HARVARD
* School of Engineering
and Applied Sciences
Language-based
Information Security

C5252r Spring 2012

This course

*Survey of key concepts and hot topics in
language-based information security

e The use of programming language abstractions and
techniques to reason about and enforce information
security guarantees

e Aim: understand, and contribute to, the research
boundary of the field

*Prereq: CS 152 or equivalent

Class meetings

* Meet twice weekly
e Combination of lectures and paper presentation/discussion

e Lectures for background material/information not covered well by
one or two papers

» Will often include additional/relevant/recommended reading

e Papers for recent research, case studies, exemplary approaches,

 Expect to present once (maybe twice) during semester

e VVolunteers needed to present

e Thursday Feb 9 onwards

e Look at the schedule, and email me if you would like to present
one of the papers.

Assessment

e Class participation
* Presentation/discussion
* Project
e Dig deep into one or more aspects of material covered in class
e Encourage to work in teams of 2—4 people

e From week 3 onwards, | will meet weekly with each team
* Project proposal due Tuesday Feb 21 (week 5)

* Project presentations April 17, 19, 24

e Final report Thursday May 3
* Auditors welcome

e We can discuss what level of participation is involved

e See website

e Subject to change. Feel free to suggest papers/topics

© 2012 Stephen Chong, Harvard University

Information

e Information flows through systems

*\We want to both understand how this
information flows, and possibly restrict it

Output

\

© 2012 Stephen Chong, Harvard University

Information

e Information flows through systems

*\We want to both understand how this
information flows, and possibly restrict it

Output

\

© 2012 Stephen Chong, Harvard University

Uses of information-flow control

e Information flow is really about dependency
e How does the output of a system depend on the input?

e How does the input of a system influence the output?
* Very general concept.

* Many possible uses:
e Stop confidential information from being released inappropriately

e Stop untrusted information from being used inappropriately
* SQL/command injection attacks, cross-site scripting attacks
* Integer vulnerabilities

* Provenance

* Record the history of information/computation
* Enables auditing, recomputation, querying, ...

So, what's left to learn?

* How does information flow in a system?

e And why do we use language-level abstractions?

e Information-flow based semantic definitions

oW
oW

Nnat ¢

nat ¢

oes It mean

0es |

output to de

‘ mean |

‘0 be “secure”?

'or information to “flow” or for an

nend on an input?

e How do we enforce information-flow based
notions of security?

What is information?

e For our purposes, bits in context

*E.g., consider following program

ex = input_from_user();
y=X+1;
z=y*-1;

e Suppose we know that the value in program variable z
at the end of the program is integer -43.

oT

oT
d

nis al

1€ Vd

ows us to work out the input su

0

ue -43, without context, doesn’t

nlied by user

tell us much at

How does information flow?

e Explicit flow
 Flow through copying data or computation on data
°e.g., y =X

» Knowing the bits in y at that program point tells us exactly
the bits in x at that program point

°c.g., Yy = X+1
» Ditto
°e.g., Yy =x mod 8

» Knowing the bits in y at that program point tells us something
about the bits in x at that program point (the last 3 bits)

*Non example: y =x * 0

How does information flow?

* Implicit flow (control flow channels)

°ec.g.,
iIf (x == true)
y = true
else
y = false

» At end of this statement, value in y is the same as value in x
at beginning of statement

ee.g., v =0; while (x > 0) { y++; x--; }
* Ditto

How does information flow?

e Termination channels

e Whether the program (or part of a program) terminates may reveal
information

* e.g., while (x > 0) { skip }; output “Hello!”
- If “Hello!” is output, we know that x <0
e Timing channels

e How long a program (or part of a program) takes to execute may
reveal information

e e.g., output “start”; while (x > 0) { x--; }; output “stop”
- How long between outputs may reveal information about initial value of x

e Other covert channels

e Often not at a PL level of abstraction

* Power consumption, processor noise, temperature, ...

Why use language-level abstractions?

e Information-flow control at programming language
level of abstraction
* Fine-grained
e Can soundly control implicit flows
e Clean semantics
 Language techniques

* Coarser levels of abstraction cannot distinguish
reliably distinguish sensitive bits from non-sensitive
bits
e Language-level approaches provide finer-grained, human

meaningful “contexts”

Semantic definitions of security

e Noninterference

e |ntuitively, confidential inputs do not influence (or
“interfere with”) public outputs

*Integrity version: untrusted inputs do not influence
trusted outputs

e Availability version: outputs that should be highly

avalla
availla

0

0

e do not depend on inputs that are not highly
e

e Some problems and issues with noninterference

e \We will consider these in later classes...

Formally detining noninterference

e Goguen and Messeguer 1982 define
noninterference in terms of sets of users. Users U
are noninterfering with users V if the commands

issued by U does not change the observations
made by V.

Formally detining noninterference

* More common modern formulation is using pairs
of executions

* Definition: Program c is noninterfering if for all states
0o, 01, 0’0, O'1:

it

Oo =L 071 and [[c]|oo= 0'g and [[c]O1 = 0’1
then

O'o =L O'1

e Here =| is observational equivalence
0 ~ O iff vxeObsVars. o(x) = 0’(x)

Observational

e An explicit observational model helps us understand the
semantic security condition

e \What can the attacker observe?

« Memory locations? Outputs? Throughout execution? At beginning and end
of execution? What about termination? What about timing information?

Input Output

4)

© 2012 Stephen Chong, Harvard University SN, 18

Interactive model

e nteractive programming models provide a more
realistic model of observational behavior
e:=0v|x|e Deo
cu=skip|x:=elci;e
if e then ¢y else ¢y | while e do ¢
input x from £ | outputeto/

e Channels are how the system interacts with its external
environment

e An attacker observes one or more channels

Interactive model semantics

m<€) =0 <Cla m, ’UJ> —a <C/17 m/v w/>
(x := e, m,w) —¢ (skip, m[x — v], w) (c1;co,m,w) —>¢ (c);c0,m' ;W) (skip; ¢, m, w) —>, (¢, m,w)
m(e) =i
(if e then c; else co, m, w) —¢ (¢;, m, w) (while e do ¢, m,w) — (if e then (¢; while e do ¢) else skip, m, w)
w(l) =v:vs m(e) = v
(input x from £, m, w) —;(y.¢) (skip, m|z > v], w|{ = vs]) (outputetol, m, w) —>,(y.0) (skip, m, w)

* W is input strategy: function from channels to input streams

(co, Mo, wq) ¢ t if there are k configurations (c;, m;, w;)

e[l =c¢ for ¢+ € 0..k such that
(a , t) ¢ = Q- (t M) if o € E(é) <Ci—17mi—1awi—1> — 7y <Ci7mivwi>
te if a ¢ E(0). .
forall i € 1.k, and t = (1 - ... ag) [L.

Knowledge-based definitions

* The “pairs of execution” definitions are
somewhat unintuitive
*Trying to capture the idea that an attacker cannot

distinguish executions that differ only on secret values,
and thus cannot learn the secret.

*\Why not express this more directly?

* Knowledge-based definitions explicitly define
attacker knowledge, and define security in terms
of attacker knowledge.

Knowledge

e Attacker knowledge k(c, £, t) is the set of input

strategies that could have resulted in trace t being
emitted on channel £

k(c,é, t) — {”(U ‘ <Cv Minit U}> Yo t}

e k(c, £, t) is the set of input strategies that an observer of

channel £ believes are possible after observing trace t

* Smaller set = more precise knowledge

Knowledge-based security

e Definew=cy Wifve'Cld. WL =w(l)

*i.e., W and w’ agree on all inputs £ 'C 4

e Program c is satisfies noninterference for channel £
if
for all input strategies w,
If <C/ IMinit, w> U t
then k(c,2,t) 2 {W | wW~=ce W'}

Ne

 Enforcing noninterference
e Static, dynamic, and hybrid techniques

e Lattice based policies

© 2012 Stephen Chong, Harvard University 24

