
Symbolic Execution

CS252r Fall 2015
Contains content from  

slides by Jeff Foster

Stephen Chong, Harvard University

Static analysis

•Static analysis allows us to reason about all
possible executions of a program
•Gives assurance about any execution, prior to

deployment

•Lots of interesting static analysis ideas and tools

•But difficult for developers to use
•Commercial tools spend a lot of effort dealing with

developer confusion, false positives, etc.
• See "A Few Billion Lines of Code Later: Using Static Analysis
to Find Bugs in the Real World" in CACM 53(2), 2010

‣ http://bit.ly/aedM3k
2

http://bit.ly/aedM3k

Stephen Chong, Harvard University

One issue is abstraction

•Abstraction lets us scale and model all possible
runs
•But must be conservative
•Try to balance precision and scalability
• Flow-sensitive, context-sensitive, path-sensitivity, …

•And static analysis abstractions do not cleanly
match developer abstractions

3

Stephen Chong, Harvard University

Testing

•Fits well with developer intuitions
•In practice, most common form of bug-detection
•But each test explores only one possible

execution of the system
•Hopefully, test cases generalize

4

Stephen Chong, Harvard University

Symbolic execution

•King, CACM 1976.

•Key idea: generalize testing by using unknown
symbolic variables in evaluation

•Symbolic executor executes program, tracking
symbolic state.

•If execution path depends on unknown, we fork
symbolic executor
•at least, conceptually

5

Symbolic Execution Example

5

1. int a = α, b = β, c = γ;
2. // symbolic
3. int x = 0, y = 0, z = 0;
4. if (a) {
5. x = -2;
6. }
7. if (b < 5) {
8. if (!a && c) { y = 1; }
9. z = 2;
10.}
11.assert(x+y+z!=3)

x=0, y=0, z=0

α

x=-2

z=2

!

"

β<5 ¬α∧γ

y=1!

β<5

z=2

z=2

!

!

t f

t f t f

t f

α∧(β<5)

path condition

α∧(β≥5)

¬α∧(β≥5)

¬α∧(β<5)∧¬γ

¬α∧(β<5)∧γ

Why Is This Possible?

• There are very powerful SMT/SAT solvers today
■ SMT = Satisfiability Modulo Theories = SAT++

■ Can solve very large instances, very quickly

- Lets us check assertions, prune infeasible paths

■ We’ve used Z3, STP, and Yices

• Recent success: bug finding
■ Heuristic search through space of possible executions

■ Find really interesting bugs

6

Sym Exec Can Do Much More

• I think symbolic execution can be used in many
other interesting ways

• Next: Symbolic execution as
■ Empirical studies tool

■ Web application security checker

■ Enhancement to abstraction-based static analysis

■ Program synthesis tool

• All of these take advantage of sym exec
strengths, and try to avoid drawbacks

7

Rubyx: Symbolic Execution for Rails

8

!"#$%&'()

'*"$+%#%&,-.#/0

1.23%4.&5&647&,4.84.

'//$#-"92*

1":&%0"04%&.4"-;"7$4<

!"#$%&'(%)*+,-.+./%'01/2

!"#$%&'(%)*+,-.+./%'01/2 !3,.(45('01/$2

!3,.(45('01/$6)4/(-7)&1-.$2

© 2011 Stephen Chong, Harvard University

Symbolic execution example

8

Symbolic Execution Example

5

1. int a = α, b = β, c = γ;
2. // symbolic
3. int x = 0, y = 0, z = 0;
4. if (a) {
5. x = -2;
6. }
7. if (b < 5) {
8. if (!a && c) { y = 1; }
9. z = 2;
10.}
11.assert(x+y+z!=3)

x=0, y=0, z=0

α

x=-2

z=2

!

"

β<5 ¬α∧γ

y=1!

β<5

z=2

z=2

!

!

t f

t f t f

t f

α∧(β<5)

path condition

α∧(β≥5)

¬α∧(β≥5)

¬α∧(β<5)∧¬γ

¬α∧(β<5)∧γ

Why Is This Possible?

• There are very powerful SMT/SAT solvers today
■ SMT = Satisfiability Modulo Theories = SAT++

■ Can solve very large instances, very quickly

- Lets us check assertions, prune infeasible paths

■ We’ve used Z3, STP, and Yices

• Recent success: bug finding
■ Heuristic search through space of possible executions

■ Find really interesting bugs

6

Sym Exec Can Do Much More

• I think symbolic execution can be used in many
other interesting ways

• Next: Symbolic execution as
■ Empirical studies tool

■ Web application security checker

■ Enhancement to abstraction-based static analysis

■ Program synthesis tool

• All of these take advantage of sym exec
strengths, and try to avoid drawbacks

7

Rubyx: Symbolic Execution for Rails

8

!"#$%&'()

'*"$+%#%&,-.#/0

1.23%4.&5&647&,4.84.

'//$#-"92*

1":&%0"04%&.4"-;"7$4<

!"#$%&'(%)*+,-.+./%'01/2

!"#$%&'(%)*+,-.+./%'01/2 !3,.(45('01/$2

!3,.(45('01/$6)4/(-7)&1-.$2

Stephen Chong, Harvard University

Symbolic Execution Example

5

1. int a = α, b = β, c = γ;
2. // symbolic
3. int x = 0, y = 0, z = 0;
4. if (a) {
5. x = -2;
6. }
7. if (b < 5) {
8. if (!a && c) { y = 1; }
9. z = 2;
10.}
11.assert(x+y+z!=3)

x=0, y=0, z=0

α

x=-2

z=2

!

"

β<5 ¬α∧γ

y=1!

β<5

z=2

z=2

!

!

t f

t f t f

t f

α∧(β<5)

path condition

α∧(β≥5)

¬α∧(β≥5)

¬α∧(β<5)∧¬γ

¬α∧(β<5)∧γ

Why Is This Possible?

• There are very powerful SMT/SAT solvers today
■ SMT = Satisfiability Modulo Theories = SAT++

■ Can solve very large instances, very quickly

- Lets us check assertions, prune infeasible paths

■ We’ve used Z3, STP, and Yices

• Recent success: bug finding
■ Heuristic search through space of possible executions

■ Find really interesting bugs

6

Sym Exec Can Do Much More

• I think symbolic execution can be used in many
other interesting ways

• Next: Symbolic execution as
■ Empirical studies tool

■ Web application security checker

■ Enhancement to abstraction-based static analysis

■ Program synthesis tool

• All of these take advantage of sym exec
strengths, and try to avoid drawbacks

7

Rubyx: Symbolic Execution for Rails

8

!"#$%&'()

'*"$+%#%&,-.#/0

1.23%4.&5&647&,4.84.

'//$#-"92*

1":&%0"04%&.4"-;"7$4<

!"#$%&'(%)*+,-.+./%'01/2

!"#$%&'(%)*+,-.+./%'01/2 !3,.(45('01/$2

!3,.(45('01/$6)4/(-7)&1-.$2

Symbolic execution example

6

Symbolic Execution Example

5

1. int a = α, b = β, c = γ;
2. // symbolic
3. int x = 0, y = 0, z = 0;
4. if (a) {
5. x = -2;
6. }
7. if (b < 5) {
8. if (!a && c) { y = 1; }
9. z = 2;
10.}
11.assert(x+y+z!=3)

x=0, y=0, z=0

α

x=-2

z=2

!

"

β<5 ¬α∧γ

y=1!

β<5

z=2

z=2

!

!

t f

t f t f

t f

α∧(β<5)

path condition

α∧(β≥5)

¬α∧(β≥5)

¬α∧(β<5)∧¬γ

¬α∧(β<5)∧γ

Why Is This Possible?

• There are very powerful SMT/SAT solvers today
■ SMT = Satisfiability Modulo Theories = SAT++

■ Can solve very large instances, very quickly

- Lets us check assertions, prune infeasible paths

■ We’ve used Z3, STP, and Yices

• Recent success: bug finding
■ Heuristic search through space of possible executions

■ Find really interesting bugs

6

Sym Exec Can Do Much More

• I think symbolic execution can be used in many
other interesting ways

• Next: Symbolic execution as
■ Empirical studies tool

■ Web application security checker

■ Enhancement to abstraction-based static analysis

■ Program synthesis tool

• All of these take advantage of sym exec
strengths, and try to avoid drawbacks

7

Rubyx: Symbolic Execution for Rails

8

!"#$%&'()

'*"$+%#%&,-.#/0

1.23%4.&5&647&,4.84.

'//$#-"92*

1":&%0"04%&.4"-;"7$4<

!"#$%&'(%)*+,-.+./%'01/2

!"#$%&'(%)*+,-.+./%'01/2 !3,.(45('01/$2

!3,.(45('01/$6)4/(-7)&1-.$2

© 2011 Stephen Chong, Harvard University

Symbolic execution example

8

Symbolic Execution Example

5

1. int a = α, b = β, c = γ;
2. // symbolic
3. int x = 0, y = 0, z = 0;
4. if (a) {
5. x = -2;
6. }
7. if (b < 5) {
8. if (!a && c) { y = 1; }
9. z = 2;
10.}
11.assert(x+y+z!=3)

x=0, y=0, z=0

α

x=-2

z=2

!

"

β<5 ¬α∧γ

y=1!

β<5

z=2

z=2

!

!

t f

t f t f

t f

α∧(β<5)

path condition

α∧(β≥5)

¬α∧(β≥5)

¬α∧(β<5)∧¬γ

¬α∧(β<5)∧γ

Why Is This Possible?

• There are very powerful SMT/SAT solvers today
■ SMT = Satisfiability Modulo Theories = SAT++

■ Can solve very large instances, very quickly

- Lets us check assertions, prune infeasible paths

■ We’ve used Z3, STP, and Yices

• Recent success: bug finding
■ Heuristic search through space of possible executions

■ Find really interesting bugs

6

Sym Exec Can Do Much More

• I think symbolic execution can be used in many
other interesting ways

• Next: Symbolic execution as
■ Empirical studies tool

■ Web application security checker

■ Enhancement to abstraction-based static analysis

■ Program synthesis tool

• All of these take advantage of sym exec
strengths, and try to avoid drawbacks

7

Rubyx: Symbolic Execution for Rails

8

!"#$%&'()

'*"$+%#%&,-.#/0

1.23%4.&5&647&,4.84.

'//$#-"92*

1":&%0"04%&.4"-;"7$4<

!"#$%&'(%)*+,-.+./%'01/2

!"#$%&'(%)*+,-.+./%'01/2 !3,.(45('01/$2

!3,.(45('01/$6)4/(-7)&1-.$2

Stephen Chong, Harvard University

Symbolic execution example

7

Symbolic Execution Example

5

1. int a = α, b = β, c = γ;
2. // symbolic
3. int x = 0, y = 0, z = 0;
4. if (a) {
5. x = -2;
6. }
7. if (b < 5) {
8. if (!a && c) { y = 1; }
9. z = 2;
10.}
11.assert(x+y+z!=3)

x=0, y=0, z=0

α

x=-2

z=2

!

"

β<5 ¬α∧γ

y=1!

β<5

z=2

z=2

!

!

t f

t f t f

t f

α∧(β<5)

path condition

α∧(β≥5)

¬α∧(β≥5)

¬α∧(β<5)∧¬γ

¬α∧(β<5)∧γ

Why Is This Possible?

• There are very powerful SMT/SAT solvers today
■ SMT = Satisfiability Modulo Theories = SAT++

■ Can solve very large instances, very quickly

- Lets us check assertions, prune infeasible paths

■ We’ve used Z3, STP, and Yices

• Recent success: bug finding
■ Heuristic search through space of possible executions

■ Find really interesting bugs

6

Sym Exec Can Do Much More

• I think symbolic execution can be used in many
other interesting ways

• Next: Symbolic execution as
■ Empirical studies tool

■ Web application security checker

■ Enhancement to abstraction-based static analysis

■ Program synthesis tool

• All of these take advantage of sym exec
strengths, and try to avoid drawbacks

7

Rubyx: Symbolic Execution for Rails

8

!"#$%&'()

'*"$+%#%&,-.#/0

1.23%4.&5&647&,4.84.

'//$#-"92*

1":&%0"04%&.4"-;"7$4<

!"#$%&'(%)*+,-.+./%'01/2

!"#$%&'(%)*+,-.+./%'01/2 !3,.(45('01/$2

!3,.(45('01/$6)4/(-7)&1-.$2

Stephen Chong, Harvard University

Symbolic execution example

8

Symbolic Execution Example

5

1. int a = α, b = β, c = γ;
2. // symbolic
3. int x = 0, y = 0, z = 0;
4. if (a) {
5. x = -2;
6. }
7. if (b < 5) {
8. if (!a && c) { y = 1; }
9. z = 2;
10.}
11.assert(x+y+z!=3)

x=0, y=0, z=0

α

x=-2

z=2

!

"

β<5 ¬α∧γ

y=1!

β<5

z=2

z=2

!

!

t f

t f t f

t f

α∧(β<5)

path condition

α∧(β≥5)

¬α∧(β≥5)

¬α∧(β<5)∧¬γ

¬α∧(β<5)∧γ

Why Is This Possible?

• There are very powerful SMT/SAT solvers today
■ SMT = Satisfiability Modulo Theories = SAT++

■ Can solve very large instances, very quickly

- Lets us check assertions, prune infeasible paths

■ We’ve used Z3, STP, and Yices

• Recent success: bug finding
■ Heuristic search through space of possible executions

■ Find really interesting bugs

6

Sym Exec Can Do Much More

• I think symbolic execution can be used in many
other interesting ways

• Next: Symbolic execution as
■ Empirical studies tool

■ Web application security checker

■ Enhancement to abstraction-based static analysis

■ Program synthesis tool

• All of these take advantage of sym exec
strengths, and try to avoid drawbacks

7

Rubyx: Symbolic Execution for Rails

8

!"#$%&'()

'*"$+%#%&,-.#/0

1.23%4.&5&647&,4.84.

'//$#-"92*

1":&%0"04%&.4"-;"7$4<

!"#$%&'(%)*+,-.+./%'01/2

!"#$%&'(%)*+,-.+./%'01/2 !3,.(45('01/$2

!3,.(45('01/$6)4/(-7)&1-.$2

Symbolic Execution Example

5

1. int a = α, b = β, c = γ;
2. // symbolic
3. int x = 0, y = 0, z = 0;
4. if (a) {
5. x = -2;
6. }
7. if (b < 5) {
8. if (!a && c) { y = 1; }
9. z = 2;
10.}
11.assert(x+y+z!=3)

x=0, y=0, z=0

α

x=-2

z=2

!

"

β<5 ¬α∧γ

y=1!

β<5

z=2

z=2

!

!

t f

t f t f

t f

α∧(β<5)

path condition

α∧(β≥5)

¬α∧(β≥5)

¬α∧(β<5)∧¬γ

¬α∧(β<5)∧γ

Why Is This Possible?

• There are very powerful SMT/SAT solvers today
■ SMT = Satisfiability Modulo Theories = SAT++

■ Can solve very large instances, very quickly

- Lets us check assertions, prune infeasible paths

■ We’ve used Z3, STP, and Yices

• Recent success: bug finding
■ Heuristic search through space of possible executions

■ Find really interesting bugs

6

Sym Exec Can Do Much More

• I think symbolic execution can be used in many
other interesting ways

• Next: Symbolic execution as
■ Empirical studies tool

■ Web application security checker

■ Enhancement to abstraction-based static analysis

■ Program synthesis tool

• All of these take advantage of sym exec
strengths, and try to avoid drawbacks

7

Rubyx: Symbolic Execution for Rails

8

!"#$%&'()

'*"$+%#%&,-.#/0

1.23%4.&5&647&,4.84.

'//$#-"92*

1":&%0"04%&.4"-;"7$4<

!"#$%&'(%)*+,-.+./%'01/2

!"#$%&'(%)*+,-.+./%'01/2 !3,.(45('01/$2

!3,.(45('01/$6)4/(-7)&1-.$2

© 2011 Stephen Chong, Harvard University

Symbolic execution example

8

Symbolic Execution Example

5

1. int a = α, b = β, c = γ;
2. // symbolic
3. int x = 0, y = 0, z = 0;
4. if (a) {
5. x = -2;
6. }
7. if (b < 5) {
8. if (!a && c) { y = 1; }
9. z = 2;
10.}
11.assert(x+y+z!=3)

x=0, y=0, z=0

α

x=-2

z=2

!

"

β<5 ¬α∧γ

y=1!

β<5

z=2

z=2

!

!

t f

t f t f

t f

α∧(β<5)

path condition

α∧(β≥5)

¬α∧(β≥5)

¬α∧(β<5)∧¬γ

¬α∧(β<5)∧γ

Why Is This Possible?

• There are very powerful SMT/SAT solvers today
■ SMT = Satisfiability Modulo Theories = SAT++

■ Can solve very large instances, very quickly

- Lets us check assertions, prune infeasible paths

■ We’ve used Z3, STP, and Yices

• Recent success: bug finding
■ Heuristic search through space of possible executions

■ Find really interesting bugs

6

Sym Exec Can Do Much More

• I think symbolic execution can be used in many
other interesting ways

• Next: Symbolic execution as
■ Empirical studies tool

■ Web application security checker

■ Enhancement to abstraction-based static analysis

■ Program synthesis tool

• All of these take advantage of sym exec
strengths, and try to avoid drawbacks

7

Rubyx: Symbolic Execution for Rails

8

!"#$%&'()

'*"$+%#%&,-.#/0

1.23%4.&5&647&,4.84.

'//$#-"92*

1":&%0"04%&.4"-;"7$4<

!"#$%&'(%)*+,-.+./%'01/2

!"#$%&'(%)*+,-.+./%'01/2 !3,.(45('01/$2

!3,.(45('01/$6)4/(-7)&1-.$2

Stephen Chong, Harvard University

What’s going on here?

•During symbolic execution, we are trying to determine if
certain formulas are satisfiable
•E.g., is a particular program point reachable?
• Figure out if the path condition is satisfiable

•E.g., is array access a[i] out of bounds?
• Figure out if conjunction of path condition and i<0 ∨ i ≥ a.length is
satisfiable

•E.g., generate concrete inputs that execute the same paths

•This is enabled by powerful SMT/SAT solvers
•SAT = Satisfiability

•SMT = Satisfiability modulo theory = SAT++
•E.g. Z3, Yices, STP

9

Stephen Chong, Harvard University

SMT

•Satisfiability Modulo Theory

•SMT instance is a formula in first-order logic, where some function
and predicate symbols have additional meaning

•The “additional meaning” depends on the theory being used
•E.g., Linear inequalities

• Symbols with extra meaning include the integers, +, -, ×, ≤

•A richer modeling language than just Boolean SAT

•Some commonly supported theories: Uninterpreted functions;
Linear real and integer arithmetic; Extensional arrays; Fixed-size
bit-vectors; Quantifiers; Scalar types; Recursive datatypes, tuples,
records; Lambda expressions; Dependent types

•A lot of recent success using SMT solvers
•In symbolic execution and otherwise...

10

Stephen Chong, Harvard University

Predicate transformer semantics

•Predicate transformer semantics give semantics to
programs as relations from logical formulas to
logical formulas
•Strongest post-condition semantics: if formula φ is true

before program c executes, then formula ψ is true after c
executes
• Like forward symbolic execution of program

•Weakest pre-condition semantics: if formula φ is true after
program c executes, then formula ψ must be true before c
executes
• Like backward symbolic execution of program

11

Stephen Chong, Harvard University

Predicate transformer semantics

•Predicate transformers operationalize Hoare Logic
•Hoare Logic is a deductive system

•Axioms and inference rules for deriving proofs of Hoare
triples (aka partial correctness assertion)

•{ φ } c { ψ } says that if φ holds before execution of
program c and c terminates, then ψ holds after c
terminates

•Predicate transformers provide a way of producing
valid Hoare triples

12

Stephen Chong, Harvard University

Hoare logic

•First we need a language for the assertions
•E.g., first order logic

•We also need a semantics for assertions
•For state σ:Var→Int and interpretation I:LVar→Int we

write σ, I ⊨ P if P is true when interpreted under σ, I
13

Harvard School of Engineering and Applied Sciences — Computer Science 152

Axiomatic semantics ctd.

Lecture 7 Tuesday, February 16, 2010

1 Introduction to axiomatic semantics, ctd.

1.1 The Language of Assertions

What can we say in the pre- and post-conditions? In the examples we saw above, we used program vari-
ables, equality, logical variables (e.g., i), and conjunction (). What we allow in pre- and post-conditions
will influence what properties of a program we can describe using partial correctness statements.

The language that we will use for writing assertion is the set of logical formulas that include com-
parisons of arithmetic expressions, standard logical operators (and, or, implication, negation), as well as
quantifiers (universal and existential). Assertions may use additional logical variables, different than the
variables that occur in the program.

assertions P,Q ⌅ Assn P ::= true | false | a1 < a2

| P1 P2 | P1 ⌦ P2 | P1 ⇤ P2 | ¬P
| ⌃i. P | ⌥i. P

arithmetic expressions a ⌅ Aexp a ::= . . .

logical variables i, j ⌅ LVar

One can notice that the domain of boolean expressions Bexp is a subset of the domain of assertions.
Notable additions over the syntax of boolean expression are quantifiers (⌃ and ⌥). For instance, one can
express the fact that variable x divides variable y using existential quantification: ⌥i. x� i = y.

1.2 Validity of assertions

Now we would like to describe what we mean by “assertion P holds in store ��’. But to determine whether
P holds or not, we need more than just the store � (which maps program variables to their values); we also
need to know the values of the logical variables. We describe those values using an interpretation I :

I : LVar ⇥ Int

Now we can express the validity (or satisfiability) of assertion as a relation

� ✏I P

read as “P is valid in store � under interpretation I ,” or “store � satisfies assertion P under interpretation
I .” We will write � ⇧✏I P whenever � ✏I P doesn’t hold.

We proceed to define the validity relation inductively:

Stephen Chong, Harvard University

Rules of Hoare Logic

14
© 2011 Stephen Chong, Harvard University

Rules of Hoare Logic

14

Lecture 7 Axiomatic semantics ctd.

� ✏I true (always)
� ✏I a1 < a2 if AInterp[[a1]](�, I) < AInterp[[a2]](�, I)

� ✏I P1 ⌃ P2 if � ✏I P1 and � ✏I P2

� ✏I P1 ⌥ P2 if � ✏I P1 or � ✏I P2

� ✏I P1 � P2 if � ⇤✏I P1 or � ✏I P2

� ✏I ¬P if � ⇤✏I P

� ✏I ⌅i. P if ⌅k ⇥ Int. � ✏I[i 7!k] P

� ✏I ⇧i. P if ⇧k ⇥ Int. � ✏I[i 7!k] P

The evaluation function AInterp[[a]] is similar to the denotation of expressions, but also deals with logical
variables:

AInterp[[n]](�, I) = n

AInterp[[x]](�, I) = �(x)

AInterp[[i]](�, I) = I(i)

AInterp[[a1 + a2]](�, I) = AInterp[[a1]](�, I) +AInterp[[a2]](�, I)

We can now say that an assertion P is valid (written ✏ P) if it is valid in any store, under any interpre-
tation: ⌅�, I. � ✏I P .

Having defined validity for assertions, we can now define the validity of partial correctness statements.
We say that {P} c {Q} is valid in store � and interpretation I , written � ✏I {P} c {Q}, if:

⌅�0. if � ✏I P and C[[c]]� = �0 then �0 ✏I Q

Note that this definition talks about the execution of program c in the initial store �, described using the
denotation C[[c]].

Finally, we can say that a partial correctness triple is valid (written ✏ {P} c {Q}), if it is valid in any store
and interpretation:

⌅�, I. � ✏I {P} c {Q}.

Now we know what we mean when we say “assertion P holds” or “partial correctness statement
{P} c {Q} is valid.”

1.3 Hoare logic and program correctness

How do we show that a partial correctness statement {P} c {Q} holds? We know that {P} c {Q} is valid if
it holds for all stores and interpretations: ⌅�, I. � ✏I {P} c {Q}. Furthermore, showing that � ✏I {P} c {Q}
requires reasoning about the execution of command c (that is, C[[c]]), as indicated by the definition of validity.

It turns out that there is an elegant way of deriving valid partial correctness statements, without having
to reason about stores, interpretations, and the execution of c. We can use a set of inference rules and
axioms, called Hoare rules, to directly derive valid partial correctness statements. The set of rules forms a
proof system known as Hoare logic.

SKIP
{P} skip {P}

ASSIGN
{P [a/x]} x := a {P}

SEQ
{P} c1 {R} {R} c2 {Q}

{P} c1; c2 {Q}
IF

{P ⌃ b} c1 {Q} {P ⌃ ¬b} c2 {Q}
{P} if b then c1 else c2 {Q}

Page 2 of 3

Lecture 7 Axiomatic semantics ctd.

WHILE
{P ⇥ b} c {P}

{P} while b do c {P ⇥ ¬b}

The assertion P in the rule for while loops is essentially a loop invariant; it is an assertion that holds
before and after each iteration, as shown in the premise of the rule. Therefore, it is both a pre-condition for
the loop (because it holds before the first iteration); and also a post-condition for the loop (because it holds
after the last iteration). The fact that P is both a pre- and post-condition for the while loop is reflected in
the conclusion of the rule.

There is one more rule, the rule of consequence, which allows to strengthen pre-conditions and weaken
post-conditions:

CONSEQUENCE
✏ (P � P �) {P �} c {Q�} ✏ (Q� � Q)

{P} c {Q}

These set of Hoare rules represent an inductive definition for a set of partial correctness statements
{P} c {Q}. We will say that {P} c {Q} is a theorem in Hoare logic, written ⇤ {P} c {Q}, if we can build a
finite proof tree for it.

1.4 Soundness and Completeness

At this point we have two kinds of partial correctness assertions:

a) valid partial correctness statements ✏ {P} c {Q}, which hold for all stores and interpretations, accord-
ing to the semantics of c; and

b) Hoare logic theorems ⇤ {P} c {Q}, that is, a partial correctness statement that can be derived using
Hoare rules.

The question is how do these sets relate to each other? More precisely, we have to answer two questions.
First, is each Hoare logic theorem guaranteed to be valid partial correctness triple? In other words,

does ⇤ {P} c {Q} imply ✏ {P} c {Q}?

The answer is yes, and it shows that Hoare logic is sound. Soundness is important because it says that
Hoare logic doesn’t allow us to derive partial correctness assertions that actually don’t hold. The proof of
soundness requires induction on the derivations in ⇤ {P} c {Q} (but we will omit this proof).

The second question refers to the expressiveness and power of Hoare rules: can we always build a Hoare
logic proof for each valid assertion? In other words,

does ✏ {P} c {Q} imply ⇤ {P} c {Q}?

The answer is a qualified yes: if ✏ {P} c {Q} then there is a proof of {P} c {Q} using the rules of Hoare logic,
provided there are proofs for the validity of assertions that occur in the rule of consequence ✏ (P � P �)
and ✏ (Q� � Q). This result is known as the relative completeness of Hoare logic and is due to Cook (1974); the
proof is fairly complex and we will omit it (but you can find details in Winskel).

Page 3 of 3

Lecture 7 Axiomatic semantics ctd.

WHILE
{P ⇥ b} c {P}

{P} while b do c {P ⇥ ¬b}

The assertion P in the rule for while loops is essentially a loop invariant; it is an assertion that holds
before and after each iteration, as shown in the premise of the rule. Therefore, it is both a pre-condition for
the loop (because it holds before the first iteration); and also a post-condition for the loop (because it holds
after the last iteration). The fact that P is both a pre- and post-condition for the while loop is reflected in
the conclusion of the rule.

There is one more rule, the rule of consequence, which allows to strengthen pre-conditions and weaken
post-conditions:

CONSEQUENCE
✏ (P � P �) {P �} c {Q�} ✏ (Q� � Q)

{P} c {Q}

These set of Hoare rules represent an inductive definition for a set of partial correctness statements
{P} c {Q}. We will say that {P} c {Q} is a theorem in Hoare logic, written ⇤ {P} c {Q}, if we can build a
finite proof tree for it.

1.4 Soundness and Completeness

At this point we have two kinds of partial correctness assertions:

a) valid partial correctness statements ✏ {P} c {Q}, which hold for all stores and interpretations, accord-
ing to the semantics of c; and

b) Hoare logic theorems ⇤ {P} c {Q}, that is, a partial correctness statement that can be derived using
Hoare rules.

The question is how do these sets relate to each other? More precisely, we have to answer two questions.
First, is each Hoare logic theorem guaranteed to be valid partial correctness triple? In other words,

does ⇤ {P} c {Q} imply ✏ {P} c {Q}?

The answer is yes, and it shows that Hoare logic is sound. Soundness is important because it says that
Hoare logic doesn’t allow us to derive partial correctness assertions that actually don’t hold. The proof of
soundness requires induction on the derivations in ⇤ {P} c {Q} (but we will omit this proof).

The second question refers to the expressiveness and power of Hoare rules: can we always build a Hoare
logic proof for each valid assertion? In other words,

does ✏ {P} c {Q} imply ⇤ {P} c {Q}?

The answer is a qualified yes: if ✏ {P} c {Q} then there is a proof of {P} c {Q} using the rules of Hoare logic,
provided there are proofs for the validity of assertions that occur in the rule of consequence ✏ (P � P �)
and ✏ (Q� � Q). This result is known as the relative completeness of Hoare logic and is due to Cook (1974); the
proof is fairly complex and we will omit it (but you can find details in Winskel).

Page 3 of 3

© 2011 Stephen Chong, Harvard University

Rules of Hoare Logic

14

Lecture 7 Axiomatic semantics ctd.

� ✏I true (always)
� ✏I a1 < a2 if AInterp[[a1]](�, I) < AInterp[[a2]](�, I)

� ✏I P1 ⌃ P2 if � ✏I P1 and � ✏I P2

� ✏I P1 ⌥ P2 if � ✏I P1 or � ✏I P2

� ✏I P1 � P2 if � ⇤✏I P1 or � ✏I P2

� ✏I ¬P if � ⇤✏I P

� ✏I ⌅i. P if ⌅k ⇥ Int. � ✏I[i 7!k] P

� ✏I ⇧i. P if ⇧k ⇥ Int. � ✏I[i 7!k] P

The evaluation function AInterp[[a]] is similar to the denotation of expressions, but also deals with logical
variables:

AInterp[[n]](�, I) = n

AInterp[[x]](�, I) = �(x)

AInterp[[i]](�, I) = I(i)

AInterp[[a1 + a2]](�, I) = AInterp[[a1]](�, I) +AInterp[[a2]](�, I)

We can now say that an assertion P is valid (written ✏ P) if it is valid in any store, under any interpre-
tation: ⌅�, I. � ✏I P .

Having defined validity for assertions, we can now define the validity of partial correctness statements.
We say that {P} c {Q} is valid in store � and interpretation I , written � ✏I {P} c {Q}, if:

⌅�0. if � ✏I P and C[[c]]� = �0 then �0 ✏I Q

Note that this definition talks about the execution of program c in the initial store �, described using the
denotation C[[c]].

Finally, we can say that a partial correctness triple is valid (written ✏ {P} c {Q}), if it is valid in any store
and interpretation:

⌅�, I. � ✏I {P} c {Q}.

Now we know what we mean when we say “assertion P holds” or “partial correctness statement
{P} c {Q} is valid.”

1.3 Hoare logic and program correctness

How do we show that a partial correctness statement {P} c {Q} holds? We know that {P} c {Q} is valid if
it holds for all stores and interpretations: ⌅�, I. � ✏I {P} c {Q}. Furthermore, showing that � ✏I {P} c {Q}
requires reasoning about the execution of command c (that is, C[[c]]), as indicated by the definition of validity.

It turns out that there is an elegant way of deriving valid partial correctness statements, without having
to reason about stores, interpretations, and the execution of c. We can use a set of inference rules and
axioms, called Hoare rules, to directly derive valid partial correctness statements. The set of rules forms a
proof system known as Hoare logic.

SKIP
{P} skip {P}

ASSIGN
{P [a/x]} x := a {P}

SEQ
{P} c1 {R} {R} c2 {Q}

{P} c1; c2 {Q}
IF

{P ⌃ b} c1 {Q} {P ⌃ ¬b} c2 {Q}
{P} if b then c1 else c2 {Q}

Page 2 of 3

Lecture 7 Axiomatic semantics ctd.

WHILE
{P ⇥ b} c {P}

{P} while b do c {P ⇥ ¬b}

The assertion P in the rule for while loops is essentially a loop invariant; it is an assertion that holds
before and after each iteration, as shown in the premise of the rule. Therefore, it is both a pre-condition for
the loop (because it holds before the first iteration); and also a post-condition for the loop (because it holds
after the last iteration). The fact that P is both a pre- and post-condition for the while loop is reflected in
the conclusion of the rule.

There is one more rule, the rule of consequence, which allows to strengthen pre-conditions and weaken
post-conditions:

CONSEQUENCE
✏ (P � P �) {P �} c {Q�} ✏ (Q� � Q)

{P} c {Q}

These set of Hoare rules represent an inductive definition for a set of partial correctness statements
{P} c {Q}. We will say that {P} c {Q} is a theorem in Hoare logic, written ⇤ {P} c {Q}, if we can build a
finite proof tree for it.

1.4 Soundness and Completeness

At this point we have two kinds of partial correctness assertions:

a) valid partial correctness statements ✏ {P} c {Q}, which hold for all stores and interpretations, accord-
ing to the semantics of c; and

b) Hoare logic theorems ⇤ {P} c {Q}, that is, a partial correctness statement that can be derived using
Hoare rules.

The question is how do these sets relate to each other? More precisely, we have to answer two questions.
First, is each Hoare logic theorem guaranteed to be valid partial correctness triple? In other words,

does ⇤ {P} c {Q} imply ✏ {P} c {Q}?

The answer is yes, and it shows that Hoare logic is sound. Soundness is important because it says that
Hoare logic doesn’t allow us to derive partial correctness assertions that actually don’t hold. The proof of
soundness requires induction on the derivations in ⇤ {P} c {Q} (but we will omit this proof).

The second question refers to the expressiveness and power of Hoare rules: can we always build a Hoare
logic proof for each valid assertion? In other words,

does ✏ {P} c {Q} imply ⇤ {P} c {Q}?

The answer is a qualified yes: if ✏ {P} c {Q} then there is a proof of {P} c {Q} using the rules of Hoare logic,
provided there are proofs for the validity of assertions that occur in the rule of consequence ✏ (P � P �)
and ✏ (Q� � Q). This result is known as the relative completeness of Hoare logic and is due to Cook (1974); the
proof is fairly complex and we will omit it (but you can find details in Winskel).

Page 3 of 3

Lecture 7 Axiomatic semantics ctd.

WHILE
{P ⇥ b} c {P}

{P} while b do c {P ⇥ ¬b}

The assertion P in the rule for while loops is essentially a loop invariant; it is an assertion that holds
before and after each iteration, as shown in the premise of the rule. Therefore, it is both a pre-condition for
the loop (because it holds before the first iteration); and also a post-condition for the loop (because it holds
after the last iteration). The fact that P is both a pre- and post-condition for the while loop is reflected in
the conclusion of the rule.

There is one more rule, the rule of consequence, which allows to strengthen pre-conditions and weaken
post-conditions:

CONSEQUENCE
✏ (P � P �) {P �} c {Q�} ✏ (Q� � Q)

{P} c {Q}

These set of Hoare rules represent an inductive definition for a set of partial correctness statements
{P} c {Q}. We will say that {P} c {Q} is a theorem in Hoare logic, written ⇤ {P} c {Q}, if we can build a
finite proof tree for it.

1.4 Soundness and Completeness

At this point we have two kinds of partial correctness assertions:

a) valid partial correctness statements ✏ {P} c {Q}, which hold for all stores and interpretations, accord-
ing to the semantics of c; and

b) Hoare logic theorems ⇤ {P} c {Q}, that is, a partial correctness statement that can be derived using
Hoare rules.

The question is how do these sets relate to each other? More precisely, we have to answer two questions.
First, is each Hoare logic theorem guaranteed to be valid partial correctness triple? In other words,

does ⇤ {P} c {Q} imply ✏ {P} c {Q}?

The answer is yes, and it shows that Hoare logic is sound. Soundness is important because it says that
Hoare logic doesn’t allow us to derive partial correctness assertions that actually don’t hold. The proof of
soundness requires induction on the derivations in ⇤ {P} c {Q} (but we will omit this proof).

The second question refers to the expressiveness and power of Hoare rules: can we always build a Hoare
logic proof for each valid assertion? In other words,

does ✏ {P} c {Q} imply ⇤ {P} c {Q}?

The answer is a qualified yes: if ✏ {P} c {Q} then there is a proof of {P} c {Q} using the rules of Hoare logic,
provided there are proofs for the validity of assertions that occur in the rule of consequence ✏ (P � P �)
and ✏ (Q� � Q). This result is known as the relative completeness of Hoare logic and is due to Cook (1974); the
proof is fairly complex and we will omit it (but you can find details in Winskel).

Page 3 of 3

© 2011 Stephen Chong, Harvard University

Rules of Hoare Logic

14

Lecture 7 Axiomatic semantics ctd.

� ✏I true (always)
� ✏I a1 < a2 if AInterp[[a1]](�, I) < AInterp[[a2]](�, I)

� ✏I P1 ⌃ P2 if � ✏I P1 and � ✏I P2

� ✏I P1 ⌥ P2 if � ✏I P1 or � ✏I P2

� ✏I P1 � P2 if � ⇤✏I P1 or � ✏I P2

� ✏I ¬P if � ⇤✏I P

� ✏I ⌅i. P if ⌅k ⇥ Int. � ✏I[i 7!k] P

� ✏I ⇧i. P if ⇧k ⇥ Int. � ✏I[i 7!k] P

The evaluation function AInterp[[a]] is similar to the denotation of expressions, but also deals with logical
variables:

AInterp[[n]](�, I) = n

AInterp[[x]](�, I) = �(x)

AInterp[[i]](�, I) = I(i)

AInterp[[a1 + a2]](�, I) = AInterp[[a1]](�, I) +AInterp[[a2]](�, I)

We can now say that an assertion P is valid (written ✏ P) if it is valid in any store, under any interpre-
tation: ⌅�, I. � ✏I P .

Having defined validity for assertions, we can now define the validity of partial correctness statements.
We say that {P} c {Q} is valid in store � and interpretation I , written � ✏I {P} c {Q}, if:

⌅�0. if � ✏I P and C[[c]]� = �0 then �0 ✏I Q

Note that this definition talks about the execution of program c in the initial store �, described using the
denotation C[[c]].

Finally, we can say that a partial correctness triple is valid (written ✏ {P} c {Q}), if it is valid in any store
and interpretation:

⌅�, I. � ✏I {P} c {Q}.

Now we know what we mean when we say “assertion P holds” or “partial correctness statement
{P} c {Q} is valid.”

1.3 Hoare logic and program correctness

How do we show that a partial correctness statement {P} c {Q} holds? We know that {P} c {Q} is valid if
it holds for all stores and interpretations: ⌅�, I. � ✏I {P} c {Q}. Furthermore, showing that � ✏I {P} c {Q}
requires reasoning about the execution of command c (that is, C[[c]]), as indicated by the definition of validity.

It turns out that there is an elegant way of deriving valid partial correctness statements, without having
to reason about stores, interpretations, and the execution of c. We can use a set of inference rules and
axioms, called Hoare rules, to directly derive valid partial correctness statements. The set of rules forms a
proof system known as Hoare logic.

SKIP
{P} skip {P}

ASSIGN
{P [a/x]} x := a {P}

SEQ
{P} c1 {R} {R} c2 {Q}

{P} c1; c2 {Q}
IF

{P ⌃ b} c1 {Q} {P ⌃ ¬b} c2 {Q}
{P} if b then c1 else c2 {Q}

Page 2 of 3

Lecture 7 Axiomatic semantics ctd.

WHILE
{P ⇥ b} c {P}

{P} while b do c {P ⇥ ¬b}

The assertion P in the rule for while loops is essentially a loop invariant; it is an assertion that holds
before and after each iteration, as shown in the premise of the rule. Therefore, it is both a pre-condition for
the loop (because it holds before the first iteration); and also a post-condition for the loop (because it holds
after the last iteration). The fact that P is both a pre- and post-condition for the while loop is reflected in
the conclusion of the rule.

There is one more rule, the rule of consequence, which allows to strengthen pre-conditions and weaken
post-conditions:

CONSEQUENCE
✏ (P � P �) {P �} c {Q�} ✏ (Q� � Q)

{P} c {Q}

These set of Hoare rules represent an inductive definition for a set of partial correctness statements
{P} c {Q}. We will say that {P} c {Q} is a theorem in Hoare logic, written ⇤ {P} c {Q}, if we can build a
finite proof tree for it.

1.4 Soundness and Completeness

At this point we have two kinds of partial correctness assertions:

a) valid partial correctness statements ✏ {P} c {Q}, which hold for all stores and interpretations, accord-
ing to the semantics of c; and

b) Hoare logic theorems ⇤ {P} c {Q}, that is, a partial correctness statement that can be derived using
Hoare rules.

The question is how do these sets relate to each other? More precisely, we have to answer two questions.
First, is each Hoare logic theorem guaranteed to be valid partial correctness triple? In other words,

does ⇤ {P} c {Q} imply ✏ {P} c {Q}?

The answer is yes, and it shows that Hoare logic is sound. Soundness is important because it says that
Hoare logic doesn’t allow us to derive partial correctness assertions that actually don’t hold. The proof of
soundness requires induction on the derivations in ⇤ {P} c {Q} (but we will omit this proof).

The second question refers to the expressiveness and power of Hoare rules: can we always build a Hoare
logic proof for each valid assertion? In other words,

does ✏ {P} c {Q} imply ⇤ {P} c {Q}?

The answer is a qualified yes: if ✏ {P} c {Q} then there is a proof of {P} c {Q} using the rules of Hoare logic,
provided there are proofs for the validity of assertions that occur in the rule of consequence ✏ (P � P �)
and ✏ (Q� � Q). This result is known as the relative completeness of Hoare logic and is due to Cook (1974); the
proof is fairly complex and we will omit it (but you can find details in Winskel).

Page 3 of 3

Lecture 7 Axiomatic semantics ctd.

WHILE
{P ⇥ b} c {P}

{P} while b do c {P ⇥ ¬b}

The assertion P in the rule for while loops is essentially a loop invariant; it is an assertion that holds
before and after each iteration, as shown in the premise of the rule. Therefore, it is both a pre-condition for
the loop (because it holds before the first iteration); and also a post-condition for the loop (because it holds
after the last iteration). The fact that P is both a pre- and post-condition for the while loop is reflected in
the conclusion of the rule.

There is one more rule, the rule of consequence, which allows to strengthen pre-conditions and weaken
post-conditions:

CONSEQUENCE
✏ (P � P �) {P �} c {Q�} ✏ (Q� � Q)

{P} c {Q}

These set of Hoare rules represent an inductive definition for a set of partial correctness statements
{P} c {Q}. We will say that {P} c {Q} is a theorem in Hoare logic, written ⇤ {P} c {Q}, if we can build a
finite proof tree for it.

1.4 Soundness and Completeness

At this point we have two kinds of partial correctness assertions:

a) valid partial correctness statements ✏ {P} c {Q}, which hold for all stores and interpretations, accord-
ing to the semantics of c; and

b) Hoare logic theorems ⇤ {P} c {Q}, that is, a partial correctness statement that can be derived using
Hoare rules.

The question is how do these sets relate to each other? More precisely, we have to answer two questions.
First, is each Hoare logic theorem guaranteed to be valid partial correctness triple? In other words,

does ⇤ {P} c {Q} imply ✏ {P} c {Q}?

The answer is yes, and it shows that Hoare logic is sound. Soundness is important because it says that
Hoare logic doesn’t allow us to derive partial correctness assertions that actually don’t hold. The proof of
soundness requires induction on the derivations in ⇤ {P} c {Q} (but we will omit this proof).

The second question refers to the expressiveness and power of Hoare rules: can we always build a Hoare
logic proof for each valid assertion? In other words,

does ✏ {P} c {Q} imply ⇤ {P} c {Q}?

The answer is a qualified yes: if ✏ {P} c {Q} then there is a proof of {P} c {Q} using the rules of Hoare logic,
provided there are proofs for the validity of assertions that occur in the rule of consequence ✏ (P � P �)
and ✏ (Q� � Q). This result is known as the relative completeness of Hoare logic and is due to Cook (1974); the
proof is fairly complex and we will omit it (but you can find details in Winskel).

Page 3 of 3

© 2011 Stephen Chong, Harvard University

Rules of Hoare Logic

14

Lecture 7 Axiomatic semantics ctd.

� ✏I true (always)
� ✏I a1 < a2 if AInterp[[a1]](�, I) < AInterp[[a2]](�, I)

� ✏I P1 ⌃ P2 if � ✏I P1 and � ✏I P2

� ✏I P1 ⌥ P2 if � ✏I P1 or � ✏I P2

� ✏I P1 � P2 if � ⇤✏I P1 or � ✏I P2

� ✏I ¬P if � ⇤✏I P

� ✏I ⌅i. P if ⌅k ⇥ Int. � ✏I[i 7!k] P

� ✏I ⇧i. P if ⇧k ⇥ Int. � ✏I[i 7!k] P

The evaluation function AInterp[[a]] is similar to the denotation of expressions, but also deals with logical
variables:

AInterp[[n]](�, I) = n

AInterp[[x]](�, I) = �(x)

AInterp[[i]](�, I) = I(i)

AInterp[[a1 + a2]](�, I) = AInterp[[a1]](�, I) +AInterp[[a2]](�, I)

We can now say that an assertion P is valid (written ✏ P) if it is valid in any store, under any interpre-
tation: ⌅�, I. � ✏I P .

Having defined validity for assertions, we can now define the validity of partial correctness statements.
We say that {P} c {Q} is valid in store � and interpretation I , written � ✏I {P} c {Q}, if:

⌅�0. if � ✏I P and C[[c]]� = �0 then �0 ✏I Q

Note that this definition talks about the execution of program c in the initial store �, described using the
denotation C[[c]].

Finally, we can say that a partial correctness triple is valid (written ✏ {P} c {Q}), if it is valid in any store
and interpretation:

⌅�, I. � ✏I {P} c {Q}.

Now we know what we mean when we say “assertion P holds” or “partial correctness statement
{P} c {Q} is valid.”

1.3 Hoare logic and program correctness

How do we show that a partial correctness statement {P} c {Q} holds? We know that {P} c {Q} is valid if
it holds for all stores and interpretations: ⌅�, I. � ✏I {P} c {Q}. Furthermore, showing that � ✏I {P} c {Q}
requires reasoning about the execution of command c (that is, C[[c]]), as indicated by the definition of validity.

It turns out that there is an elegant way of deriving valid partial correctness statements, without having
to reason about stores, interpretations, and the execution of c. We can use a set of inference rules and
axioms, called Hoare rules, to directly derive valid partial correctness statements. The set of rules forms a
proof system known as Hoare logic.

SKIP
{P} skip {P}

ASSIGN
{P [a/x]} x := a {P}

SEQ
{P} c1 {R} {R} c2 {Q}

{P} c1; c2 {Q}
IF

{P ⌃ b} c1 {Q} {P ⌃ ¬b} c2 {Q}
{P} if b then c1 else c2 {Q}

Page 2 of 3

Lecture 7 Axiomatic semantics ctd.

WHILE
{P ⇥ b} c {P}

{P} while b do c {P ⇥ ¬b}

The assertion P in the rule for while loops is essentially a loop invariant; it is an assertion that holds
before and after each iteration, as shown in the premise of the rule. Therefore, it is both a pre-condition for
the loop (because it holds before the first iteration); and also a post-condition for the loop (because it holds
after the last iteration). The fact that P is both a pre- and post-condition for the while loop is reflected in
the conclusion of the rule.

There is one more rule, the rule of consequence, which allows to strengthen pre-conditions and weaken
post-conditions:

CONSEQUENCE
✏ (P � P �) {P �} c {Q�} ✏ (Q� � Q)

{P} c {Q}

These set of Hoare rules represent an inductive definition for a set of partial correctness statements
{P} c {Q}. We will say that {P} c {Q} is a theorem in Hoare logic, written ⇤ {P} c {Q}, if we can build a
finite proof tree for it.

1.4 Soundness and Completeness

At this point we have two kinds of partial correctness assertions:

a) valid partial correctness statements ✏ {P} c {Q}, which hold for all stores and interpretations, accord-
ing to the semantics of c; and

b) Hoare logic theorems ⇤ {P} c {Q}, that is, a partial correctness statement that can be derived using
Hoare rules.

The question is how do these sets relate to each other? More precisely, we have to answer two questions.
First, is each Hoare logic theorem guaranteed to be valid partial correctness triple? In other words,

does ⇤ {P} c {Q} imply ✏ {P} c {Q}?

The answer is yes, and it shows that Hoare logic is sound. Soundness is important because it says that
Hoare logic doesn’t allow us to derive partial correctness assertions that actually don’t hold. The proof of
soundness requires induction on the derivations in ⇤ {P} c {Q} (but we will omit this proof).

The second question refers to the expressiveness and power of Hoare rules: can we always build a Hoare
logic proof for each valid assertion? In other words,

does ✏ {P} c {Q} imply ⇤ {P} c {Q}?

The answer is a qualified yes: if ✏ {P} c {Q} then there is a proof of {P} c {Q} using the rules of Hoare logic,
provided there are proofs for the validity of assertions that occur in the rule of consequence ✏ (P � P �)
and ✏ (Q� � Q). This result is known as the relative completeness of Hoare logic and is due to Cook (1974); the
proof is fairly complex and we will omit it (but you can find details in Winskel).

Page 3 of 3

Lecture 7 Axiomatic semantics ctd.

WHILE
{P ⇥ b} c {P}

{P} while b do c {P ⇥ ¬b}

The assertion P in the rule for while loops is essentially a loop invariant; it is an assertion that holds
before and after each iteration, as shown in the premise of the rule. Therefore, it is both a pre-condition for
the loop (because it holds before the first iteration); and also a post-condition for the loop (because it holds
after the last iteration). The fact that P is both a pre- and post-condition for the while loop is reflected in
the conclusion of the rule.

There is one more rule, the rule of consequence, which allows to strengthen pre-conditions and weaken
post-conditions:

CONSEQUENCE
✏ (P � P �) {P �} c {Q�} ✏ (Q� � Q)

{P} c {Q}

These set of Hoare rules represent an inductive definition for a set of partial correctness statements
{P} c {Q}. We will say that {P} c {Q} is a theorem in Hoare logic, written ⇤ {P} c {Q}, if we can build a
finite proof tree for it.

1.4 Soundness and Completeness

At this point we have two kinds of partial correctness assertions:

a) valid partial correctness statements ✏ {P} c {Q}, which hold for all stores and interpretations, accord-
ing to the semantics of c; and

b) Hoare logic theorems ⇤ {P} c {Q}, that is, a partial correctness statement that can be derived using
Hoare rules.

The question is how do these sets relate to each other? More precisely, we have to answer two questions.
First, is each Hoare logic theorem guaranteed to be valid partial correctness triple? In other words,

does ⇤ {P} c {Q} imply ✏ {P} c {Q}?

The answer is yes, and it shows that Hoare logic is sound. Soundness is important because it says that
Hoare logic doesn’t allow us to derive partial correctness assertions that actually don’t hold. The proof of
soundness requires induction on the derivations in ⇤ {P} c {Q} (but we will omit this proof).

The second question refers to the expressiveness and power of Hoare rules: can we always build a Hoare
logic proof for each valid assertion? In other words,

does ✏ {P} c {Q} imply ⇤ {P} c {Q}?

The answer is a qualified yes: if ✏ {P} c {Q} then there is a proof of {P} c {Q} using the rules of Hoare logic,
provided there are proofs for the validity of assertions that occur in the rule of consequence ✏ (P � P �)
and ✏ (Q� � Q). This result is known as the relative completeness of Hoare logic and is due to Cook (1974); the
proof is fairly complex and we will omit it (but you can find details in Winskel).

Page 3 of 3

Stephen Chong, Harvard University

Soundness and completeness of
Hoare Logic

•Semantics of Hoare Triples
•σ, I ⊨ {P} c {Q} ≜ if σ, I ⊨ P and [[c]]σ = σ’, then σ’, I ⊨ P

•⊨ {P} c {Q} ≜ for all σ, I we have σ, I ⊨ {P} c {Q}

•Soundness: If there is a proof of {P} c {Q}, then ⊨ {P} c {Q}

•Relative completeness: If ⊨ {P} c {Q} then there is a proof of  
{P} c {Q}

•(assuming you can prove the implications in the rule of
consequence).

15

Stephen Chong, Harvard University

Back to predicate transformers

•Weakest pre-condition semantics
•Function wp takes command c and assertion Q and returns

assertion P such that ⊨ {P}c{Q}

•wp(c, Q) is the weakest such condition
• ⊨ {P}c{Q} if and only if P⇒ wp(c, Q)

•wp(skip, Q) = Q

•wp(x:=a, Q) = Q[a/x]

•wp(c1;c2, Q) = wp(c1, wp(c2, Q))

•wp(if b then c1 else c2, Q) = (b ⇒ wp(c1, Q)∧(¬b ⇒ wp(c2, Q))

16

Stephen Chong, Harvard University

What about loops?

•Two possibilities: do we want the weakest
precondition to guarantee termination of the loop?

•Weakest liberal precondition: does not guarantee
termination
•Corresponds to partial correctness of Hoare triples
•wp(while b do c, Q) = ∀i∈Nat. Li(Q) 

where L0(Q) = true 
 Li+1(Q) = (¬b⇒Q) ∧ (b⇒wp(c, Li(Q)))

• Ensures loop terminates in a state that satisfies Q or runs
forever

17

Stephen Chong, Harvard University

What about loops?

•Weakest precondition: guarantees termination
•Corresponds to total correctness of Hoare triples
•wp(while b do c, Q) = ∃i∈Nat. Li(Q) 

where L0(Q) = false 
 Li+1(Q) = (¬b⇒Q) ∧ (b⇒wp(c, Li(Q)))

• Ensures loop terminates in a state that satisfies Q

18

Stephen Chong, Harvard University

Strongest post condition

•Function sp takes command c and assertion P and
returns assertion Q such that ⊨ {P}c{Q}

•sp(c, P) is the strongest such condition
• ⊨ {P}c{Q} if and only if sp(c, P)⇒Q

19

Stephen Chong, Harvard University

Strongest post condition

•sp(skip, P) = P

•sp(x:=a, P) = ∃n. x=a[n/x] ∧ P[n/x]

•sp(c1;c2, P) = sp(c2, sp(c1, P))

•sp(if b then c1 else c2, P) = sp(c1, b∧P) ∨ sp(c2, ¬b∧P))

•sp(while b do c, P) = ¬b∧∃i. Li(P) 
where L0(P) = P  
 Li+1(P) = sp(c, b∧Li(P))

•Weakest preconditions are typically easier to use than
strongest postconditions

20

Stephen Chong, Harvard University

Symbolic execution

•Symbolic execution can be viewed as a predicate
transformation semantics

•Symbolic state and path condition correspond to a
formula that is true at a program point

•e.g., Symbolic state [x↦α, y↦β+7] and path condition
α>0 may correspond to α>0 ∧ x=α ∧ y=β+7

•Strongest post condition transformations gives us a
forward symbolic execution of a program

•Weakest pre condition transformations gives us a
backward symbolic execution of a program

21

Stephen Chong, Harvard University

Symbolic execution

•Recall

•sp(x:=e, P) = ∃n. x=e[n/x] ∧ P[y/x]

•sp(c1;c2, P) = sp(c2, sp(c1, P))

•sp(if b then c1 else c2, P) = sp(c1, b∧P) ∨ sp(c2, ¬b∧P))

•sp(while b do c, P) = ¬b∧∃i. Li(P) 
where L0(P) = true 
 Li+1(P) = sp(c, b∧Li(P))

•Disjunction encoded by multiple states
•⟨if b then c1 else c2, P⟩ ⇓ ⟨skip, {b∧P, ¬b∧P})⟩

•or equivalently with non-deterministic semantics?
• ⟨if b then c1 else c2, P⟩ ↦ ⟨c1, b∧P)⟩ and  
⟨if b then c1 else c2, P⟩ ↦ ⟨c2, ¬b∧P)⟩

•While loops simply unrolled (may fail to terminate)

22

Stephen Chong, Harvard University

Symbolic execution and
abstract interpretation

•Can we use logical formulas as an abstract domain?
•Yes! Known as logical abstract interpretation

•Also makes use of SMT solvers

•Can perhaps be seen as an abstract semantics for a concrete
predicate transformer semantics?

23

Stephen Chong, Harvard University

Back to symbolic execution...

•What about the details?

24

Stephen Chong, Harvard University

What values to treat symbolically?

•Primitive values, like ints, floats, and chars seem reasonable
•Strings? Or treat them as arrays of chars?

•There are theories for strings, but somewhat limited in their reasoning ability

•Pointers?
•Yeah, you want to have symbolic pointers.
•But can complicate, e.g., deallocation

•Memory objects?
•Symbolic regions of memory?
•Symbolic data structures (e.g., linked lists, trees, hash maps, ...)?

•Files?
•When to concretize?

•See Klee's behavior on pointers and files. Concretizes a pointer based on each memory
object it may point to.

•Keep a symbolic ternary value e.g., (α<0 ? 0 : β) or fork execution?
•Mixing type checking and symbolic execution. Khoo, Chang, and Foster, PLDI 2010.

25

Stephen Chong, Harvard University

What are the sources of symbolic
values?

•Inputs to the program? Which?
•Environment?

•Environment variables? File system? Network
messages?

26

Stephen Chong, Harvard University

Efficient implementation

•How to efficiently handle many forked executions?
•Use underlying process abstraction?
•How to take advantage of lots of shared state between forked

executions?
•How to take advantage of lots of shared/similar queries

between forked executions
•When to concretize?

•Order of evaluating executions?
•How to explore unexplored code paths?
•How to avoid getting stuck in "fork bombs"?

•How to reduce the number of SMT queries?
27

Stephen Chong, Harvard University

Summary

•Symbolic execution
•Predicate transformation semantics
•Allows us to reason about multiple concrete

executions
•But may not allow us to reason about all possible
executions

•Enabled by recent advances in SMT solvers

28

