symbolic execution

* Provably sound

* And mostly re-uses proofs for type-soundness and sound symbolic
execution

Motivatior

e Gain precision in a controlled way

e Limited f?rm of path-sensitivity, flow-sensitivity
o 2 S if (multithreaded) {; fork(); ¢

{t .- d
if (multithreaded) {; lock(); ¢}

£ - o
if (multithreaded){; unlock(); ¢

st

{t ...{sif true then{; 5 {}else{; "foo" + 3 {}s} ..

fi - {svarx=1;{ ... ¢; x="fo0";s}...¢

{t ...{s x—obj = NULL;
x—obj = (...)malloc(...);s}...¢

* Even some context sensitivity

{sletidx=xin{ ... {sid3 s} ...{sid 3.0 ¢} ...

© 2011 Stephen Chong, Harvard University

.t

t st

Moti

e | ocal refinement

t
{ let x : unknown int = .. .in
{s
if x > 0 then{; (* x : pos int *) ...¢
else if x = 0 then{; (* x : zero int %) ...
else{; (* x : neg int *) ...¢
st
¢

x = (struct foo *) malloc(sizeof(struct foo));
x—bar = ...;
x—baz = ...;
X—=qUX = .. .;

st

insert(shared_data_structure, x);

tf

© 2011 Stephen Chong, Harvard University

Moti

4

e Helping symbolic execution
{s

let x ={; unknown_function() ¢in ...
let y ={; 2%*z (* operation not supported by solver *,
{t while true do{s loop_body s}}

st

© 2011 Stephen Chong, Harvard University

Formalis

Source Language.
e =x|v variables, constants
e+ e arithmetic
e=-¢e|-e|eAe predicates
if e then e else e conditional
letz =e€eine let-binding
ref e|le | e:=e references
{i e ¢ type checking block
{s e s symbolic execution block
v == n | true | false concrete values

Types, Symbolic Expressions, and Environments.

int | bool | 7 ref types
O|T,x:7 typing environment

U:T typed symbolic expressions
u:bool guards

a|wv symbolic variables, constants
w:int 4+ w:int arithmetic
s=s|—-g|gANg predicates

m|u:T ref] memory select

arbitrary memory

memory update

s)
S) memory allocation
.S symbolic environment

) (8
, (s
)

)

PONRS |

© 2011 Stephen Chong, Harvard University

Iype c

e Almost completely standard

I'Fe:T

 Except for rule for {s e s}... We'll come back to
that

© 2011 Stephen Chong, Harvard University

Symbolic Execution.

SEVAR
Yox:iskH(S;x) | (S;s)

SEVAL
S (S;0) § (S (v:typeof(v)))

SEPLUS
X (S;er)d (S1;ui:int) Y (S1;e2) U (S2;uztint)

Y (S;er +e2) | (S2; (ur:int + uz:int):int)

SEEQ
YE{(S;er)d (S1;urT) Y (S1;e2)) (S2;u:T)

Y (S;e1r =e2) (S2; (u1:T = uz:7):bool)

SENOT
Y (S;er) U (S1;01)

> <S " —I€1> l} <Sl » —lglzbool)

© 2011 Stephen Chong, Harvard University

Symbolic exe

SEAND
YE(Sse) $(S1;91) X F(Sije2) I (S2;92)

> <S ;e1 N\ €2> U <S2 ; (gl /\g2):boo|>

SELET
YEA(Sse) $(Siis1) Bymisib (Si;e2) U (525 s2)

EI—(S;Ietx:el in62>U(52;52>

SEIF-TRUE
YN (Sser)(S1;91)
Y (S1lg — g(S1) Aga];e2) U (S2; s2)

Y (S ;if e1 then eg else e3) | (S2 ; s2)

SEIF-FALSE

YE(S5er) I (S1;01)
X (S[g— g(S1) A—g1];es) I (S35 s3)
Y (S;if e1 then eg else e3) || (S35 ; s3)

Symbolic execution o

Symbolic Execution for References. Y E{(S;e)l (5;s)

SEREF
E|—<S;€1>~U<51;U1:T> OéﬁéE,S,Sl,ul

S = Si[m — (m(S1), (c:7 ref = uq:7))]
S b (S1;ref er) U (S ; cer ref) Note: in assignment of s, to &:T ref does
not require sz to be of type T

SEASSIGN
L (S;e1) 4 (S1581) X (Si;e) | (S2582)

N (S5er:=e2) I (S2[m = (m(S2), (s1 = 52))] ; 62)

SEDEREF Memory Type Consistency. = m ok U ~ m ok
> . T UL f = k
<S) €1> Y <51 y U1.7T Ie > m(Sl) © EMPTY-OK ALLOC-OK
(S ler) I (S1;m(S1)[ur:T ref]:T) = m ok U

- ok () = m, (c:T ref = ug:7) ok U

How to ensure that dereference is of

. P OVERWRITE-OK
appropriate type: FmokU U =U\{s1 > 52| s1=uirref As; — s € U}

= m, (up:T ref — ug:7) ok U’

ARBITRARY-NOTOK
Fm ok U

= m, (s1 — s2) ok (UU {s1 — s2})

© 2011 Stephen Chong, Harvard University

Design decisions

e Deferral vs. execution

* When to execute (e.g., forking on an if) versus deferring (e.g.,
having a _?¢_:_ symbolic operator)

* Tension between symbolic execution and types

* \Want symbolic execution to be permissive, but need to have
enough information around to invoke type checking

e —-m(S1) ok requires entire memory to be appropriately typed at time
of dereference

e Alternatives:

» Fork execution for each possible actual address pointer could
evaluate to

« Use external alias analysis to ensure points-to set is well-typed

Block Typing. I'Fe:T

, TSYMBLOCK
Symbolic _ Y(x) = az:I'(z) (for all z € dom(I")

) Symbolic
execution Nk (S;e) I (Si;uir) S = (true; u) pE 3 / eﬁecution

input Fm(S) ok eshaustive(g(S1),..,9(Sn)) GELm)

'E{s et T

exhaustive(gi,...,gn) <= (g1 V ...V gy is a tautology)

Block Symbolic Execution. Y E{(S;e)l (S ;s)

SETYPBLOCK
FX:T - m(S) ok C'Fe:T p,ag X, S

SE(S5 e d) I (Sim— p];air)

Symbolic and Typing Environment Conformance. FX: T

dom(X2) = dom(I")
Y(x) = u:l'(x) (for all x € dom(T"))
=T

© 2011 Stephen Chong, Harvard University

Soundne

*Yes, it's sound.

* Proof by simultaneous induction for type
soundness and “symbolic execution soundness”

e Need to define a soundness relation between concrete
state and symbolic state

© 2011 Stephen Chong, Harvard University

Mixy

e Tool for C for detecting null pointer errors

e Uses a type qualifier system

e T *nonnull means pointer can never be null

e T *null means pointer can never be null

 Performs inference instead of checking

e Generates symbolic variables for unknown qualifiers, and generates equality
constraints over these variables

1 void free(int *nonnull x);

2 int xid(int *p) { return p; } o _ _
3 int xx = NULL; id : int *xy — int %0 y @ int ke

4 int xy = id(x);

5 free(y); null=08 =7 =0 0=¢€¢ €= nonnull

free : int * nonnull — void X :int %0

* Methodology: start with all type-checking, and identify false
positives. Add symbolic blocks lazily to improve precision

Mixy

e Functions are declared to be either typed or
symbolic
e Can get block-level mixing by refactoring

* Translating between type-checking and symbolic
execution
 Type checking uses symbolic variables for qualifiers

elf x has type int *null, symbolic environment initializes
x to (a:bool)?loc:0

elf x has type int *B, (i.e., unknown qualifier) then assume
that PB=nonnull

* If wrong, will need to redo symbolic execution, until fixpoint reached

Aliasing

e First performs a pointer analysis to discover
aliasing relationships

*\When going from symbolic state to typing
environment, check that all pointers within a
points-to set have same type

*Required for soundness, analogous to -FM(S) ok

e Major performance bottle neck

* Also source of imprecision (since pointer analysis is
context-insensitive)

Caching and recursion

e Cache results of symbolic execution and type

checking

e Use type context to summarize blocks

* Typed block and symbolic block may recursively

call each other

e Need to prevent infi

e Maintain stack of w

nite

nat b

‘ecursion

ocks are currently being

analyzed, prevent infinite recursion

* Will require iteration until fix-point reached

