

HARVARD John A. Paulson School of Engineering and Applied Sciences

Symbolic Execution

CS252r Fall 2015 Contains content from slides by Jeff Foster

Static analysis

- Static analysis allows us to reason about all possible executions of a program
 - Gives assurance about any execution, prior to deployment
 - Lots of interesting static analysis ideas and tools
- But difficult for developers to use
 - Commercial tools spend a lot of effort dealing with developer confusion, false positives, etc.
 - See "A Few Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World" in CACM 53(2), 2010
 http://bit.ly/aedM3k

One issue is abstraction

- Abstraction lets us scale and model all possible runs
 - But must be conservative
 - Try to balance precision and scalability
 - Flow-sensitive, context-sensitive, path-sensitivity, ...

And static analysis abstractions do not cleanly match developer abstractions

Testing

- Fits well with developer intuitions
- In practice, most common form of bug-detection
- But each test explores only one possible execution of the system
 - Hopefully, test cases generalize

Symbolic execution

- •King, CACM 1976.
- Key idea: generalize testing by using unknown symbolic variables in evaluation
- Symbolic executor executes program, tracking symbolic state.
- If execution path depends on unknown, we fork symbolic executor
 - at least, conceptually

Symbolic execution example

```
1. int a = \alpha, b = \beta, c = \gamma;
   // symbolic
2.
3. int x = 0, y = 0, z = 0;
4. if (a) {
5. x = -2;
6. }
7. if (b < 5) {
8. if (!a \&\& c) \{ y = 1; \}
9. z = 2;
10.}
11. assert(x+y+z!=3)
```

Symbolic execution example

1. int
$$a = \alpha$$
, $b = \beta$, $c = \gamma$;
2. // symbolic
3. int $x = 0$, $y = 0$, $z = 0$;
4. if (a) {
5. $x = -2$;
6. }
7. if (b < 5) {
8. if (!a && c) { $y = 1$; }
9. $z = 2$;
10.}
11. assert(x+y+z!=3)

Symbolic execution example

1. int
$$a = a$$
, $b = \beta$, $c = \gamma$;
2. // symbolic
3. int $x = 0$, $y = 0$, $z = 0$;
4. if (a) {
5. $x = -2$;
6. }
7. if (b < 5) {
8. if (!a && c) { $y = 1$; }
9. $z = 2$;
10.}
11. assert(x+y+z!=3)

What's going on here?

- During symbolic execution, we are trying to determine if certain formulas are satisfiable
 - E.g., is a particular program point reachable?
 - Figure out if the path condition is satisfiable
 - E.g., is array access a[i] out of bounds?
 - Figure out if conjunction of path condition and i<0 \vee i \geq a.length is satisfiable
 - E.g., generate concrete inputs that execute the same paths
- This is enabled by powerful SMT/SAT solvers
 - SAT = Satisfiability
 - SMT = Satisfiability modulo theory = SAT++
 - E.g. Z3, Yices, STP

SMT

- Satisfiability Modulo Theory
- SMT instance is a formula in first-order logic, where some function and predicate symbols have additional meaning
- The "additional meaning" depends on the theory being used
 - E.g., Linear inequalities
 - Symbols with extra meaning include the integers, +, -, ×, \leq
 - A richer modeling language than just Boolean SAT
 - Some commonly supported theories: Uninterpreted functions; Linear real and integer arithmetic; Extensional arrays; Fixed-size bit-vectors; Quantifiers; Scalar types; Recursive datatypes, tuples, records; Lambda expressions; Dependent types
- A lot of recent success using SMT solvers
 - In symbolic execution and otherwise...

Predicate transformer semantics

- Predicate transformer semantics give semantics to programs as relations from logical formulas to logical formulas
 - Strongest post-condition semantics: if formula ϕ is true before program c executes, then formula ψ is true after c executes
 - Like forward symbolic execution of program
 - •Weakest pre-condition semantics: if formula ϕ is true after program c executes, then formula ψ must be true before c executes
 - Like backward symbolic execution of program

Predicate transformer semantics

• Predicate transformers operationalize Hoare Logic

• Hoare Logic is a deductive system

- Axioms and inference rules for deriving proofs of Hoare triples (aka partial correctness assertion)
- { ϕ } c { ψ } says that if ϕ holds before execution of program c and c terminates, then ψ holds after c terminates
- Predicate transformers provide a way of producing valid Hoare triples

Hoare logic

First we need a language for the assertions E.g., first order logic

assertions	$P,Q\in \mathbf{Assn}$	$P ::= $ true false $a_1 < a_2$
		$ P_1 \land P_2 P_1 \lor P_2 P_1 \Rightarrow P_2 \neg P$
		$ \forall i. P \exists i. P$
arithmetic expressions	$a \in \mathbf{Aexp}$	$a ::= \ldots$
logical variables	$i,j\in \mathbf{LVar}$	

- •We also need a semantics for assertions
 - For state σ :Var→Int and interpretation I:LVar→Int we write σ , I \models P if P is true when interpreted under σ , I

Rules of Hoare Logic

Skip
$$\overline{\{P\} \text{ skip } \{P\}}$$

Assign $\overline{\{P[a/x]\} x := a \{P\}}$

$$SEQ = \frac{\{P\} c_1 \{R\}}{\{P\} c_1; c_2 \{Q\}} \qquad IF = \frac{\{P \land b\} c_1 \{Q\}}{\{P\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \{Q\}}$$

WHILE
$$\frac{\{P \land b\} c \{P\}}{\{P\} \text{ while } b \text{ do } c \{P \land \neg b\}}$$

Soundness and completeness of Hoare Logic

• Semantics of Hoare Triples

- • σ , $I \models \{P\} \in \{Q\} \triangleq \text{ if } \sigma$, $I \models P \text{ and } \llbracket c \rrbracket \sigma = \sigma'$, then σ' , $I \models P$
- \models {P} c {Q} \triangleq for all σ , I we have σ , I \models {P} c {Q}

• Soundness: If there is a proof of $\{P\} \in \{Q\}$, then $\models \{P\} \in \{Q\}$

- Relative completeness: If \models {P} c {Q} then there is a proof of {P} c {Q}
 - (assuming you can prove the implications in the rule of consequence).

Back to predicate transformers

Weakest pre-condition semantics

- Function wp takes command c and assertion Q and returns assertion P such that \models {P}c{Q}
- •wp(c, Q) is the **weakest** such condition
 - $\models \{P\}c\{Q\}$ if and only if $P \Rightarrow wp(c, Q)$
- •wp(skip, Q) = Q
- •wp(x:=a, Q) = Q[a/x]
- wp(c₁;c₂, Q) = wp(c₁, wp(c₂, Q))
- wp(if b then c₁ else c₂, Q) = (b \Rightarrow wp(c₁, Q) \land (\neg b \Rightarrow wp(c₂, Q))

What about loops?

- Two possibilities: do we want the weakest precondition to guarantee termination of the loop?
- Weakest liberal precondition: does not guarantee termination
 - Corresponds to **partial** correctness of Hoare triples
 - - Ensures loop terminates in a state that satisfies Q or runs forever

What about loops?

• Weakest precondition: guarantees termination

• Corresponds to **total** correctness of Hoare triples • wp(while b do c, Q) = $\exists i \in Nat. L_i(Q)$ where $L_0(Q) = false$ $L_{i+1}(Q) = (\neg b \Rightarrow Q) \land (b \Rightarrow wp(c, L_i(Q)))$

• Ensures loop terminates in a state that satisfies Q

Strongest post condition

- Function sp takes command c and assertion P and returns assertion Q such that ⊨ {P}c{Q}
- sp(c, P) is the **strongest** such condition
 - $\models \{P\}c\{Q\}$ if and only if $sp(c, P) \Rightarrow Q$

Strongest post condition

• sp(skip, P) = P

- sp(x:=a, P) = $\exists n. x = a[n/x] \land P[n/x]$
- $sp(c_1;c_2, P) = sp(c_2, sp(c_1, P))$
- sp(if b then c_1 else c_2 , P) = sp(c_1 , $b \land P$) \lor sp(c_2 , $\neg b \land P$))

• sp(while b do c, P) = $\neg b \land \exists i. L_i(P)$ where $L_0(P) = P$ $L_{i+1}(P) = sp(c, b \land L_i(P))$

 Weakest preconditions are typically easier to use than strongest postconditions

Symbolic execution

- Symbolic execution can be viewed as a predicate transformation semantics
- Symbolic state and path condition correspond to a formula that is true at a program point
 - •e.g., Symbolic state $[x \mapsto \alpha, y \mapsto \beta + 7]$ and path condition $\alpha > 0$ may correspond to $\alpha > 0 \land x = \alpha \land y = \beta + 7$
- Strongest post condition transformations gives us a forward symbolic execution of a program
- Weakest pre condition transformations gives us a backward symbolic execution of a program

Symbolic execution

Recall

- sp(x:=e, P) = $\exists n. x = e[n/x] \land P[y/x]$
- $sp(c_1;c_2, P) = sp(c_2, sp(c_1, P))$
- sp(if b then c_1 else c_2 , P) = sp(c_1 , $b \land P$) \lor sp(c_2 , $\neg b \land P$))

• sp(while b do c, P) =
$$\neg b \land \exists i. L_i(P)$$

where $L_0(P) = true$
 $L_{i+1}(P) = sp(c, b \land L_i(P))$

• Disjunction encoded by multiple states

• (if b then c_1 else c_2 , P) \Downarrow (skip, {b^P, $\neg b^P$))

- or equivalently with non-deterministic semantics?
 - $\langle \text{if b then } c_1 \text{ else } c_2, P \rangle \mapsto \langle c_1, b \land P \rangle \rangle$ and $\langle \text{if b then } c_1 \text{ else } c_2, P \rangle \mapsto \langle c_2, \neg b \land P \rangle \rangle$
- While loops simply unrolled (may fail to terminate)

Symbolic execution and abstract interpretation

• Can we use logical formulas as an abstract domain?

- Yes! Known as **logical abstract interpretation**
- Also makes use of SMT solvers
- Can perhaps be seen as an abstract semantics for a concrete predicate transformer semantics?

Back to symbolic execution...

• What about the details?

What values to treat symbolically?

- Primitive values, like ints, floats, and chars seem reasonable
- Strings? Or treat them as arrays of chars?
 - There are theories for strings, but somewhat limited in their reasoning ability

•Pointers?

- Yeah, you want to have symbolic pointers.
- But can complicate, e.g., deallocation
- Memory objects?
 - Symbolic regions of memory?
 - •Symbolic data structures (e.g., linked lists, trees, hash maps, ...)?
- Files?
- •When to concretize?
 - •See Klee's behavior on pointers and files. Concretizes a pointer based on each memory object it may point to.
 - •Keep a symbolic ternary value e.g., ($\alpha < 0 ? 0 : \beta$) or fork execution?
 - *Mixing type checking and symbolic execution*. Khoo, Chang, and Foster, PLDI 2010.

What are the sources of symbolic values?

- Inputs to the program? Which?
- •Environment?
 - Environment variables? File system? Network messages?

Efficient implementation

• How to efficiently handle many forked executions?

- Use underlying process abstraction?
- How to take advantage of lots of shared state between forked executions?
- How to take advantage of lots of shared/similar queries between forked executions
- •When to concretize?
- Order of evaluating executions?
 - How to explore unexplored code paths?
 - How to avoid getting stuck in "fork bombs"?
- How to reduce the number of SMT queries?

Summary

Symbolic execution

- Predicate transformation semantics
- Allows us to reason about multiple concrete executions
 - But may not allow us to reason about all possible executions
- Enabled by recent advances in SMT solvers