
Language-based
Information Security

CS252r Spring 2012

© 2012 Stephen Chong, Harvard University

This course

•Survey of key concepts and hot topics in
language-based information security
•The use of programming language abstractions and

techniques to reason about and enforce information
security guarantees

•Aim: understand, and contribute to, the research
boundary of the field

•Prereq: CS 152 or equivalent

2

© 2012 Stephen Chong, Harvard University

Class meetings

•Meet twice weekly
•Combination of lectures and paper presentation/discussion

•Lectures for background material/information not covered well by
one or two papers
• Will often include additional/relevant/recommended reading

•Papers for recent research, case studies, exemplary approaches,
…

•Expect to present once (maybe twice) during semester

•Volunteers needed to present
•Thursday Feb 9 onwards
•Look at the schedule, and email me if you would like to present

one of the papers.
3

© 2012 Stephen Chong, Harvard University

Assessment

•Class participation
•Presentation/discussion

•Project
•Dig deep into one or more aspects of material covered in class
•Encourage to work in teams of 2–4 people
•From week 3 onwards, I will meet weekly with each team
•Project proposal due Tuesday Feb 21 (week 5)
•Project presentations April 17, 19, 24
•Final report Thursday May 3

•Auditors welcome
•We can discuss what level of participation is involved

4

© 2012 Stephen Chong, Harvard University

Schedule

• See website

• Subject to change. Feel free to suggest papers/topics

5

© 2012 Stephen Chong, Harvard University

Information flow

•Information flows through systems
•We want to both understand how this

information flows, and possibly restrict it

6

H

L

Input Output

© 2012 Stephen Chong, Harvard University

Information flow

•Information flows through systems
•We want to both understand how this

information flows, and possibly restrict it

7

U

T

Input Output

© 2012 Stephen Chong, Harvard University

Uses of information-flow control

• Information flow is really about dependency
•How does the output of a system depend on the input?
•How does the input of a system influence the output?

•Very general concept.
•Many possible uses:

•Stop confidential information from being released inappropriately
•Stop untrusted information from being used inappropriately
• SQL/command injection attacks, cross-site scripting attacks

• Integer vulnerabilities

•Provenance
• Record the history of information/computation
• Enables auditing, recomputation, querying, ...

8

© 2012 Stephen Chong, Harvard University

So, what’s left to learn?

•How does information flow in a system?
•And why do we use language-level abstractions?

•Information-flow based semantic definitions
•What does it mean to be “secure”?
•What does it mean for information to “flow” or for an

output to depend on an input?

•How do we enforce information-flow based
notions of security?

9

© 2012 Stephen Chong, Harvard University

What is information?

•For our purposes, bits in context
•E.g., consider following program

•x = input_from_user();
y = x + 1;
z = y * -1;

•Suppose we know that the value in program variable z
at the end of the program is integer -43.

•This allows us to work out the input supplied by user
•The value -43, without context, doesn’t tell us much at

all...

10

© 2012 Stephen Chong, Harvard University

How does information flow?

•Explicit flow
•Flow through copying data or computation on data

•e.g., y = x
• Knowing the bits in y at that program point tells us exactly
the bits in x at that program point

•e.g., y = x+1
•Ditto

•e.g., y = x mod 8
• Knowing the bits in y at that program point tells us something
about the bits in x at that program point (the last 3 bits)

•Non example: y = x * 0
11

© 2012 Stephen Chong, Harvard University

How does information flow?

•Implicit flow (control flow channels)
•e.g.,

 if (x == true)
 y = true
 else
 y = false
•At end of this statement, value in y is the same as value in x
at beginning of statement

•e.g., y = 0; while (x > 0) { y++; x--; }
•Ditto

12

© 2012 Stephen Chong, Harvard University

How does information flow?

• Termination channels
• Whether the program (or part of a program) terminates may reveal

information
• e.g., while (x > 0) { skip }; output “Hello!”
• If “Hello!” is output, we know that x ≤ 0

• Timing channels
• How long a program (or part of a program) takes to execute may

reveal information

• e.g., output “start”; while (x > 0) { x--; }; output “stop”
• How long between outputs may reveal information about initial value of x

• Other covert channels
• Often not at a PL level of abstraction

• Power consumption, processor noise, temperature, ...
13

© 2012 Stephen Chong, Harvard University

Why use language-level abstractions?

•Information-flow control at programming language
level of abstraction
•Fine-grained
•Can soundly control implicit flows
•Clean semantics
•Language techniques

•Coarser levels of abstraction cannot distinguish
reliably distinguish sensitive bits from non-sensitive
bits
•Language-level approaches provide finer-grained, human

meaningful “contexts”
14

© 2012 Stephen Chong, Harvard University

Semantic definitions of security

•Noninterference
•Intuitively, confidential inputs do not influence (or

“interfere with”) public outputs
•Integrity version: untrusted inputs do not influence

trusted outputs
•Availability version: outputs that should be highly

available do not depend on inputs that are not highly
available

•Some problems and issues with noninterference
•We will consider these in later classes…

15

© 2012 Stephen Chong, Harvard University

Formally defining noninterference

•Goguen and Messeguer 1982 define
noninterference in terms of sets of users. Users U
are noninterfering with users V if the commands
issued by U does not change the observations
made by V.

16

© 2012 Stephen Chong, Harvard University

Formally defining noninterference

•More common modern formulation is using pairs
of executions
•Definition: Program c is noninterfering if for all states
σ0, σ1, σ’0, σ’1:
 if
 σ0 ≈L σ1 and [[c]]σ0 = σ’0 and [[c]]σ1 = σ’1
 then
 σ’0 ≈L σ’1

•Here ≈L is observational equivalence
•σ ≈L σ’ iff ∀x∈ObsVars. σ(x) = σ’(x)

17

© 2012 Stephen Chong, Harvard University

Observational model

• An explicit observational model helps us understand the
semantic security condition
•What can the attacker observe?
• Memory locations? Outputs? Throughout execution? At beginning and end

of execution? What about termination? What about timing information?

18

H

L

Input Output

© 2012 Stephen Chong, Harvard University

Interactive model

•Interactive programming models provide a more
realistic model of observational behavior

•Channels are how the system interacts with its external
environment

•An attacker observes one or more channels

19

necessarily appropriate. Consider the following code, that
outputs confidential information to user U at a time when
U is permitted to learn the information, and again at a time
when U is not permitted.

P2 : Allow info flow from Nuclear to U
Output keywords(nuke1) to U
. . .
Disallow info flow from Nuclear to U
Output keywords(nuke1) to U

For a powerful attacker, who doesn’t forget information
once learned, this program is secure! Although the program
outputs the keywords of nuke1 to user U at a time when
U is not permitted to learn that information, U does not
learn any new information from this output, provided she
remembers the previous output of the same information.

However, the program is insecure for a weaker attacker
that does not remember information. Such an attacker would
learn confidential information (the keywords of nuke1) at a
time when the security policy does not allow it.

Ideally, a system should be secure against as many at-
tackers as possible. But in the presence of dynamic security
policies, being secure against a very powerful attacker does
not imply security against weaker (but more realistic) attack-
ers. Thus, it is insufficient to enforce security just against
a very powerful attacker. A suitable definition of security
(and enforcement mechanism for security) should permit us
to reject both programs P1 and P2, even though one of them
is secure against a powerful attacker.

We define security with respect to an attacker: a program
is secure against attacker A if A learns information only
in accordance with the current security policy. We develop
a compositional theory of attackers that gives insight into
the security condition, and also simplifies enforcement.
Specifically, we show that there is a class of simple attackers
that are easy to reason about, and if a program is secure
against this class of simple attackers then the program is
secure against many other attackers, including logically-
omniscient attackers with perfect recall, and with bounded
memory. This compositional theory both enables reasoning
about the security of programs, and simplifies enforcement.

Contributions. This work makes three key contributions.
• We present a simple and extensible model for

reasoning about information security in the presence
of dynamic security policies. We define an intuitive
extensional knowledge-based semantic security condi-
tion for a language that permits arbitrary changes to
the security policy. The language can be extended with
expressive security-relevant features, such as run-time
representation of security policies, first-class security
levels, and fine-grained security policies, without sig-
nificant change to the semantic security condition.

• We present both static and dynamic techniques
to enforce this semantic security condition. These

Values v ::= n
Expressions e ::= v | x | e1 � e2
Commands c ::= skip | x := e | c1; c2

| if e then c1 else c2 | while e do c
| inputx from ⌃ | output e to ⌃
| setPolicy(⇤)

Figure 1. Language syntax

techniques elegantly extend existing information-flow
control techniques to handle dynamic security policies.

• We introduce a compositional model of attackers,
which simplifies both the security condition and the
enforcement mechanisms. We prove that enforcing
security for a simple and intuitive class of attackers
implies security for a much broader class of attackers.

The remainder of the paper is structured as follows. In
Section II we present a simple interactive imperative lan-
guage. We present and discuss semantic security conditions
for this language in Section III. We extend the language in
Section IV to allow the runtime representation, inspection,
and manipulation of security policies. Section V shows that
existing information-flow control mechanisms (a security-
type system and a dynamic information-flow monitor) can
be easily adapted to enforce our semantic security condition.
We can further extend the language with first-class security
levels and fine-grained security policies without significant
change to the semantic security condition (Section VI).
We discuss related work in Section VII and conclude in
Section VIII.

II. LANGUAGE

We present a simple imperative interactive language that
contains an explicit command for changing the current
security policy. A security policy ⇤ is a relation over a
set L of security levels. We assume that the set of security
levels L is fixed, but allow the policy to change during
program execution. Intuitively, the current security policy
specifies what information flows are permitted between
security levels. Policies must be reflexive, and may be (but
are not required to be) partial orders or lattices.

The language can perform input and output on channels.
We assume that there is one channel for each security level in
L. Our semantic security conditions will be concerned with
protecting the confidentiality of inputs received on channels.
Syntax. Figure 1 presents the language syntax. Language
commands are standard, with the exception of input and
output commands, and command setPolicy(⇤), which sets
the current security policy to ⇤. We do not specify how se-
curity policies are denoted, but assume that some mechanism
exists. In later sections, we will extend the language to allow
security policies to be specified using language mechanisms.
Input command inputx from ⌃ receives an input from chan-
nel ⌃ and assigns the value to variable x. Output command

2

© 2012 Stephen Chong, Harvard University

Interactive model semantics

•ω is input strategy: function from channels to input streams

20

output e to ` evaluates expression e and outputs the resulting
value on channel `.

Expressions e consist of program variables x, values v,
and binary operations over expressions. We use � to range
over total binary relations over values. For simplicity, we
restrict values to integers n.
Semantics. A memory is a function from program variables
to values. We use metavariable m to range over memories.

An input stream is a sequence of values representing the
pending inputs on a channel. We use metavariable vs to
range over input streams, and write v : vs for the input
stream with first element v, and remaining elements vs. An
input environment is a function from L to input streams.
Metavariable w ranges over input environments. For input
environment w and security level ` 2 L, w(`) is the input
stream for channel `.

A configuration is a tuple hc,m,wi consisting of com-
mand c, memory m, input environment w, and security
policy v. Command c is the remainder of the program to
execute, m is the current memory, w is the current input
environment, and v is the current security policy. Figure 2
presents an operational semantics for the language. Judg-
ment hc,m,wi �!↵ hc0,m0, w0i means that configuration
hc,m,wi can take a single step to configuration hc0,m0, w0i,
optionally emitting an event ↵. Events are either input events
i(v, `) or output events o(v, `), indicating, respectively, the
input or output of value v on channel `. We use ↵ = ✏ to
indicate that no event was emitted during the execution step.
We use E to denote the set of all possible events, and E(`)
to denote the set of possible events on channel `.

E(`) = {i(v, `) | v is a value} [{o(v, `) | v is a value}
E =

[

`2L

E(`)

We write m(e) = v to indicate that expression e evaluates
to value v using memory m to look up the value of program
variables. We write m[x 7! v] for the memory that maps
program variable x to value v and otherwise behaves the
same as memory m. Similarly, we write w[` 7! vs] for the
input environment that maps channel ` to input stream vs
and otherwise behaves the same as w.

The inference rules for the semantics are mostly standard.
Command setPolicy(v) modifies the configuration to make
policy v the current policy. Input command inputx from `
inputs value v from input stream w(`), updates the memory
to map x to v, updates the input environment to remove
v from input stream w(`), and emits event i(v, `). Output
command output e to ` evaluates e to value v, and emits
event o(v, `).

We assume that there is a distinguished memory m
init

and a distinguished security policy v
init

that are used as
the initial memory and security policy, respectively, for any
program execution. For concreteness, we assume in the rest

of the paper that the initial security policy is the identity
relation over security levels: v

init

= v
Id

= {(`, `) | ` 2 L}.
Our semantic security conditions will be concerned with

the confidentially of initial input environments. As such,
there is no distinguished initial input environment.
Traces. Traces are finite sequences of events. We use
metavariable t to range over traces, and write t1 · t2 for the
concatenation of traces t1 and t2. We write ✏ for the empty
trace (and also use it to denote the absence of an event in
an execution step). We write |t| for the length of trace t.

We write t � ` for the restriction of trace t to events on
channel `. More formally, we have

✏�` = ✏

(↵ · t)�` =
(
↵ · (t�`) if ↵ 2 E(`)
t�` if ↵ 62 E(`).

We say that configuration hc0,m0, w0i emits trace t on
channel ` ending with policy vk (written hc0,m0, w0i +`

(t,vk)) if there are k + 1 configurations hci,mi, wii for
i 2 0..k such that

hci�1,mi�1, wi�1i �!↵i hci,mi, wii

for all i 2 1..k, and t = (↵1 · . . . ·↵k)�`, and t 6= (↵1 · . . . ·
↵k�1)�`.

Intuitively, if hc,m
init

, wi +` (t,v) then an observer
of channel ` may observe trace t during the execution of
command c with initial input environment w, and policy v
is the policy enforced when the last event of t was emitted.

III. SECURITY

We define security of a program in terms of the knowledge
of an attacker that observes program execution. Conceptu-
ally, the definition of security is simple: an execution of a
program is secure if an attacker learns information about the
initial input environment only in accordance with the current
security policy.

In this section, we define attackers as entities that observe
the execution of a program, and define the knowledge of an
attacker. We then state two versions of the semantic security
condition and explore some of the consequences.

A. Attackers and attacker knowledge

As discussed in the introduction, a program may be secure
against a powerful attacker, but insecure against a weaker
attacker. We thus define attackers, and will parameterize
our definition of security with respect to the attacker that
is observing program execution.

An attacker is a state-based machine that observes a
subset of events during a program’s execution, and updates
its state accordingly. We assume that all attackers know the
source code of the program generating the events, and that
attackers are logically omniscient. Attackers differ in their
ability to remember the observations they have made. We

3

output e to ` evaluates expression e and outputs the resulting
value on channel `.

Expressions e consist of program variables x, values v,
and binary operations over expressions. We use � to range
over total binary relations over values. For simplicity, we
restrict values to integers n.
Semantics. A memory is a function from program variables
to values. We use metavariable m to range over memories.

An input stream is a sequence of values representing the
pending inputs on a channel. We use metavariable vs to
range over input streams, and write v : vs for the input
stream with first element v, and remaining elements vs. An
input environment is a function from L to input streams.
Metavariable w ranges over input environments. For input
environment w and security level ` 2 L, w(`) is the input
stream for channel `.

A configuration is a tuple hc,m,wi consisting of com-
mand c, memory m, input environment w, and security
policy v. Command c is the remainder of the program to
execute, m is the current memory, w is the current input
environment, and v is the current security policy. Figure 2
presents an operational semantics for the language. Judg-
ment hc,m,wi �!↵ hc0,m0, w0i means that configuration
hc,m,wi can take a single step to configuration hc0,m0, w0i,
optionally emitting an event ↵. Events are either input events
i(v, `) or output events o(v, `), indicating, respectively, the
input or output of value v on channel `. We use ↵ = ✏ to
indicate that no event was emitted during the execution step.
We use E to denote the set of all possible events, and E(`)
to denote the set of possible events on channel `.

E(`) = {i(v, `) | v is a value} [{o(v, `) | v is a value}
E =

[

`2L

E(`)

We write m(e) = v to indicate that expression e evaluates
to value v using memory m to look up the value of program
variables. We write m[x 7! v] for the memory that maps
program variable x to value v and otherwise behaves the
same as memory m. Similarly, we write w[` 7! vs] for the
input environment that maps channel ` to input stream vs
and otherwise behaves the same as w.

The inference rules for the semantics are mostly standard.
Command setPolicy(v) modifies the configuration to make
policy v the current policy. Input command inputx from `
inputs value v from input stream w(`), updates the memory
to map x to v, updates the input environment to remove
v from input stream w(`), and emits event i(v, `). Output
command output e to ` evaluates e to value v, and emits
event o(v, `).

We assume that there is a distinguished memory m
init

and a distinguished security policy v
init

that are used as
the initial memory and security policy, respectively, for any
program execution. For concreteness, we assume in the rest

of the paper that the initial security policy is the identity
relation over security levels: v

init

= v
Id

= {(`, `) | ` 2 L}.
Our semantic security conditions will be concerned with

the confidentially of initial input environments. As such,
there is no distinguished initial input environment.
Traces. Traces are finite sequences of events. We use
metavariable t to range over traces, and write t1 · t2 for the
concatenation of traces t1 and t2. We write ✏ for the empty
trace (and also use it to denote the absence of an event in
an execution step). We write |t| for the length of trace t.

We write t � ` for the restriction of trace t to events on
channel `. More formally, we have

✏�` = ✏

(↵ · t)�` =
(
↵ · (t�`) if ↵ 2 E(`)
t�` if ↵ 62 E(`).

We say that configuration
hc0,m0, w0i emits trace t on channel ` (written
hc0,m0, w0i +` t if there are k configurations hci,mi, wii

for i 2 0..k such that

hci�1,mi�1, wi�1i �!↵i hci,mi, wii

for all i 2 1..k, and t = (↵1 · . . . · ↵k)�`.
, and t 6= (↵1 · . . . · ↵k�1)�`.
Intuitively, if hc,m

init

, wi +` t then an observer of
channel ` may observe trace t during the execution of
command c with initial input environment w, and policy v
is the policy enforced when the last event of t was emitted.

III. SECURITY

We define security of a program in terms of the knowledge
of an attacker that observes program execution. Conceptu-
ally, the definition of security is simple: an execution of a
program is secure if an attacker learns information about the
initial input environment only in accordance with the current
security policy.

In this section, we define attackers as entities that observe
the execution of a program, and define the knowledge of an
attacker. We then state two versions of the semantic security
condition and explore some of the consequences.

A. Attackers and attacker knowledge

As discussed in the introduction, a program may be secure
against a powerful attacker, but insecure against a weaker
attacker. We thus define attackers, and will parameterize
our definition of security with respect to the attacker that
is observing program execution.

An attacker is a state-based machine that observes a
subset of events during a program’s execution, and updates
its state accordingly. We assume that all attackers know the
source code of the program generating the events, and that
attackers are logically omniscient. Attackers differ in their
ability to remember the observations they have made. We

3

m(e) = v

hx := e,m,wi �!✏ hskip,m[x 7! v], wi
hc1,m,wi �!↵ hc01,m0, w0i

hc1; c2,m,wi �!↵ hc01; c2,m0, w0i hskip; c,m,wi �!✏ hc,m,wi

m(e) = i

hif e then c1 else c2,m,wi �!✏ hci,m,wi hwhile e do c,m,wi �!✏ hif e then (c;while e do c) else skip,m,wi

w(`) = v : vs

hinputx from `,m,wi �!
i(v,`) hskip,m[x 7! v], w[` 7! vs]i

m(e) = v

houtput e to `,m,wi �!
o(v,`) hskip,m,wi

Figure 2. Language semantics

will define the attacker’s knowledge to be the set of initial
input environments that could have resulted in a sequence
of observations that caused the attacker to be in its current
state.

Formally, attacker A is a tuple A = (SA, sinit , �A) where
• SA is a set of attacker states;
• s

init

2 SA is the initial attacker state; and
• �A : SA ⇥ E ! SA is the transition function that

describes how the attacker’s state changes due to events
the attacker observes. Note that �A is a function, and
so state transitions are deterministic.

Given trace t and attacker A = (SA, sinit , �A), we write
A(t) to denote the attacker’s state after observing trace t.

A(✏) = s
init

A(t · ↵) = �A(A(t),↵)

We assume that attacker A is able to observe only events on
a single channel, and refer to that channel as the level of A.
Example attackers. We give four examples of attackers that
will be of later interest. The “perfect attacker” A

Per

has
perfect recall: it remembers all observations. The set of states
for A

Per

is the set of traces. The attacker’s initial state is
the empty trace, and the transition function concatenates the
latest observable event to the attacker’s state: �A

Per

(s,↵) =
s·↵. The perfect attacker knows more than any other attacker
(which will be stated and proved later).

A significantly weaker class of attackers are “bounded
memory” attackers, A

last-i , that remember the last i ob-
served events (and the total number of events observed).
More formally, the set of attacker states is the set of pairs
of natural numbers (counting the number of observations),
and traces of up to length i. The initial state is the pair (0, ✏),
and the transition function is defined as �A

last-i ((j, t),↵) =
(j + 1, t0) where t0 is equal to the last k events of t · ↵,
where k is the minimum of i and the length of t · ↵.

Another class of attackers that will be of interest are the
“i-th event only” attackers A

i-only which simply count the
number of observed events, and remember only the ith event.
More formally, the set of attacker states is the set of pairs of
natural numbers (counting the number of observations), and,

optionally, events (recording the ith event): SA
i-only = N⇥E.

The initial state is (0, ✏). The transition function is defined
as follows.

�A
i-only ((j,↵),↵

0) =

(
(i,↵0) if j + 1 = i

(j + 1,↵) otherwise

An even weaker attacker is the “no memory” attacker A;
who has only a single state s

init

, and thus pays no attention
to any observations: �A;(sinit ,↵) = s

init

.
Attacker knowledge. Given program c, we define the
knowledge of attacker A with current state s and level ` to be
the set of initial input environments that could have resulted
in the attacker’s current state by observing execution of
command c. We write k(c, `, s) for the attacker’s knowledge,
and define it as follows.

k(c, `, t) = {w | hc,m
init

, wi +` t}

Intuitively, the set k(c, `, s) is the set of initial input
environments that attacker A with state s believes are
possible. Thus, a smaller set means that the attacker has
better, or more precise, knowledge.

The perfect attacker A
Per

has the most precise knowledge
out of any possible attacker, since A

Per

remembers all
observable events.

Theorem 1. Let A = (SA, sinit , �A) be an attacker. Then
for all commands c, all security levels `, all initial input
environments w, and all traces t such that hc,m

init

, wi +` t
we have

k(c, `, A(t)) ◆ k(c, `, A
Per

(t)).

Proofs of this and other theorems are available in a
technical report, that can be provided upon request.

B. Security definition

Our definition of security is, intuitively, that the attacker
learns information only in accordance with the current
security policy. Since we are interested in protecting the
initial input environment, we need to define what the attacker
is permitted to learn about the initial input environment.

4

© 2012 Stephen Chong, Harvard University

Knowledge-based definitions

•The “pairs of execution” definitions are
somewhat unintuitive
•Trying to capture the idea that an attacker cannot

distinguish executions that differ only on secret values,
and thus cannot learn the secret.

•Why not express this more directly?
•Knowledge-based definitions explicitly define

attacker knowledge, and define security in terms
of attacker knowledge.

21

© 2012 Stephen Chong, Harvard University

Knowledge

•Attacker knowledge k(c,ℓ, t) is the set of input

strategies that could have resulted in trace t being
emitted on channel ℓ

•k(c,ℓ, t) is the set of input strategies that an observer of

channel ℓ believes are possible after observing trace t

•Smaller set = more precise knowledge
•

22

m(e) = v

hx := e,m,wi �!✏ hskip,m[x 7! v], wi
hc1,m,wi �!↵ hc01,m0, w0i

hc1; c2,m,wi �!↵ hc01; c2,m0, w0i hskip; c,m,wi �!✏ hc,m,wi

m(e) = i

hif e then c1 else c2,m,wi �!✏ hci,m,wi hwhile e do c,m,wi �!✏ hif e then (c;while e do c) else skip,m,wi

hsetPolicy(v0),m,wi �!✏ hskip,m,wi
w(`) = v : vs

hinputx from `,m,wi �!
i(v,`) hskip,m[x 7! v], w[` 7! vs]i

m(e) = v

houtput e to `,m,wi �!
o(v,`) hskip,m,wi

Figure 2. Language semantics

will define the attacker’s knowledge to be the set of initial
input environments that could have resulted in a sequence
of observations that caused the attacker to be in its current
state.

Formally, attacker A is a tuple A = (SA, sinit , �A) where
• SA is a set of attacker states;
• s

init

2 SA is the initial attacker state; and
• �A : SA ⇥ E ! SA is the transition function that

describes how the attacker’s state changes due to events
the attacker observes. Note that �A is a function, and
so state transitions are deterministic.

Given trace t and attacker A = (SA, sinit , �A), we write
A(t) to denote the attacker’s state after observing trace t.

A(✏) = s
init

A(t · ↵) = �A(A(t),↵)

We assume that attacker A is able to observe only events on
a single channel, and refer to that channel as the level of A.
Example attackers. We give four examples of attackers that
will be of later interest. The “perfect attacker” A

Per

has
perfect recall: it remembers all observations. The set of states
for A

Per

is the set of traces. The attacker’s initial state is
the empty trace, and the transition function concatenates the
latest observable event to the attacker’s state: �A

Per

(s,↵) =
s·↵. The perfect attacker knows more than any other attacker
(which will be stated and proved later).

A significantly weaker class of attackers are “bounded
memory” attackers, A

last-i , that remember the last i ob-
served events (and the total number of events observed).
More formally, the set of attacker states is the set of pairs
of natural numbers (counting the number of observations),
and traces of up to length i. The initial state is the pair (0, ✏),
and the transition function is defined as �A

last-i ((j, t),↵) =
(j + 1, t0) where t0 is equal to the last k events of t · ↵,
where k is the minimum of i and the length of t · ↵.

Another class of attackers that will be of interest are the
“i-th event only” attackers A

i-only which simply count the

number of observed events, and remember only the ith event.
More formally, the set of attacker states is the set of pairs of
natural numbers (counting the number of observations), and,
optionally, events (recording the ith event): SA

i-only = N⇥E.
The initial state is (0, ✏). The transition function is defined
as follows.

�A
i-only ((j,↵),↵

0) =

(
(i,↵0) if j + 1 = i

(j + 1,↵) otherwise

An even weaker attacker is the “no memory” attacker A;
who has only a single state s

init

, and thus pays no attention
to any observations: �A;(sinit ,↵) = s

init

.
Attacker knowledge. Given program c, we define the
knowledge of attacker A with current state s and level ` to be
the set of initial input environments that could have resulted
in the attacker’s current state by observing execution of
command c. We write k(c, `, s) for the attacker’s knowledge,
and define it as follows.

k(c, `, t) = {w | hc,m
init

, wi +` t}

Intuitively, the set k(c, `, s) is the set of initial input
environments that attacker A with state s believes are
possible. Thus, a smaller set means that the attacker has
better, or more precise, knowledge.

The perfect attacker A
Per

has the most precise knowledge
out of any possible attacker, since A

Per

remembers all
observable events.

Theorem 1. Let A = (SA, sinit , �A) be an attacker. Then
for all commands c, all security levels `, all initial input
environments w, and all traces t such that hc,m

init

, wi +` t
we have

k(c, `, A(t)) ◆ k(c, `, A
Per

(t)).

Proofs of this and other theorems are available in a
technical report, that can be provided upon request.

4

© 2012 Stephen Chong, Harvard University

Knowledge-based security

•Define ω ≈⊑ℓ ω’ if ∀ℓ’⊑ℓ. ω(ℓ’) = ω(ℓ)

•i.e., ω and ω’ agree on all inputs ℓ’⊑ℓ

•Program c is satisfies noninterference for channel ℓ

if
 for all input strategies ω,
 if 〈c, minit, ω〉⇓ t
 then k(c,ℓ,t) ⊇ {ω’ | ω ≈⊑ℓ ω’}

23

© 2012 Stephen Chong, Harvard University

Next class

•Enforcing noninterference
•Static, dynamic, and hybrid techniques

•Lattice based policies

24

