

Abstract Interpretation: Fixpoints, widening, and narrowing

CS252r Fall 2015

Slides from Principles of Program Analysis by Nielson, Nielson, and Hankin

http://www2.imm.dtu.dk/~riis/PPA/ppasup2004.html

The need for fix-points

- Let L be complete lattice
- Suppose $f:L \rightarrow L$ is program analysis for some program construct p
 - i.e. $p \vdash l_1 \triangleright l_2$ where $f(l_1)=l_2$
 - monotonic function
- If *p* is recursive or iterative program construct, want to find **least fixed point** (lfp) of *f*.
 - Most precise lattice element representing analysis of executing p unbounded number of times

Fixed points

Let $f: L \to L$ be a monotone function on a complete lattice $L = (L, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$.

$$l$$
 is a *fixed point* iff $f(l) = l$

$$Fix(f) = \{l \mid f(l) = l\}$$

Tarski's
Theorem: Fix(f)
is a complete
lattice

Fixed points

Let $f: L \to L$ be a *monotone function* on a complete lattice $L = (L, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$.

$$l$$
 is a *fixed point* iff $f(l) = l$

$$Fix(f) = \{l \mid f(l) = l\}$$

$$f$$
 is *reductive* at l iff $f(l) \sqsubseteq l$

$$Red(f) = \{l \mid f(l) \sqsubseteq l\}$$

$$f$$
 is extensive at l iff $f(l) \supseteq l$

$$E \times t(f) = \{l \mid f(l) \supseteq l\}$$

Tarski's Theorem ensures that

Tarski's
Theorem: *Fix(f)*is a complete
lattice

$$Ifp(f) = \bigcap Fix(f) = \bigcap Red(f) \in Fix(f) \subseteq Red(f)$$

$$gfp(f) = \bigsqcup Fix(f) = \bigsqcup Ext(f) \in Fix(f) \subseteq Ext(f)$$

Fixed points of f

Need for approximation

• How do we find Ifp(f)?

Scott-continuous: $f:L \rightarrow L$ is Scott-continuous if for all $S \subseteq L$, we have $f(\Box S) = \Box f(S)$

- Ideally use iterative sequence
 - $(f^n(\bot))_n = \bot$, $f(\bot)$, $f(f(\bot))$, ...
- But:
 - may not stabilize
 - if L doesn't meet ascending chain condition
 - least upper bound of $(f^n(\bot))_n$ may not equal f(f)
 - Why?
 - No guarantee f is continuous, and so Kleene's fixed-point theorem doesn't apply
- Need to approximate...

Kleene's Fixed-Point Theorem: If (L, \sqsubseteq) is a complete partial order and $f:L \rightarrow L$ is Scott-continuous, then f has a least fixed point, equal to LUB of \bot , $f(\bot)$, $f(f(\bot))$, ...

One possibility

- Start with ⊤ and repeatedly apply f
 - i.e., $(f^n(\top))_n = \top$, $f(\top)$, $f(f(\top))$, ...
- Even if it doesn't stabilize, will always be a sound approximation
 - for all *i* we have $lfp(f) \sqsubseteq f^{n}(\top)$
 - Means that can stop when we run out of patience, and have sound approximation
- But in practice, too imprecise.

Widening operators

- Key idea: replace $(f^n(\bot))_n$ with sequence $(f_{\nabla}^n)_n$ such that
 - $(f_{\nabla}^n)_n$ guaranteed to stabilize with safe (upper) approximation of lfp(f)
- V is a widening operator
 - An upper bound operator satisfying a finiteness condition

Upper bound operators

Let $(l_n)_n$ be a sequence of elements of L. Define the sequence $(l_n)_n$ by:

$$l_n^{\underline{\square}} = \begin{cases} l_n & \text{if } n = 0\\ l_{n-1}^{\underline{\square}} & \text{if } n > 0 \end{cases}$$

Upper bound operators

Let $(l_n)_n$ be a sequence of elements of L. Define the sequence $(l_n)_n$ by:

$$l_n^{\square} = \begin{cases} l_n & \text{if } n = 0\\ l_{n-1}^{\square} & \text{if } n > 0 \end{cases}$$

Fact: If $(l_n)_n$ is a sequence and \coprod is an upper bound operator then $(l_n^{\coprod})_n$ is an ascending chain; furthermore $l_n^{\coprod} \coprod \{l_0, l_1, \dots, l_n\}$ for all n.

An upper bound operator:

$$int_1 \stackrel{\sim}{\sqcup}^{int} int_2 = \begin{cases} int_1 \stackrel{\sim}{\sqcup} int_2 & \text{if } int_1 \stackrel{\sim}{\sqsubseteq} int \vee int_2 \stackrel{\sim}{\sqsubseteq} int_1 \\ [-\infty, \infty] & \text{otherwise} \end{cases}$$

Example: $[1,2] \[\]^{[0,2]}[2,3] = [1,3]$ and $[2,3] \[\]^{[0,2]}[1,2] = [-\infty,\infty]$.

An upper bound operator:

$$int_1 \stackrel{int}{\sqcup} int_2 = \begin{cases} int_1 \stackrel{int_2}{\sqcup} int_2 & \text{if } int_1 \stackrel{int}{\sqsubseteq} int \lor int_2 \stackrel{int_1}{\sqsubseteq} int_1 \\ [-\infty, \infty] & \text{otherwise} \end{cases}$$

Example: $[1,2] \[\dot{}^{[0,2]}[2,3] = [1,3] \]$ and $[2,3] \[\dot{}^{[0,2]}[1,2] = [-\infty,\infty].$

Transformation of: [0,0],[1,1],[2,2],[3,3], $[4,4],[5,5],\cdots$

If $int = [0, \infty]$: $[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], \cdots$

If int = [0, 2]: $[0, 0], [0, 1], [0, 2], [0, 3], [-\infty, \infty], [-\infty, \infty], \cdots$

Widening operators

- Operator $\nabla : L \times L \rightarrow L$ is a widening operator iff
 - ▼ is an upper bound operator
 - •for all ascending chains $(I_n)_n$ the ascending chain $(P_n)_n$ eventually stabilizes
 - $abla_n = I_n$ if n = 0
 - $abla_n =
 abla_{n-1} \nabla I_n$ otherwise

Widening operators

• For monotonic function $f: L \to L$ and widening operator ∇ define $(f_{\nabla}^n)_n$ by

$$\bullet f_{\nabla}^n = \bot$$

if
$$n = 0$$

$$\bullet f_{\nabla}^n = f_{\nabla}^{n-1}$$

if
$$n > 0$$
 and $f(f_{\nabla}^{n-1}) \sqsubseteq f_{\nabla}^{n-1}$

- $f_{\nabla}^n = f_{\nabla}^{n-1} \nabla f(f_{\nabla}^{n-1})$ otherwise
- This is an ascending chain that eventually stabilizes
 - when $f(f_{\nabla}^m) \sqsubseteq f_{\nabla}^m$ for some m
- Tarski's Thm then gives $f_{\nabla}^m \supseteq lfp(f)$

Diagrammatically

We shall define a widening operator ∇ based on K.

We shall define a widening operator ∇ based on K.

Idea:
$$[z_1, z_2] \nabla [z_3, z_4]$$
 is $[LB(z_1, z_3), UB(z_2, z_4)]$

where

- LB $(z_1, z_3) \in \{z_1\} \cup K \cup \{-\infty\}$ is the best possible lower bound, and
- $UB(z_2, z_4) \in \{z_2\} \cup K \cup \{\infty\}$ is the best possible upper bound.

The effect: a change in any of the bounds of the interval $[z_1, z_2]$ can only take place finitely many times — corresponding to the cardinality of K.

Let $z_i \in \mathbf{Z}' = \mathbf{Z} \cup \{-\infty, \infty\}$ and write:

$$\mathsf{LB}_K(z_1, z_3) \ = \ \begin{cases} z_1 & \text{if } z_1 \leq z_3 \\ k & \text{if } z_3 < z_1 \ \land \ k = \max\{k \in K \mid k \leq z_3\} \\ -\infty & \text{if } z_3 < z_1 \ \land \ \forall k \in K : z_3 < k \end{cases}$$

$$\mathsf{UB}_{K}(z_{2},z_{4}) \ = \ \begin{cases} z_{2} & \text{if } z_{4} \leq z_{2} \\ k & \text{if } z_{2} < z_{4} \ \land \ k = \min\{k \in K \mid z_{4} \leq k\} \\ \infty & \text{if } z_{2} < z_{4} \ \land \ \forall k \in K : k < z_{4} \end{cases}$$

$$int_1 \nabla int_2 = \begin{cases} \bot \\ if \ int_1 = int_2 = \bot \\ [\ \mathsf{LB}_K(\mathsf{inf}(int_1), \mathsf{inf}(int_2)) \ , \ \mathsf{UB}_K(\mathsf{sup}(int_1), \mathsf{sup}(int_2)) \] \\ otherwise \end{cases}$$

Consider the ascending chain $(int_n)_n$

$$[0,1], [0,2], [0,3], [0,4], [0,5], [0,6], [0,7], \cdots$$

and assume that $K = \{3, 5\}$.

Then $(int_n^{\nabla})_n$ is the chain

$$[0,1],[0,3],[0,3],[0,5],[0,5],[0,\infty],[0,\infty],\cdots$$

which eventually stabilises.

Defining widening operators

- Suppose we have two complete lattices, L and M, and a Galois connection (L, α , γ , M) between them
- •One possibility: replace analysis $f:L \to L$ with analysis $g:M \to M$
 - Can **induce** *g* from *f*
 - But may reduce precision of analysis
- Another possibility
 - Use *M* just to ensure convergence of fixedpoints
 - Assume upper bound operator ∇_M for M
 - Define $I_1 \nabla_L I_2 = \mathbf{\gamma}(\alpha(I_1) \nabla_M \alpha(I_2))$
 - • ∇_L is widening operator if either
 - (i) M has no infinite ascending chains or
 - (ii) (*L*, α , γ , *M*) is Galois insertion and ∇_M is widening operator

Improving on $lfp_{\nabla}(f)$

• Widening gives upper approximation $lfp_{\nabla}(f)$ of lfp(f)

- But $f(\operatorname{lfp}_{\nabla}(f)) \sqsubseteq \operatorname{lfp}_{\nabla}(f)$ so we can improve approximation by considering sequence $(f^n(\operatorname{lfp}_{\nabla}(f)))_n$
- For all *i* we have $lfp(f) \sqsubseteq f'(lfp_{\nabla}(f)) \sqsubseteq lfp_{\nabla}(f)$
 - So can stop anytime with an upper approximation

 Defining a narrowing operator gives a way to describe when to stop

Narrowing operator

An operator $\triangle: L \times L \to L$ is a *narrowing operator* iff

- $l_2 \sqsubseteq l_1 \Rightarrow l_2 \sqsubseteq (l_1 \triangle l_2) \sqsubseteq l_1$ for all $l_1, l_2 \in L$, and
- for all descending chains $(l_n)_n$ the sequence $(l_n^{\triangle})_n$ eventually stabilises.

We construct the sequence $([f]_{\Lambda}^n)_n$

$$[f]_{\Delta}^{n} = \begin{cases} Ifp_{\nabla}(f) & \text{if } n = 0\\ [f]_{\Delta}^{n-1} \Delta f([f]_{\Delta}^{n-1}) & \text{if } n > 0 \end{cases}$$

One can show that:

- $([f]_{\Delta}^n)_n$ is a descending chain where all elements satisfy $f(f) \subseteq [f]_{\Delta}^n$
- the chain eventually stabilises so $[f]_{\Delta}^{m'} = [f]_{\Delta}^{m'+1}$ for some value m'

Diagrammatically

The complete lattice (**Interval**, \sqsubseteq) has two kinds of infinite descending chains:

- ullet those with elements of the form $[-\infty,z]$, $z\in {f Z}$
- those with elements of the form $[z, \infty]$, $z \in \mathbf{Z}$

Idea: Given some fixed non-negative number N the narrowing operator Δ_N will force an infinite descending chain

$$[z_1,\infty],[z_2,\infty],[z_3,\infty],\cdots$$

(where $z_1 < z_2 < z_3 < \cdots$) to stabilise when $z_i > N$

Similarly, for a descending chain with elements of the form $[-\infty, z_i]$ the narrowing operator will force it to stabilise when $z_i < -N$

Define $\Delta = \Delta_N$ by

$$int_1 riangleq int_2 = \left\{ egin{array}{ll} oxed{oxict}}}}}}}} intilefore{ox{oxetifie}}}}} } \end{eta}}} }} } intilde{eta}} } }$$

where

$$z_1 = \begin{cases} \inf(int_1) & \text{if } N < \inf(int_2) \land \sup(int_2) = \infty \\ \inf(int_2) & \text{otherwise} \end{cases}$$

$$z_2 = \begin{cases} \sup(int_1) & \text{if } \inf(int_2) = -\infty \land \sup(int_2) < -N \\ \sup(int_2) & \text{otherwise} \end{cases}$$

Consider the infinite descending chain $([n, \infty])_n$

$$[0,\infty],[1,\infty],[2,\infty],[3,\infty],[4,\infty],[5,\infty],\cdots$$

and assume that N=3.

Then the narrowing operator Δ_N will give the sequence $([n,\infty]^{\Delta})_n$

$$[0,\infty],[1,\infty],[2,\infty],[3,\infty],[3,\infty],[3,\infty],\cdots$$

Summary

- Given monotonic $f:L \rightarrow L$ where L is a lattice
- Approximating least fixed point of f accurately and quickly a key challenge of program analysis
- Widening operators
- Widening following by narrowing