HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

Symbolic Execution

CS252r Fall 2015

Contains content from
slides by Jeft Foster

Static analysis

e Static analysis allows us to reason about all
possible executions of a program

e Gives assurance about any execution, prior to

deployment

e | ots of interesting static analysis ideas and tools

e But difficult for developers to use

e Commercial tools spend a

developer con

fusion, false

* See "A Few Bi

ot of effort dealing with

positives, etc.

lion Lines of Code Later: Using Static Analysis

to Find Bugs in the Real World" in CACM 53(2), 2010
» http://bit.ly/aedM3k

http://bit.ly/aedM3k

One issue is abstraction

e Abstraction lets us scale and model all possible
Funs
e But must be conservative
*Try to balance precision and scalability

* Flow-sensitive, context-sensitive, path-sensitivity, ...

* And static analysis abstractions do not cleanly
match developer abstractions

Test1

o Fits well with developer intuitions
*|n practice, most common form of bug-detection

* But each test explores only one possible
execution of the system

e Hopefully, test cases generalize

Stephen Chong, Harvard University 4

Symbolic execution

eKing, CACM 1976.

*Key idea: generalize testing by using unknown
symbolic variables in evaluation

e Symbolic executor executes program, tracking
symbolic state.

e |f execution path depends on unknown, we fork
symbolic executor

eat least, conceptually

Symbolic exe

1. inta=qa,b=p,c=Y;
2. // symbolic
3. Intx=0,y=0,z=0;
4. if (a) {

5. X=-2;

6. }

7. if(b<bH){

g§. if(la&&c) {y=1;}
9. z=2;

10.}

11.assert(x+y+z!=3)

Stephen Chong, Harvard University

Symbolic executi

1. inta=qa,b=p,c=Y;
2. // symbolic
3. Intx=0,y=0, z=0;
4. if (a) {

5. X=-2;

6. }

7. if(b<bH){

8. if(la&&c) {y=1;}
9. z2=2;

10.}

11.assert(x+y+z!=3)

Stephen Chong, Harvard University

x=0, y=0, z=0
|

a
/
X=-2

path condition

Symbolic executi

1. inta=a,b=B,c=Y; x=0, y=0, z=0

2. /I symbolic .

3. intx=0,y=0,z=0; _ ~

4. if (a) { X=-2 <5

5. X=-2; | v N

6. }) B<5f SQAY v

7. if (b <5){ s v N -an(e=s)

g§. if(la&&c) {y=1;} | y=1 z=2

9. z=2: v, an(B=5) | |

10.} z=2 v

_ O./\(B<5) |

11.assert(x+y+z!=3) x A(B<5) A=Y
\ —aA(B<S)Ay
path condition

Stephen Chong, Harvard University

What's going on here?

e During symbolic execution, we are trying to determine if
certain formulas are satisfiable

°E.g., is a particular program point reachable?

* Figure out if the path condition is satisfiable

eE.g., is array access ali] out of bounds?

* Figure out if conjunction of path condition and i<0 v i > a.length is
satisfiable

°E.g., generate concrete inputs that execute the same paths

*This is enabled by powerful SMT/SAT solvers
o SAT = Satisfiability
e SMT = Satisfiability modulo theory = SAT++
°k.g. 73, Yices, STP

SM'T

e Satisfiability Modulo Theory

* SMT instance is a formula in first-order logic, where some function
and predicate symbols have additional meaning

* The “additional meaning” depends on the theory being used
°E.g., Linear inequalities
* Symbols with extra meaning include the integers, +, -, x, <

* A richer modeling language than just Boolean SAT

e Some commonly supported theories: Uninterpreted functions;
Linear real and integer arithmetic; Extensional arrays; Fixed-size
bit-vectors; Quantifiers; Scalar types; Recursive datatypes, tuples,
records; Lambda expressions; Dependent types

* A lot of recent success using SMT solvers

*In symbolic execution and otherwise...

Predicate transformer semantics

* Predicate transformer semantics give semantics to
programs as relations from logical formulas to
logical formulas

* Strongest post-condition semantics: if formula @ is true

before program c executes, then formula Y is true after c
executes

* Like forward symbolic execution of program

* Weakest pre-condition semantics: if formula ¢ is true after

program c executes, then formula P must be true before c
executes

* Like backward symbolic execution of program

Predicate transformer semantics

* Predicate transformers operationalize Hoare Logic
* Hoare Logic is a deductive system

e Axioms and inference rules for deriving proofs of Hoare
triples (aka partial correctness assertion)

°{ @} c{W}saysthatif @ holds before execution of
program c and c terminates, then P holds after c
terminates

* Predicate transformers provide a way of producing
valid Hoare triples

Hoare logic

e First we need a language for the assertions
°E.g., first order logic

assertions P,Q € Assn P ::= true | false | a; < as
| PLAPy | PPV Py | PL= Py | -P
| Vi. P| 3i. P

arithmetic expressions a € Aexp a:s = ...

logical variables i,j € LVar

e\We also need a semantics for assertions

*For state 0:Var—Int and interpretation |:LVar—Int we
write 0, | = P if P is true when interpreted under o, |

Rules of

SKIP . ASSIGN
{P} skip {P} {Pla/z]} x := a {P}
SEO {P}e{R}t {R}c{Q} IE {PADy 1 {QF {PA~b} 2 {Q}
{P} e1500 {Q} {P} if bthen ¢, else ¢, {Q}
CONSEQUENCE FP= P P el = (Q = Q)
{P}c{Q}
{PAb} c{P}

WHILE

{P} while b do ¢ {P A —b}

Stephen Chong, Harvard University 14

Soundness and completeness of
Hoare Logic

e Semantics of Hoare Triples
g, I=E{P}c{Q} 2 ifo, I=Pand][c]lo=0',theno’, =P
o= {P}c{Q} 2 forall o, Iwehaveo,|E={P}c{Q]

e Soundness: If there is a proof of {P} c {QQ}, then = {P} c {Q}

e Relative completeness: If = {P} c {QQ} then there is a proof of
P} c 1Q}

*(assuming you can prove the implications in the rule of
consequence).

Back to predicate transtormers

e \Weakest pre-condition semantics

e Function wp takes command c and assertion Q and returns
assertion P such that = {P}c{Q]}

*wp(c, Q) is the weakest such condition
* E{P}c{Q} ifandonlyif P= wp(c, Q)

What about loops?

* Two possibilities: do we want the weakest
precondition to guarantee termination of the loop?

* Weakest liberal precondition: does not guarantee
termination

e Corresponds to partial correctness of Hoare triples

ewp(while b do ¢, Q) = vieNat. Li(Q)
where Lo(Q) = true
Li+1(Q) = (=b=Q) A (b=wp(c, Li(Q)))

* Ensures loop terminates in a state that satisfies Q or runs
forever

What about loops?

* Weakest precondition: guarantees termination

 Corresponds to total correctness of Hoare triples

ewp(while b do ¢, Q) = 3ieNat. Li(Q)
where Lo(QQ) = false
Li1(Q) = (=b=Q) A (b=wp(c, Li(Q))

* Ensures loop terminates in a state that satisfies Q

Strongest post

 Function sp takes command c and assertion P and
returns assertion Q such that = {P}c{Q]}

*sp(c, P) is the strongest such condition
e ={P}c{Q} ifandonlyif sp(c, P)=Q

Stephen Chong, Harvard University 19

Strongest post condition

*SpP

(skip, P) =P

esp(x:=a, P) = In. x=a[n/x] A P[n/x]
(
(

°sp(ci;c2, P) = sp(cy, sp(ci, P))

esp(if b then c; else ¢y, P) = sp(c1, bAaP) v sp(c2, “bAP))
*sp(while b do ¢, P) = =ba3i. Li(P)
where Lo(P) =P
Li+1(P) = sp(c, bALi(P))

*\Weakest preconditions are typically easier to use than
strongest postconditions

Symbolic execution

e Symbolic execution can be viewed as a predicate
transformation semantics

e Symbolic state and path condition correspond to a
formula that is true at a program point

°e.g., Symbolic state [x~a, y~B+7] and path condition
>0 may correspond to >0 A x=& A y=p+7

e Strongest post condition transformations gives us a
forward symbolic execution of a program

*\Weakest pre condition transformations gives us a
backward symbolic execution of a program

e Recall

¢S
¢S
®S

¢S

Symbolic e

n(x:=e, P) = 3n. x=e[n/x] A Ply/x]

N(C1

o(if

0(w

;C2, P) = sp(cy, sp(ci, P))

0 then ¢y else ¢z, P) = sp(c1, bAP) v sp(c2, “bAP))

nile b do ¢, P) = =bA3i. Li(P)

where Lo(P) = true

Li+1(P) = sp(c, bALi(P))

e Disjunction encoded by multiple states
o(if b then c; else ¢z, P) || ¢skip, {bAP, =bAP}))

eor equivalently with non-deterministic semantics?

*(if b then c¢; else ¢z, P) » {(c1, bAP)) and
(if b then c1 else c2, P) » {(c2, =bAP))

e While loops simply unrolled (may fail to terminate)

Stephen Chong, Harvard University

22

Symbolic execution and
abstract interpretation

e Can we use logical formulas as an abstract domain?
*Yes! Known as logical abstract interpretation

¢ Also makes use of SMT solvers

e Can perhaps be seen as an abstract semantics for a concrete
predicate transformer semantics?

Back to syn

e \What about the details?

Stephen Chong, Harvard University 24

What values to treat symbolically?

e Primitive values, like ints, floats, and chars seem reasonable
o Strings? Or treat them as arrays of chars?

e There are theories for strings, but somewhat limited in their reasoning ability

e Pointers?
*Yeah, you want to have symbolic pointers.
eBut can complicate, e.g., deallocation
* Memory objects?
e Symbolic regions of memory?
e Symbolic data structures (e.g., linked lists, trees, hash maps, ...)?
e Files?
*\When to concretize?

*See Klee's behavior on pointers and files. Concretizes a pointer based on each memory
object it may point to.

*Keep a symbolic ternary value e.g., (<0 ¢ 0 : B) or fork execution?
* Mixing type checking and symbolic execution. Khoo, Chang, and Foster, PLDI 2010.

What are the sourc
val

*nputs to the program? Which?

e Environment?

e Environment variables? File system? Network
messages?

Stephen Chong, Harvard University 26

Efficient implementation

e How to efficiently handle many forked executions?

e Use underlving process abstraction?
ying p

e How to take advantage of lots of shared state between forked
executions¢

e How to take advantage of lots of shared/similar queries
between forked executions

e\When to concretize?

* Order of evaluating executions?
* How to explore unexplored code paths?

e How to avoid getting stuck in "fork bombs"?

e How to reduce the number of SMT queries?

Sum

e Symbolic execution

¢ Predicate transformation semantics

e Allows us to reason about multiple concrete
executions

* But may not allow us to reason about all possible
executions

eEnabled by recent advances in SMT solvers

Stephen Chong, Harvard University 28

