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Dynamic Analysis

•Analysis of the properties of a running program 
•Static analysis typically finds properties that hold 

of all executions 
•Dynamic analysis finds properties that hold of one 

or more executions 
•Can't prove a program satisfies a particular property 
•But can detect violations and provide useful information 

•Usefulness derives from precision of information 
and dependence on inputs

3



Stephen Chong, Harvard University

Precision of Information

•Dynamic analysis typically instructs program to 
examine or record some of run-time state 

•Instrumentation can be tuned to precisely data 
needed for a problem
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Dependence on Program Inputs

•Easy to relate changes in program inputs to 
changes in program behavior and program 
output
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Dynamic Analyses 
are 

input-centric

Static Analyses 
are 

program-centric
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Complementary Techniques

•Completeness 
•Dynamic analyses can generate "dynamic program invariants", i.e., 

invariants of observed execution; static analyses can check them 
•Dynamic analyses consider only feasible paths (but may not 

consider all paths); static analyses consider all paths (but may 
include infeasble paths) 

•Scope 
•Dynamic analyses examine one very long program path 
•Can discover semantic dependencies widely separated in path and in 
time 

• Static analyses typically and at discovering "dependence at a distance" 

•Precision
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Two (plus a bonus) Dynamic Analyses

•Frequency Spectrum Analysis 
•Efficient path profiling 

•Dynamic race detection
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Frequency Spectrum Analysis

•Understanding frequency of execution of 
program parts can help programmer: 
•partition program by levels of abstraction 
•find related computations 
•find computations related to specific attributes of input 

or output
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Understanding an Obfuscated C 
Program

9

#include <stdio.h>
main(t,_,a)
char *a;
{
return!0<t?t<3?main(-79,-13,a+main(-87,1-_,main(-86,0,a+1)+a)):
1,t<_?main(t+1,_,a):3,main(-94,-27+t,a)&&t==2?_<13?
main(2,_+1,"%s %d %d\n"):9:16:t<0?t<-72?main(_,t,
"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l+,/n{n+,/+#n+,/#\
;#q#n+,/+k#;*+,/'r :'d*'3,}{w+K w'K:'+}e#';dq#'l \
q#'+d'K#!/+k#;q#'r}eKK#}w'r}eKK{nl]'/#;#q#n'){)#}w'){){nl]'/+#n';d}rw' i;#\
){nl]!/n{n#'; r{#w'r nc{nl]'/#{l,+'K {rw' iK{;[{nl]'/w#q#n'wk nw' \
iwk{KK{nl]!/w{%'l##w#' i; :{nl]'/*{q#'ld;r'}{nlwb!/*de}'c \
;;{nl'-{}rw]'/+,}##'*}#nc,',#nw]'/+kd'+e}+;#'rdq#w! nr'/ ') }+}{rl#'{n' ')# \
}'+}##(!!/")
:t<-50?_==*a?putchar(31[a]):main(-65,_,a+1):main((*a=='/')+t,_,a+1)
:0<t?main(2,2,"%s"):*a=='/'||main(0,main(-61,*a,
"!ek;dc i@bK'(q)-[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry"),a+1);
}
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What it does...
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$ gcc -w obfus.c 
$ ./a.out 
On the first day of Christmas my true love gave to me
a partridge in a pear tree.

On the second day of Christmas my true love gave to me
two turtle doves
and a partridge in a pear tree.

On the third day of Christmas my true love gave to me
three french hens, two turtle doves
and a partridge in a pear tree.
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Program understanding

•We know what the program does 
•Our aim is to understand how it does it 
•Before reverse engineering it, let's have a model in mind: 

•Gift t mentioned 13-t times in the poem (e.g. "five gold rings" occurs 13-5=8 times) 
•So 1+2+...+11+12 = 13*6 = 78 gift mentions (66 mentions of non-partridge gifts) 
•All verses except first have form  

  On the <ordinal> day of Christmas my true love gave to me 
  <list of gift phrases, from the ordinal day down to the second day> 
  and a partridge in a pear tree. 
and first verse is 
  On the first day of Christmas my true love gave to me  
  a partridge in a pear tree. 

•Unique strings: 
• 3 strings for common structure ("On the", "day of Christmas...", "and a partridge ...") 

• 12 strings for the ordinals 

• 11 strings for the second through twelfth gifts.  

•⇒approx. 3+12+11 = 26 unique strings in program, prints approx. 3*12 + 12 + 66 = 114  strings.
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Model

•12 days of Christmas (also 11, to catch "off-by-
one" cases) 

•26 unique strings 
•66 occurrences of non-partridge-in-a-pear-tree 

presents 
•114 strings printed, and 
•2358 characters printed.
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Program understanding

•First let's make it readable:

13

It's a single 
recursive function!
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Path Profiling

•Count executions of paths of the function 
•E.g., path executed 2358 times likely involved in printing characters

14
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PUSH
!

Path Profiling Efficient Path 
Profiling, Ball and 
Larus, MICRO 1996
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Problem: path profiling

•Which paths through a procedure are most common? 
•e.g., perform aggressive optimization on hot paths, make sure all 

paths are tested. 

•Naive approach: count edge transitions 

•Not enough information to determine paths!
16

Efficient Path Profiling 

Thomas Ball 
Bell Laboratories 

Lucent Technologies 
tball @research.bell-labs.com 

Abstract 

A path profile determines how many times each acyclic 
path in a routine executes. This type of profiling subsumes 
the more common basic block and edge profiling, which only 
approximate path frequencies. Path profiles have many po- 
tential uses in program performance tuning, profile-directed 
compilation, and software test coverage. 

This paper describes a new algorithm for path projl- 
ing. This simple, fast algorithm selects andplacesprojile in- 
strumentation to minimize run-time overhead. Instrumented 
programs run with overhead comparable to the best previ- 
ous profiling techniques. On the SPEC95 benchmarks, path 
projling overhead averaged 31%, as compared to 16% for 
eficient edge projiling. Path profiling also identifies longer 
paths than a previous technique, which predicted paths from 
edge profiles (average of 88, versus 34 instructions). More- 
over; profiling shows that the SPEC95 train input datasets 
covered most of the paths executed in the ref datasets. 

1 Introduction 

Program profiling counts occurrences of an event during 
a program’s execution. Typically, the measured event is the 
execution of a local portion of a program, such as a rou- 
tine or line of code. Recently, fine-grain profiles-of basic 
blocks and control-flow edges-have become the basis for 
profile-driven compilation, which uses measured frequen- 
cies to guide compilation and optimization. 

*This research supported by: Wright Laboratory Avionics Directorate, 
Air Force Material Command, USAF, under grant #F33615-94-l- 
1525 and ARPA order no. B550; NSF NY1 Award CCR-9357779, 
with support from Hewlett Packard, Sun Microsystems, and PGI; 
NSF Grant MIP-9225097; and DOE Grant DE-FG02-93ER25176. 
The U.S. Government is authorized to reproduce and distribute reprints for 
Governmental purposes notwithstanding any copyright notation thereon. 
The views and conclusions contained herein are those of the authors and 
should not be interpreted as necessarily representing the official policies 
or endorsements, either expressed or implied, of the Wright Laboratory 
Avionics Directorate or the U. S. Government. 

James R. Larus* 
Dept. of Computer Sciences 

University of Wisconsin-Madison 
larus@cs.wisc.edu 

Path FTofl Froa 

ACDF 90 110 
ACDEF 60 40 
ABCDF 0 0 
ABCDEF 100 100 
ABDF 20 0 
ABDEF 0 20 

Figure 1. Example in which edge profiling does not iden- 
tify the most frequently executed paths. The table con- 
tains two different path profiles. Both path profiles in- 
duce the same edge execution frequencies, shown by the 
edge frequencies in the control-flow graph. In path profile 
Profl, path ABCDEF is most frequently executed, al- 
though the heuristic of following edges with the highest fre- 
quency identifies path ACDEF as the most frequent. 

One use of profile information is to identify heavily exe- 
cuted paths (or traces) in a program [Fis81, E1185, Cha88, 
YS94]. Unfortunately, basic block and edge profiles, al- 
though inexpensive and widely available, do not always cor- 
rectly predict frequencies of overlapping paths. Consider, 
for example, the control-flow graph (CFG) in Figure 1. Each 
edge in the CFG is labeled with its frequency, which nor- 
mally results from dynamic profiling, but in the figure is 
induced by both path profiles in the table. A commonly 
used heuristic to select a heavily executed path follows the 
most frequently executed edge out of a basic block [Cha88], 
which identifies path ACDEF. However, in path profile 
Profl, this path executed only 60 times, as compared to 90 
times for path ACDF and 100 times for path ABCDEF. 
In profile Prof 2, the disparity is even greater although the 
edge profile is exactly the same. 

This inaccuracy is usually ignored, under the assump- 
tion that accurate path profiling must be far more expensive 
than basic block or edge profiling. Path profiling is the ul- 
timate form of control-flow profiling, as it uniquely deter- 
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Efficient Path Profiling

•(For DAGs) 
•Encode each path as a unique integer and record 

path as state 
•i.e., at end of DAG, value of a register identifies path 

through DAG

17

mines both basic block and edge profiles, although the con- 
verse does not hold, as Figure 1 shows. Also, the number of 
blocks or edges in a program is finite and linear in the pro- 
gram’s size, but a program with loops offers an unbounded 
number of potential paths. Considering only acyclic paths 
bounds this set, but, in the worst case, its size is still expo- 
nential in the program’s size. 

This paper shows that accurate profiling is neither com- 
plex nor expensive. It describes a new and efficient tech- 
nique for path profiling. Our algorithm places instrumen- 
tation that accurately determines dynamic execution fre- 
quency of control-flow paths in a routine. The instrumen- 
tation is not only simple and low-cost, but it is placed in 
a way that minimizes its overhead. Remarkably, although 
path profiling collects far more information than block or 
edge profiling, its overhead can be lower and is usually 
comparable-on the SPEC95 benchmarks, path profiling’s 
average overhead is 3 1 %, while efficient edge profiling’s 
overhead is 16%. 

Efficient path profiling opens new possibilities for pro- 
gram optimization and performance tuning. Instead of rely- 
ing on heuristics, which fully predict only 38% of the ex- 
ecuted acyclic paths in the SPEC95 benchmarks, profile- 
driven compilers can base their decisions on accurate mea- 
surements. 

Another potential application of path profiling is software 
test coverage, which quantifies the adequacy of a test data 
set by profiling a program and reporting unexecuted state- 
ments or control-flow. Few, if any, coverage tools measure 
path coverage. Instead, tools rely on weaker criteria, such 
as statement or control-flow edge coverage. Edge profiling 
is less complete than path profiling, as shown in Figure 1, 
where the two path profiles cover different sets of paths yet 
induce the same edge profile. Besides an efficient algorithm 
for path profiling, this paper also presents measurements that 
show that most routines in a small sample of programs have 
few (< 3000) potential paths, so that path coverage test- 
ing could be feasible for large portions of a program. On 
the other hand, the measurements also demonstrate the dif- 
ficulty of developing test data sets, since the programs as a 
whole executed an average of 2696 paths (249-24414), as 
compared to the millions of potential paths identified by the 
path profiling algorithm. 

1.1 Algorithm Overview 

The essential idea behind the path profiling algorithm is 
to identify sets of potential paths with states, which are en- 
coded as integers. Consider for a moment a routine with- 
out a loop. Upon entry to the routine, all paths are possi- 
ble. Taking a conditional branch narrows the set of potential 
paths and corresponds to a transition to a new state. At the 
routine’s exit, the final state represents the single path taken 

L-h. 
r=O 

B 
r=2 ' 

r=4 

Ii?3 D 
r+=l 

E F 

I Path Encoding 

ACDF 0 
ACDEF 1 
ABCDF 2 
ABCDEF 3 
ABDF 4 
ABDEF 5 

ccnmt [x-l++ 

Figure 2. Path profiling instrumentation. Each path from 
A to F produces a unique state in register r, which indexes 
an array of counters in F. 

through the routine. This paper presents an efficient algo- 
rithm that: 

l Numbers final states from 0. . . n - 1, where n is the 
number of potential paths in a routine. With this com- 
pact numbering, a final state can directly index an array 
of counters. 

l Places instrumentation so that transitions need not oc- 
cur at every conditional branch. 

l Assigns states so that transitions can be computed by 
a simple arithmetic operation, without an explicit state 
transition table or memory reference. 

l Transforms a control-flow graph containing loops or 
huge numbers of potential paths into an acyclic graph 
with a limited number of paths. 

Figure 2 illustrates the technique. Edges labeled by small 
squares contain instrumentation, which updates the state in 
register T. The loop contains six unique paths, and each one 
computes a different value for T, as shown in the table. At 
the end of the loop body (block F), register r holds the index 
to increment an array of counters. 

1.2 Extensions 

The algorithm in this paper can be easily extended in sev- 
eral ways. First, instead of intraprocedural profiling, it could 
be applied to a program’s call graph, to record call paths. An 
interesting complication is indirect calls, which require a dy- 
namic data structure to record calls along edges that are not 
in the call graph. 

Also, instead of just counting the number of times a path 
executes, the profiling algorithm can easily accumulate a 
metric for a path. Some processors provide accessible coun- 
ters for metrics such as the number of processor cycles, 
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Algorithm overview

•1. Number paths uniquely 
•2. Use spanning tree to select edges to 

instrument (and compute appropriate increment 
for each instrumented edge) 

•3. Select appropriate instrumentation 
•4. After profiling, given path number, figure out 

which path it corresponds to
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Compact path numbering

•Aim: assign non-negative constant value to each edge 
such that sum of values along any path from ENTRY 
to EXIT is unique. Moreover, path sums should be in 
range 0..(NumPaths - 1) (i.e., minimal encoding)

19
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Compact path numbering

20

____ ---_ .-- --__ . --- --” 
if v is a leaf vertex A 

NumPaths(v) = 1; 2 0 

) else { 3: I3 0 c 
vertex v maths W 

NumPaths(v) = 0; 6 
for each edge e = v->w C 2 4 

Val (e) = NumPathsCv); 
0 2 

NumPaths(v) = NumPathsCv) + NumPathsCw); n 
LEJ 

2 . 

Figure 5. Algorithm for assigning values to edges in a 
DAG. 

edges. If T is the set of spanning tree edges, then any graph 
edge not in T is a chord of the spanning tree. 

For example, in the graph of Figure 2, vertex A is the 
ENTRY vertex and vertex F is the EXIT vertex. The un- 
adorned graph edges comprise a spanning tree. The edges 
labeled by squares are chords of the spanning tree. 

3.2 Compactly Representing Paths with Sums 

The first step in path profiling is to assign a non-negative 
constant value VaZ(e) to each edge e in a DAG, such that 
the sum of values along any path from ENTRY to EXIT 
is unique. Furthermore, the path sums should lie in the range 
from 0 to the number of paths (minus one), so that the encod- 
ing is minimal. 

The algorithm in Figure 5 computes such a VaZ relation 
by visiting vertices of the DAG in reverse topological or- 
der. This order ensures that all the successors of a vertex 
ZJ are visited before ‘u itself. Associated with each vertex 
v is a value NumPaths(v), which records the number of 
paths from u to EXIT. The algorithm is simple. At ver- 
tex v, the algorithm visits all of v’s outgoing edges v + wi, 
1 < i 5 n, and assigns the lath outgoing edge the value: 

Val(v + wk) = Cti; NumPaths(wi) 

The following theorem proves the algorithm correct: 

Theorem 1 Given a DAG, after the algorithm of Figure 5 
visits vertex u, NumPaths(v) is the number of paths from 
u to EXIT and each path from v to EXIT generates a 
unique value sum in the range 0.. . NumPaths(v) - 1. 

Proof. By induction on the height of a vertex in the DAG 
(i.e., the max number of steps to the sink vertex EXIT). 

Base Case: v has height equal to zero (that is, v = 
EXIT), so NumPaths(v) = 1. The theorem is trivially 
satisfied. 

Figure 6. Control-flow graph from Figure 1, with values 
computed by the algorithm in Figure 5. 

Induction Step: Show that the theorem holds for 
any vertex v of height H (H > 0). All successors 
~1 . . . W, of v must have height less than H (because 
the graph is a DAG), so the theorem holds for all WJ~. 
It is trivial to see that the number of paths from v to 
EXIT is Cy=‘=, NumPaths(wi), which the algo- 
rithm computes. By the induction hypothesis, each 
path from Wk to EXIT generates a unique value 
sum in the range 0. . . NumPaths(wk) - 1. There- 
fore, any path from v to EXIT starting with edge 
v -+ wk will generate a unique value in the range 
C;“-i’ NumPaths(w;) . . . (CF=, NumPaths(wi)) - 1. 
Since all NumPaths(wi) values are greater than 0, it 
follows that no two paths from v to EXIT generate the 
same value sum. 0 

Figure 6 illustrates how the algorithm operates on the ex- 
ample control-flow graph. Note that vertices are labeled in 
topological ordering, so FEDCBA is a reverse topological 
order. Any vertex with a single outgoing edge e, such as C 
and E, always has VaZ(e) = 0. 

3.3 Efficiently Computing Sums 

Given an edge value assignment, the second step of 
the algorithm finds a minimal cost set-with respect to a 
weighting (Section 3)-of edges along which to compute 
these values, while preserving the two properties of the 
value assignment. 

This step of the algorithm finds a maximal cost spanning 
tree of the graph (to find a minimal cost set of chord edges), 
and applies an efficient event counting technique [Ba194] to 
determine the increment Inc(c) for each chord c in a span- 
ning tree. The event counting algorithm ensures that the sum 
of Inc values for any path P from ENTRY to EXIT is 
identical to the sum of Val values for P. Note that some of 
the Inc values may be negative, as in Figure 4. The edge 
EXIT -+ ENTRY is required for this step (if this edge is 
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tex v, the algorithm visits all of v’s outgoing edges v + wi, 
1 < i 5 n, and assigns the lath outgoing edge the value: 

Val(v + wk) = Cti; NumPaths(wi) 

The following theorem proves the algorithm correct: 

Theorem 1 Given a DAG, after the algorithm of Figure 5 
visits vertex u, NumPaths(v) is the number of paths from 
u to EXIT and each path from v to EXIT generates a 
unique value sum in the range 0.. . NumPaths(v) - 1. 

Proof. By induction on the height of a vertex in the DAG 
(i.e., the max number of steps to the sink vertex EXIT). 

Base Case: v has height equal to zero (that is, v = 
EXIT), so NumPaths(v) = 1. The theorem is trivially 
satisfied. 

Figure 6. Control-flow graph from Figure 1, with values 
computed by the algorithm in Figure 5. 

Induction Step: Show that the theorem holds for 
any vertex v of height H (H > 0). All successors 
~1 . . . W, of v must have height less than H (because 
the graph is a DAG), so the theorem holds for all WJ~. 
It is trivial to see that the number of paths from v to 
EXIT is Cy=‘=, NumPaths(wi), which the algo- 
rithm computes. By the induction hypothesis, each 
path from Wk to EXIT generates a unique value 
sum in the range 0. . . NumPaths(wk) - 1. There- 
fore, any path from v to EXIT starting with edge 
v -+ wk will generate a unique value in the range 
C;“-i’ NumPaths(w;) . . . (CF=, NumPaths(wi)) - 1. 
Since all NumPaths(wi) values are greater than 0, it 
follows that no two paths from v to EXIT generate the 
same value sum. 0 

Figure 6 illustrates how the algorithm operates on the ex- 
ample control-flow graph. Note that vertices are labeled in 
topological ordering, so FEDCBA is a reverse topological 
order. Any vertex with a single outgoing edge e, such as C 
and E, always has VaZ(e) = 0. 

3.3 Efficiently Computing Sums 

Given an edge value assignment, the second step of 
the algorithm finds a minimal cost set-with respect to a 
weighting (Section 3)-of edges along which to compute 
these values, while preserving the two properties of the 
value assignment. 

This step of the algorithm finds a maximal cost spanning 
tree of the graph (to find a minimal cost set of chord edges), 
and applies an efficient event counting technique [Ba194] to 
determine the increment Inc(c) for each chord c in a span- 
ning tree. The event counting algorithm ensures that the sum 
of Inc values for any path P from ENTRY to EXIT is 
identical to the sum of Val values for P. Note that some of 
the Inc values may be negative, as in Figure 4. The edge 
EXIT -+ ENTRY is required for this step (if this edge is 
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Figure 4. Three possible placements of instrumentation 
for the control-flow graph from Figure 1. 

way branch [BL94, Bal96]. When a branch executes, instru- 
mentation code appends a bit to a trace buffer that records 
branch outcomes. By recording multiple bits, the approach 
can be extended to multi-way branches. The contents of the 
buffer form an index into an array or as a hash value. 

It is easy to see that bit tracing uses the minimal number 
of bits necessary to distinguish paths. For simple control- 
flow graphs, such as a chain of if-then-else statements, bit 
tracing, like our approach, produces a compact represen- 
tations of paths. However, in general, bit tracing may not 
yield the most compact representations of paths possible. It 
is easy to construct examples for which the maximal path 
value under bit tracing is not minimal, no matter the choice 
of bit labellings. In the worst case, the number of entries in 
an array of counters may be twice our method. 

In addition, bit tracing is likely to have higher run-time 
overhead than our approach. First, every predicate must 
be instrumented, whereas our approach allows flexibility 
in placing instrumentation to reduce overhead. Second, on 
most machines, the instrumentation to append to a bit string 
is more complex and slower than a register-to-register addi- 
tion. 

3 Path Profiling of DAGs 

As described previously, path profiling tracks a path in a 
directed acyclic graph (DAG) by updating a register along 
certain edges of the DAG. This section shows how to com- 
pute the necessary updates, efficiently place instrumenta- 
tion, and derive an executed path from the resulting profile. 

The example in Figure 4 shows that many placements 
of instrumentation yield equivalent results. However, some 
placements incur less run-time overhead than others. For 
example, all three graphs in Figure 4 produce the same sum 
along any acyclic path from A to F. However, in graph (a), 
the largest number of instrumented edges on any path from 
A to F is two, while graphs (b) and (c) have up to four and 
three, respectively. 

The path profiling algorithm first labels edges in a DAG 

with integer values, such that each path from the entry to the 
exit of the DAG produces a unique sum of the edge values 
along that path (the path sum). However, placements from 
this step may have sub-optimal run-time overhead, as above. 

In the next step, another algorithm [Bal94] improves this 
computation, by finding an equivalent computation that uses 
a minimal number of additions along DAG edges that are not 
in the DAG’s spanning tree. In each graph in Figure 4, the 
uninstrumented edges (those without squares along them) 
form a spanning tree. Since a DAG may have many span- 
ning trees, the algorithm has the freedom to place instrumen- 
tation along edges less likely to be executed.’ 

After reviewing the basic graph terminology in Sec- 
tion 3.1, this section describes the four basic steps to path 
profile a DAG: 

1. 

2. 

3. 

4. 

3.1 

Assign integer values to edges such that no two paths 
compute the same path sum (Section 3.2). This encod- 
ing is minimal. 

Use a spanning tree to select edges to instrument and 
compute the appropriate increment for each instru- 
mented edge (Section 3.3). 

Select appropriate instrumentation (Section 3.4). 

After collecting the run-time profile, derive the exe- 
cuted paths (Section 3.5). 

Terminology 

For the remainder of this paper, unless otherwise noted, 
control-flow graphs (CFGs) have been converted into di- 
rected acyclic graphs (DAG) with a unique source vertex 
ENTRY and sink vertex EXIT. Section 4 shows how 
to transform an arbitrary CFG into a DAG, which can be 
path profiled. For technical reasons, the increment compu- 
tation (Section 3.3) requires a “dummy” edge EXIT + 
ENTRY (although this creates an unexecutable cycle, 
the graph can still be treated as a DAG by ignoring this 
backedge). 

An execution of a DAG produces an acyclic, directed 
path starting at ENTRY and ending at EXIT. The term 
path refers to an acyclic directed path, unless otherwise 
noted. Of course, a DAG may execute many times, as it may 
consist of a loop body or a procedure. 

A spanning tree of a graph G is a subgraph that is a tree 
and contains all vertices of G. Edges in a spanning tree 
are bidirectional and need not follow the direction of graph 

‘This approach requires computing (or obtaining from a profile) a 
weight for each edge that statically approximates the edge’s execution fre- 
quency. A maximum spanning tree of the graph, with respect to that 
weighting, maximizes the weight (execution frequency) of the uninstm- 
mented edges. PP uses the same previously published, effective algorithm 
for statically computing a weighting as QPT [BL94]. 
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Efficiently compute sums

•Find min-cost spanning tree 
(= max cost chord edges) 
•Chord edges will be instrumented 

•Move weights from non-chord 
edges to chord edges
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Figure 5. Algorithm for assigning values to edges in a 
DAG. 

edges. If T is the set of spanning tree edges, then any graph 
edge not in T is a chord of the spanning tree. 

For example, in the graph of Figure 2, vertex A is the 
ENTRY vertex and vertex F is the EXIT vertex. The un- 
adorned graph edges comprise a spanning tree. The edges 
labeled by squares are chords of the spanning tree. 

3.2 Compactly Representing Paths with Sums 

The first step in path profiling is to assign a non-negative 
constant value VaZ(e) to each edge e in a DAG, such that 
the sum of values along any path from ENTRY to EXIT 
is unique. Furthermore, the path sums should lie in the range 
from 0 to the number of paths (minus one), so that the encod- 
ing is minimal. 

The algorithm in Figure 5 computes such a VaZ relation 
by visiting vertices of the DAG in reverse topological or- 
der. This order ensures that all the successors of a vertex 
ZJ are visited before ‘u itself. Associated with each vertex 
v is a value NumPaths(v), which records the number of 
paths from u to EXIT. The algorithm is simple. At ver- 
tex v, the algorithm visits all of v’s outgoing edges v + wi, 
1 < i 5 n, and assigns the lath outgoing edge the value: 

Val(v + wk) = Cti; NumPaths(wi) 

The following theorem proves the algorithm correct: 

Theorem 1 Given a DAG, after the algorithm of Figure 5 
visits vertex u, NumPaths(v) is the number of paths from 
u to EXIT and each path from v to EXIT generates a 
unique value sum in the range 0.. . NumPaths(v) - 1. 

Proof. By induction on the height of a vertex in the DAG 
(i.e., the max number of steps to the sink vertex EXIT). 

Base Case: v has height equal to zero (that is, v = 
EXIT), so NumPaths(v) = 1. The theorem is trivially 
satisfied. 

Figure 6. Control-flow graph from Figure 1, with values 
computed by the algorithm in Figure 5. 

Induction Step: Show that the theorem holds for 
any vertex v of height H (H > 0). All successors 
~1 . . . W, of v must have height less than H (because 
the graph is a DAG), so the theorem holds for all WJ~. 
It is trivial to see that the number of paths from v to 
EXIT is Cy=‘=, NumPaths(wi), which the algo- 
rithm computes. By the induction hypothesis, each 
path from Wk to EXIT generates a unique value 
sum in the range 0. . . NumPaths(wk) - 1. There- 
fore, any path from v to EXIT starting with edge 
v -+ wk will generate a unique value in the range 
C;“-i’ NumPaths(w;) . . . (CF=, NumPaths(wi)) - 1. 
Since all NumPaths(wi) values are greater than 0, it 
follows that no two paths from v to EXIT generate the 
same value sum. 0 

Figure 6 illustrates how the algorithm operates on the ex- 
ample control-flow graph. Note that vertices are labeled in 
topological ordering, so FEDCBA is a reverse topological 
order. Any vertex with a single outgoing edge e, such as C 
and E, always has VaZ(e) = 0. 

3.3 Efficiently Computing Sums 

Given an edge value assignment, the second step of 
the algorithm finds a minimal cost set-with respect to a 
weighting (Section 3)-of edges along which to compute 
these values, while preserving the two properties of the 
value assignment. 

This step of the algorithm finds a maximal cost spanning 
tree of the graph (to find a minimal cost set of chord edges), 
and applies an efficient event counting technique [Ba194] to 
determine the increment Inc(c) for each chord c in a span- 
ning tree. The event counting algorithm ensures that the sum 
of Inc values for any path P from ENTRY to EXIT is 
identical to the sum of Val values for P. Note that some of 
the Inc values may be negative, as in Figure 4. The edge 
EXIT -+ ENTRY is required for this step (if this edge is 
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Instrumentation

•Needed instrumentation: 
•Initialize path register (r = 0) at ENTRY 

•Increment register on instrumented edges (r += Inc(e)) 

•Record path's counter at EXIT (count[r]++) 

•Can optimize: 
•Chord edge e can initialize counter (r = Inc(e)) iff first 

chord edge on every path from ENTRY to EXIT containing e 
•Chord edge e may increment path register and memory 

counter (count[r+Inc(e)]++) iff last chord edge on every 
path from ENTRY to EXIT containing e
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Instrumentation
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Figure 4. Three possible placements of instrumentation 
for the control-flow graph from Figure 1. 

way branch [BL94, Bal96]. When a branch executes, instru- 
mentation code appends a bit to a trace buffer that records 
branch outcomes. By recording multiple bits, the approach 
can be extended to multi-way branches. The contents of the 
buffer form an index into an array or as a hash value. 

It is easy to see that bit tracing uses the minimal number 
of bits necessary to distinguish paths. For simple control- 
flow graphs, such as a chain of if-then-else statements, bit 
tracing, like our approach, produces a compact represen- 
tations of paths. However, in general, bit tracing may not 
yield the most compact representations of paths possible. It 
is easy to construct examples for which the maximal path 
value under bit tracing is not minimal, no matter the choice 
of bit labellings. In the worst case, the number of entries in 
an array of counters may be twice our method. 

In addition, bit tracing is likely to have higher run-time 
overhead than our approach. First, every predicate must 
be instrumented, whereas our approach allows flexibility 
in placing instrumentation to reduce overhead. Second, on 
most machines, the instrumentation to append to a bit string 
is more complex and slower than a register-to-register addi- 
tion. 

3 Path Profiling of DAGs 

As described previously, path profiling tracks a path in a 
directed acyclic graph (DAG) by updating a register along 
certain edges of the DAG. This section shows how to com- 
pute the necessary updates, efficiently place instrumenta- 
tion, and derive an executed path from the resulting profile. 

The example in Figure 4 shows that many placements 
of instrumentation yield equivalent results. However, some 
placements incur less run-time overhead than others. For 
example, all three graphs in Figure 4 produce the same sum 
along any acyclic path from A to F. However, in graph (a), 
the largest number of instrumented edges on any path from 
A to F is two, while graphs (b) and (c) have up to four and 
three, respectively. 

The path profiling algorithm first labels edges in a DAG 

with integer values, such that each path from the entry to the 
exit of the DAG produces a unique sum of the edge values 
along that path (the path sum). However, placements from 
this step may have sub-optimal run-time overhead, as above. 

In the next step, another algorithm [Bal94] improves this 
computation, by finding an equivalent computation that uses 
a minimal number of additions along DAG edges that are not 
in the DAG’s spanning tree. In each graph in Figure 4, the 
uninstrumented edges (those without squares along them) 
form a spanning tree. Since a DAG may have many span- 
ning trees, the algorithm has the freedom to place instrumen- 
tation along edges less likely to be executed.’ 

After reviewing the basic graph terminology in Sec- 
tion 3.1, this section describes the four basic steps to path 
profile a DAG: 

1. 

2. 

3. 

4. 

3.1 

Assign integer values to edges such that no two paths 
compute the same path sum (Section 3.2). This encod- 
ing is minimal. 

Use a spanning tree to select edges to instrument and 
compute the appropriate increment for each instru- 
mented edge (Section 3.3). 

Select appropriate instrumentation (Section 3.4). 

After collecting the run-time profile, derive the exe- 
cuted paths (Section 3.5). 

Terminology 

For the remainder of this paper, unless otherwise noted, 
control-flow graphs (CFGs) have been converted into di- 
rected acyclic graphs (DAG) with a unique source vertex 
ENTRY and sink vertex EXIT. Section 4 shows how 
to transform an arbitrary CFG into a DAG, which can be 
path profiled. For technical reasons, the increment compu- 
tation (Section 3.3) requires a “dummy” edge EXIT + 
ENTRY (although this creates an unexecutable cycle, 
the graph can still be treated as a DAG by ignoring this 
backedge). 

An execution of a DAG produces an acyclic, directed 
path starting at ENTRY and ending at EXIT. The term 
path refers to an acyclic directed path, unless otherwise 
noted. Of course, a DAG may execute many times, as it may 
consist of a loop body or a procedure. 

A spanning tree of a graph G is a subgraph that is a tree 
and contains all vertices of G. Edges in a spanning tree 
are bidirectional and need not follow the direction of graph 

‘This approach requires computing (or obtaining from a profile) a 
weight for each edge that statically approximates the edge’s execution fre- 
quency. A maximum spanning tree of the graph, with respect to that 
weighting, maximizes the weight (execution frequency) of the uninstm- 
mented edges. PP uses the same previously published, effective algorithm 
for statically computing a weighting as QPT [BL94]. 
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// Register initialization code 
// 
WS.add(ENTRY); 
while not WS.emptyO { 

vertex v = WS.removeO; 
for each edge e = v->w 

if e is a chord edge 
instrumentce, 'r=Inc(e)'); 

else if e is the only incoming edge of w 
WS.add(w); 

else instrumentte, 'r=O'); 

// Memory increment code 

WS.add(EXIT) 

Figure 9. Optimization of instrumentation for the control- 
flow graph of Figure 1. 

while not WS.emptyO { 
vertex w = WS.removeO; 
for each edge e = v->w 

if e is a chord edge I 
if e's instrumentation is 'r=Inc(e)' 

instrumentce, 'count[Inc(e)l++'); 
else 

instrumentte, 'count[r+Inc(e)l++'); 

4 Path Profiling of Arbitrary Control-Flow 

This section extends path profiling to arbitrary control- 
flow graphs that contain cycles (including irreducible 
loops). Any cycle in a control-flow graph must contain a 

} else if e is the only outgoing edge of v backedge (as identified by a depth-first search of the graph). 
WS.add(v); The algorithm in Section 3 only works for acyclic paths, 

else instrumentce, 'count[rl++'); which correspond to backedge-free paths. 
Our approach to handling general CFGs instruments each 

backedge with a path counter increment and path register 
initialization [count [r] ++; r = 01, which records the 
path up to the backedge and prepares to record the path after 
the backedge. 

// Register increment code 
// 
for all uninstrumented chords c 

instrument(c,'r+=Inc(c)') 

Figure 8. Algorithm for placing instrumentation. 

At vertex B, R = 1, so the algorithm traverses edge B + C 
and then C + D. At vertex D, R still has a value of 1, so 
the path traverses edge D -+ E, followed by E + F. The 
resulting regenerated path is ABCDEF, which is the path 
that generates the path sum 3. 

3.6 Early Termination 

Like other efficient profiling algorithms [BL94], path 
profiling requires extra information to derive correct profiles 
for routines that terminate unexpectedly because of excep- 
tions, unrecognized non-local gotos, or calls to exit. This in- 
formation consists of the address of unterminated calls and 
can easily be obtained from a program’s stack at an unex- 
pected event. The event counting algorithm provides a way 
to correctly update the counters in these routines [Ba194]. 

anmt[r 

Suppose that v + w and x -+ y are backedges. A gen- 
eral CFG contains four possible types of acyclic (backedge- 
free) paths: 

l A path from ENTRY to EXIT. 

l A path from ENTRY to V, ending with execution of 
backedge v -+ w. 

l A path from w to x (after execution of backedge v + 
w), ending with execution of backedge x + y (note: 
v --+ w and z + y may be the same edge). 

l After executing backedge v -+ w, a path from w to 
EXIT. 

Removing all backedges from a control-flow graph pro- 
duces a DAG (as defined in Section 3.1). However, simply 
applying the profiling algorithm from Section 3 to this DAG 
will not correctly distinguish the above four types of paths. 
Figure 10(a) contains a control-flow graph with a loop con- 
sisting of the vertices B, C, D, and E. Suppose the graph 
is instrumented by eliminating the backedge E + B, thus 
yielding a DAG, and applying the path profiling algorithm 
for DAGs. The resulting assignment does not ensure that 
different paths yield different paths sums. For example, the 
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Details, details, details

•Algorithm works for DAGs 
•Need to transform programs to be DAG like (and 

profile on DAG sub-graphs of cyclic graph)
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Path Profiling

•With manual examination: 
•Path 0 (executed once) initializes the recursion with the call main(2,2,...). 

•Paths 19, 22, and 23 control printing of the 12 verses.  
• P19 first verse, P23 middle 10 verses, and P22 last verse.   

•Paths 9 and 13 control printing of non-partridge-gifts within verse. (Frequencies of P9 + P13 = 66) 

•Paths 2 and 3 responsible for printing out a string. 

•Paths 1 and 7 print out the characters in a string. (why two?) 

•Path 4 skips over n sub-strings in the large string, each sub-string terminated with '/' 

•Path 5 linearly scans the string that encodes the character translation
26

12 days of Christmas (also 11, to catch 
"off-by-one" cases) 

26 unique strings 
66 occurrences of non-partridge-in-a-

pear-tree presents 
114 strings printed, and 
2358 characters printed.
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Reversed-engineered Program
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Reversed-engineered Program
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Adversarial Memory for Detecting 
Destructive Data Races

•By Flanagan and Freund, PLDI 2010 
•A dynamic analysis to find data races in 

concurrent programs 
•What's a data race?
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Program Model

•A multithreaded program has concurrently executing 
threads (each with thread identifier t ∈ Tid) 

•Each thread manipulates variables and locks 
•A trace lists sequence of operations performed by threads 

•Ignores everything except read/writes to variables, lock 
operations, and fork/join.
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tures such as vector clocks and write buffers. The JUMBLE adver-
sarial memory implementation then reifies this non-deterministic
operational specification using heuristics to choose read values that
expose destructive races.

Fairness. JUMBLE uses a variety of heuristics to choose which
visible value to return for each read operation of the target pro-
gram. Our simplest heuristic returns the oldest or “most stale” vis-
ible value for each read. Interestingly, this heuristic violates fair-
ness properties typically assumed by applications. For example,
consider the following busy-waiting loop, which contains an in-
tentional race on the non-volatile boolean variable done.

while (!done) { yield(); }

Even after a concurrent thread sets done to true via a racy write,
our “oldest” heuristic continued to return the original (and still
visible) false value for done, resulting in an infinite loop.

There is some tension between memory model fairness (which
helps applications behave correctly) and adversarial memory (which
tries to crash applications). Although JMM does not mandate a par-
ticular notion of fairness, our implementation guarantees that any
unbounded sequence of reads to a particular variable will some-
times return the most recently-written value. This fairness guaran-
tee proved sufficient on all our experiments.

Experimental Results. Experimental results on a range of mul-
tithreaded benchmarks show that adversarial memory, although a
straightforward concept, is highly effective at exposing destructive
races. Each destructive race typically causes incorrect behavior on
between 25% and 100% of test runs, as compared to essentially 0%
under normal testing. For the example program of Figure 1, JUM-
BLE reveals this destructive race on roughly every other run, while
traditional testing failed to reveal this bug after 10,000 runs.

Much prior work (see, for example, [27, 29, 36, 40]) developed
tools that explore multiple interleavings of multithreaded programs,
in an attempt to identify defects, including destructive races. Inter-
estingly, because these tools assume sequentially consistency, they
cannot detect destructive race conditions, such as those in Figures 1
and 2 and in several of our benchmarks, which only appear under
relaxed memory assumptions. Conversely, JUMBLE does not ex-
plore all interleavings, and so may not detect destructive races that
cause problems only under some interleavings. In general, multi-
threaded Java programs are prone to both scheduling nondetermin-
ism and memory-model nondeterminism, and model checkers need
to exhaustively explore both sources of nondeterminism in order to
detect all errors.

1.3 Contributions
In summary, this paper:
• introduces the concept of adversarial memory for detecting

destructive races;
• formalizes an operational specification for a subset of the JMM,

providing a foundation for our approach (Section 4);
• proves that this operational specification is sound with respect

to its declarative specification (Section 4.2);
• describes our adversarial memory implementation and its

heuristics for exposing destructive races (Section 5); and
• presents experimental results demonstrating that this approach

is effective at identifying destructive race conditions, with mod-
est performance overhead (Section 6).

2. Multithreaded Program Traces
To provide a sound basis for our development, we begin by for-
malizing multithreaded program traces. A multithreaded program

Figure 3. Multithreaded program traces.

↵ 2 Trace ::= Operation⇤

a, b 2 Operation ::= rd(t, x, v) | wr(t, x, v)
| acq(t, m) | rel(t, m)
| fork(t, u) | join(t, u)

s, t, u 2 Tid x, y 2 Var m 2 Lock v 2 Value

consists of a number of concurrently executing threads, each with
a thread identifier t 2 Tid . These threads manipulate variables
x 2 Var and locks m 2 Lock . A trace ↵ captures an execution
of a multithreaded program by listing the sequence of operations
performed by the various threads in the system. We ignore control
operations (branches, looping, method calls, etc) and local compu-
tations, as they are orthogonal to memory model issues. Thus, the
set of operations that a thread t can perform are:

• rd(t, x, v) and wr(t, x, v), which read and write a value v from
a variable x;

• acq(t, m) and rel(t, m), which acquire and release a lock m;
• fork(t, u), which forks a new thread u; and
• join(t, u), which blocks until thread u terminates.

This set of operations suffices for an initial presentation of our anal-
ysis; our implementation supports a variety of additional synchro-
nization constructs, including wait, notify, volatile variables, etc.

The happens-before relation <

↵

for a trace ↵ is the smallest
transitively-closed relation over the operations3 in ↵ such that the
relation a <

↵

b holds whenever a occurs before b in ↵ and one of
the following holds:

• [PROGRAM ORDER] Both operations are by the same thread.
• [LOCKING ORDER]: a releases a lock that is later acquired by b.
• [FORK ORDER]: a is fork(t, u) and b is by thread u.
• [JOIN ORDER]: a is by thread u and b is join(t, u).

If a happens before b, then we also say that b happens after a. If two
operations in a trace are not related by the happens-before relation,
then they are considered concurrent. Two memory access conflict
if they both access (read or write) the same variable, and at least
one of the operations is a write. Using this terminology, a trace has
a race condition if it has two concurrent conflicting accesses.

3. Memory Models
A memory model specifies what values can be returned for each
read operation in a program trace. A trace ↵ is legal under a
memory model if the value v produced by each read operation
rd(t, x, v) in the trace ↵ is permitted under that memory model.
The simplest memory model is sequential consistency:

Sequential Consistent Memory Model (SCMM): A read
operation a = rd(t, x, v) in a trace ↵ may only return the
value of the most recent write to that variable in ↵.

Although sequential consistency is intuitive, it limits the optimiza-
tions that may be performed by the compiler, the virtual machine,

3 In theory, a particular operation a could occur multiple times in a trace. We
avoid this complication by assuming that each operation includes a unique
identifier (often called an issue index [31]), but, to avoid clutter, we do not
include this unique identifier in the concrete syntax of operations.
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Happens-before relation and races

•Two operations a and b are concurrent if neither a 
<α b nor b <α a 

•A trace has a race if there are two memory accesses 
to the same variable, at least one of them is a write 
operation, and the accesses are concurrent
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tures such as vector clocks and write buffers. The JUMBLE adver-
sarial memory implementation then reifies this non-deterministic
operational specification using heuristics to choose read values that
expose destructive races.

Fairness. JUMBLE uses a variety of heuristics to choose which
visible value to return for each read operation of the target pro-
gram. Our simplest heuristic returns the oldest or “most stale” vis-
ible value for each read. Interestingly, this heuristic violates fair-
ness properties typically assumed by applications. For example,
consider the following busy-waiting loop, which contains an in-
tentional race on the non-volatile boolean variable done.

while (!done) { yield(); }

Even after a concurrent thread sets done to true via a racy write,
our “oldest” heuristic continued to return the original (and still
visible) false value for done, resulting in an infinite loop.

There is some tension between memory model fairness (which
helps applications behave correctly) and adversarial memory (which
tries to crash applications). Although JMM does not mandate a par-
ticular notion of fairness, our implementation guarantees that any
unbounded sequence of reads to a particular variable will some-
times return the most recently-written value. This fairness guaran-
tee proved sufficient on all our experiments.

Experimental Results. Experimental results on a range of mul-
tithreaded benchmarks show that adversarial memory, although a
straightforward concept, is highly effective at exposing destructive
races. Each destructive race typically causes incorrect behavior on
between 25% and 100% of test runs, as compared to essentially 0%
under normal testing. For the example program of Figure 1, JUM-
BLE reveals this destructive race on roughly every other run, while
traditional testing failed to reveal this bug after 10,000 runs.

Much prior work (see, for example, [27, 29, 36, 40]) developed
tools that explore multiple interleavings of multithreaded programs,
in an attempt to identify defects, including destructive races. Inter-
estingly, because these tools assume sequentially consistency, they
cannot detect destructive race conditions, such as those in Figures 1
and 2 and in several of our benchmarks, which only appear under
relaxed memory assumptions. Conversely, JUMBLE does not ex-
plore all interleavings, and so may not detect destructive races that
cause problems only under some interleavings. In general, multi-
threaded Java programs are prone to both scheduling nondetermin-
ism and memory-model nondeterminism, and model checkers need
to exhaustively explore both sources of nondeterminism in order to
detect all errors.

1.3 Contributions
In summary, this paper:
• introduces the concept of adversarial memory for detecting

destructive races;
• formalizes an operational specification for a subset of the JMM,

providing a foundation for our approach (Section 4);
• proves that this operational specification is sound with respect

to its declarative specification (Section 4.2);
• describes our adversarial memory implementation and its

heuristics for exposing destructive races (Section 5); and
• presents experimental results demonstrating that this approach

is effective at identifying destructive race conditions, with mod-
est performance overhead (Section 6).

2. Multithreaded Program Traces
To provide a sound basis for our development, we begin by for-
malizing multithreaded program traces. A multithreaded program

Figure 3. Multithreaded program traces.

↵ 2 Trace ::= Operation⇤

a, b 2 Operation ::= rd(t, x, v) | wr(t, x, v)
| acq(t, m) | rel(t, m)
| fork(t, u) | join(t, u)

s, t, u 2 Tid x, y 2 Var m 2 Lock v 2 Value

consists of a number of concurrently executing threads, each with
a thread identifier t 2 Tid . These threads manipulate variables
x 2 Var and locks m 2 Lock . A trace ↵ captures an execution
of a multithreaded program by listing the sequence of operations
performed by the various threads in the system. We ignore control
operations (branches, looping, method calls, etc) and local compu-
tations, as they are orthogonal to memory model issues. Thus, the
set of operations that a thread t can perform are:

• rd(t, x, v) and wr(t, x, v), which read and write a value v from
a variable x;

• acq(t, m) and rel(t, m), which acquire and release a lock m;
• fork(t, u), which forks a new thread u; and
• join(t, u), which blocks until thread u terminates.

This set of operations suffices for an initial presentation of our anal-
ysis; our implementation supports a variety of additional synchro-
nization constructs, including wait, notify, volatile variables, etc.

The happens-before relation <

↵

for a trace ↵ is the smallest
transitively-closed relation over the operations3 in ↵ such that the
relation a <

↵

b holds whenever a occurs before b in ↵ and one of
the following holds:

• [PROGRAM ORDER] Both operations are by the same thread.
• [LOCKING ORDER]: a releases a lock that is later acquired by b.
• [FORK ORDER]: a is fork(t, u) and b is by thread u.
• [JOIN ORDER]: a is by thread u and b is join(t, u).

If a happens before b, then we also say that b happens after a. If two
operations in a trace are not related by the happens-before relation,
then they are considered concurrent. Two memory access conflict
if they both access (read or write) the same variable, and at least
one of the operations is a write. Using this terminology, a trace has
a race condition if it has two concurrent conflicting accesses.

3. Memory Models
A memory model specifies what values can be returned for each
read operation in a program trace. A trace ↵ is legal under a
memory model if the value v produced by each read operation
rd(t, x, v) in the trace ↵ is permitted under that memory model.
The simplest memory model is sequential consistency:

Sequential Consistent Memory Model (SCMM): A read
operation a = rd(t, x, v) in a trace ↵ may only return the
value of the most recent write to that variable in ↵.

Although sequential consistency is intuitive, it limits the optimiza-
tions that may be performed by the compiler, the virtual machine,

3 In theory, a particular operation a could occur multiple times in a trace. We
avoid this complication by assuming that each operation includes a unique
identifier (often called an issue index [31]), but, to avoid clutter, we do not
include this unique identifier in the concrete syntax of operations.

246



Stephen Chong, Harvard University

Races are bad

•Often cause errors only on certain rare executions 
•Hard to reproduce and reason about 

•Exacerbated by multi-core processors and relaxed memory models 

•BUT many races are benign 
•E.g., approximate counters, optimistic protocols 

•Lots of work on race detection 
•Static: can be difficult to reason about all possible interleaving 
•Dynamic: interleavings with races may be rare 

•This work:  
•standard dynamic analysis to detect "racy" variables 
•Then try to produce an erroneous execution that exhibits the race and 

produces observable incorrect behavior (e.g., crash, uncaught exception, 
etc.)
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Double-checked locking example

•Relaxed memory 
model means that 
get().x could 
evaluate to zero. 
•(Thus, the race on p is 

destructive, i.e., non-
benign) 

•But most of the time, 
destructive behavior 
not exhibited
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Figure 1. Racy initialization. Initially x == null.

Thread 1 Thread 2

x = new Circle(); if (x != null) { x.draw(); }

and we have strong evidence for classifying that race condition as
destructive. This approach of adversarial execution provides two
benefits: it only warns the programmer about real errors in the soft-
ware (that is, no false alarms); and it provides a concrete execution
as a witness to that error.

1.1 Memory Models
The essence of our approach to adversarial execution is to exploit
the full range of possible behaviors permitted by the relaxed mem-
ory models found in most current architectures. In general, a mem-
ory model specifies what values may be returned for each read op-
eration in a trace.

The sequentially consistent memory model (SCMM) [22] re-
quires each read from an address to return the value of the most
recent write by any thread to that address. Although sequential con-
sistency is an intuitive memory model, it significantly limits the
optimizations used by the compiler, virtual machine, or hardware.

Relaxed memory models [2, 19], such as the Java Memory
Model (JMM) [25] or x86-TSO [31], admit additional optimizations
by imposing fewer constraints on the value returned from read op-
erations. For data-race-free programs, each read returns the same
value as under SCMM. For programs with (intentional or uninten-
tional) races, however, a read operation could return multiple val-
ues, as illustrated by the following two examples.

Racy Initialization Example. In this program, Thread 1 initial-
izes x while Thread 2 checks x!=null and then calls x.draw().
Both reads of x by Thread 2 are in a race with the write by Thread 1.
Nevertheless, under SCMM, all interleavings of this program behave
correctly, since once x is initialized as non-null it stays non-null.

Under the Java relaxed memory model, however, each read of
x could independently read either null or an initialized reference.
Hence the check x!=null could succeed (by reading the initialized
value) after which the call x.draw() could read null and fail with
a NullPointerException. 1

Double-Checked Locking Example. As a more interesting exam-
ple, consider the Java program in Figure 2. The class Point con-
tains a static field p referring to a singleton Point object. This static
field is initialized lazily on the first call to get(), via a double-
checked initialization pattern. Prior precise race detectors such as
FASTTRACK [17] and DJIT+ [33] can identify race conditions on
three fields (p, p.x, and p.y), but they do not identify which of
these race conditions are destructive.

We first consider the race condition on p. Line 8 reads p into
a local variable t, so the return value of get() is never null.
Reading stale null values at line 8 only causes extra executions of
the synchronized block, so the race on p is not destructive.

We next consider the race between the write of x at line 5 and
the read at line 17. These accesses never overlap because of the
initialization logic in get(). Nevertheless, a thread calling get()
could return the initialized value of p without synchronization,
meaning that there is no happens-before edge between a different
thread’s initialization of x and that thread’s read of x. Hence, the
read at line 17 could return the default initial value of zero for

1 Note that specific JVM implementations may not exhibit all behaviors
permissible by the Java Memory Model, and so a specific JVM on specific
hardware might never reorder reads in a way that exposes this bug.

Figure 2. Double-checked locking.

1 class Point {
2 double x, y;
3 static Point p;
4

5 Point() { x = 1.0; y = 1.0; }
6

7 static Point get() {
8 Point t = p;
9 if (t != null) return t;

10 synchronized (Point.class) {
11 if (p==null) p = new Point();
12 return p;
13 }
14 }
15

16 static double slope() {
17 return get().y / get().x;
18 }
19

20 public static void main(String[] args) {
21 fork { System.out.println( slope() ); }
22 fork { System.out.println( slope() ); }
23 }
24 }

x, causing an immediate DivisionByZeroException at line 17.
Thus, the race on x is destructive.

Similarly, the read of y at line 17 could also return a stale
zero value, causing incorrect printouts. Therefore, this race is also
destructive.

1.2 Adversarial Memory
A key difficulty in detecting destructive race conditions like those
above via testing alone is that the memory system is likely to
exhibit sequentially-consistent behavior most of the time. Unex-
pected values will be read from memory only in certain unlucky
circumstances (such as when two conflicting accesses are sched-
uled closely together on cores without a shared cache, or when
two object are allocated at addresses that cause cache conflicts).
Thus, even though the memory system is always allowed to exhibit
counter-intuitive “relaxed” behavior, the fact that it behaves nicely
most of the time makes testing problematic.

To overcome this limitation, we have developed an adversarial
memory system, JUMBLE, that continually exploits the full flexibil-
ity of the relaxed memory model to try to crash the target applica-
tion.2 Essentially, JUMBLE stress-tests racy programs by returning
older (but still legal) values for read operations whenever possi-
ble. To determine which values are legal under the memory model,
JUMBLE monitors memory and synchronization operations of the
target program and keeps a write buffer recording the history of
write operations to each racy shared variable. For each read oper-
ation, JUMBLE computes the set of visible values in that variable’s
write buffer that can be legally returned according to the memory
model. This visible set always contains at least the value of the last
write to that variable, but may also contain older values. JUMBLE
attempts to heuristically pick an element likely to trigger a program
crash and thus provide evidence of a destructive race condition.

To provide a formal foundation for our approach, we first de-
velop an operational specification for a subset of the Java Memory
Model. This operational specification expresses the inherent non-
determinism of the memory model in terms of familiar data struc-

2 JUMBLE targets Java programs, but adversarial memory can be used in
any system with a relaxed memory model.
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Adversarial Memory

•Exploits full flexibility of relaxed memory model 
to try and cause crashes 

•Tool tracks memory and synchronization 
operations of execution, and keeps a write 
buffer recording history of writes to racy 
variables 

•When a thread asks for a value, return older (but 
still legal) values whenever possible
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Memory Models

•Sequential Memory Model: read operation a = 
rd(t,x,v) in trace α may only return the value of 
the most recent write to that variable in α 
•Intuitive but limits optimization by compiler, virtual 

machine, and hardware. 

•Happens-Before Memory Model: read operation 
a = rd(t,x,v) in trace α may return the value of 
any write operation b = wr(u, x, v) provided:  
1. b does not happen after a; and 
2. no intervening write c to x where b <α c <α a
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Out-of-thin-air

•Consider 
     x := y || y := x 

•Assume x and y are initially zero. 
•Under happens-before memory model, the following trace is possible:  

 rd(t1, x, 42) wr(t1, y, 42) rd(t2, y, 42) wr(t2, x, 42) 

•Where did 42 come from??!? 
•Java Memory Model extends the happens-before memory model with a 

causality requirement to preclude non-sensical traces as above 

•This paper uses Progressive Java Memory Model: read operation a = 
rd(t,x,v) in trace α may return the value of any write operation b = 
wr(u, x, v) provided: 
1. b is before a in trace α; and 
2. no intervening write c to x where b <α c <α a
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Adversarial Memory Implementation

•Uses vector clocks to record time stamps of write 
operations 
•Vector clocks can be used to determine the happens-

before relation 

•Read operation for x at time Ct can return any 
value so long as it satisfies the Progressive Java 
Memory Model 
•i.e., a write in the write buffer for x that happened at 

time Ki such that there is no write at time Kj where  
Ki ⊑Kj ⊑ Ct
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Adversarial Memory Heuristics

•Sequentially consistent: always return most recently 
written value 

•Oldest: chose "most stale" value. (occasionally return 
most-recent value to satisfy fairness assumptions) 

•Oldest-but-different: return oldest element that is 
different from the last value read 

•Random: return a random value from the permitted 
values 

•Random-but-different: return a random value from the 
permitted value that is dfferent from the last value read
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Effectiveness

40

Erroneous Behavior Observation Rate (%)
JUMBLE Configurations

Program Field No
Jumble

Sequentially
Consistent Oldest Oldest-But-

Different Random Random-But-
Different

Destructive
Race?

Figure 8 x 0 0 0 83 84 92 Yes
Figure 2 p 0 0 0 0 0 0 No
Figure 2 p.x 0 0 60 52 32 30 Yes
Figure 2 p.y 0 0 48 53 27 30 Yes
jbb Company.elapsed time 0 0 100 0 15 5 Yes
jbb Company.mode 0 0 100 100 95 98 Yes
montecarlo Universal.UNIVERSAL DEBUG 0 0 0 0 0 0 No
mtrt RayTracer.threadCount 0 0 0 0 0 0 No
raytracer JGFRayTracerBench.checksum1 0 0 100 100 100 100 Yes
tsp TspSolver.MinTourLen 0 0 100 100 100 100 QoS
sor array index [0] and [1] 0 0 100 100 100 100 Yes
lufact array index [0] and [1] 0 0 100 100 100 100 Yes
moldyn array index [0] and [1] 0 0 100 100 100 100 Yes

Figure 9. Observation rate for erroneous behavior under various heuristics. Destructive races are marked in bold. QoS indicates that the only
observed difference was significant slowdown.

but the value of that variable is not used anywhere else in the pro-
gram. Thus we consider this race benign.

Program raytracer, JGFRayTracerBench.checksum1: This
program creates a group of worker threads that, upon completion,
add a thread-local checksum to the global checksum checksum1,
without synchronization. Under JUMBLE, checksum1 becomes
corrupted, and the program detects and reports a failed execution.
JUMBLE’s treatment of longs helps uncover this error.

Program tsp, TspSolver.MinTourLen: This TSP solver uses
worker threads to explore and evaluate routes, using a branch-and-
bound algorithm in which the length of the current best route is
stored in MinTourLen and monotonically decreases. The protect-
ing lock MinLock is held for updates to MinTourLen, but not for
reads, via the following variant of double-checked locking:
static void set_best(int best, int[] path) {

if (best >= MinTourLen) return;
synchronized(MinLock) {

if (best < MinTourLen) {
MinTourLen = best;
for (int i = 0; i < Tsp.TspSize; i++)

MinTour[i] = path[i];
}

}

Worker threads check and discard partially constructed paths
longer than MinTourLen. This check is performed without acquir-
ing MinLock, meaning that stale (i.e., larger) values could be read,
which would cause redundant path exploration. The program ran
up to twice as slow under JUMBLE because of redundant path ex-
ploration, which we consider a “Quality of Service” (QoS) problem
rather than a destructive race.

Program sor, arrays: Between each iteration of this algorithm,
worker threads wait for their “neighboring” threads to finish using
a barrier implemented with the array sync, where sync[id][0]
counts iterations finished by the thread id. The following code
signals that id has finished and waits for its neighbors.
public static volatile long sync[][];

...
sync[id][0]++;
if (id > 0)

while (sync[id-1][0] < sync[id][0]) ;
if (id < JGFSORBench.nthreads -1)

while (sync[id+1][0] < sync[id][0]) ;

Unfortunately, this code does not include any synchronization
— perhaps because the programmer mistakenly assumed that reads
of the volatile variable sync would be sufficient. Therefore, the

barrier does not introduce happens-before edges between writes
before the barrier and reads following the barrier, so read operations
could read stale data, causing the program to compute the incorrect
final value. The program recognizes and reports this failure when
validating its result 100% of the time under JUMBLE.

Programs lufact and moldyn, arrays: A TournamentBarrier
class shared by these programs has a similar flaw. It maintains
an array IsDone of boolean flags to indicate whether a thread
has finished and is now waiting at the barrier: Since writes to the
elements of IsDone are not ordered, a thread reading an older value
can get out of sync and essentially live-lock waiting at the barrier.
All of our heuristics triggered non-termination 100% of the time.

6.2 JUMBLE Performance
Figure 10 investigates JUMBLE’s performance overhead and other
run-time statistics. It first shows the base running time of each
benchmark, when no instrumentation or monitoring is performed,
and then shows the slowdown under ROADRUNNER using both the
EMPTY checker and JUMBLE. The EMPTY checker performs no
analysis and just measures the overhead of using the ROADRUN-
NER. We configured JUMBLE to use the Sequentially Consistent
heuristic when measuring performance in order to avoid the extra
path exploration performed by benchmarks such as TspSolver un-
der other heuristics. The other heuristics have comparable perfor-
mance to Sequentially Consistent, except in degenerate cases like
TspSolver. Each measurement averages ten test runs.

Programs incur a slowdown between roughly 1.2x and 5x when
run under EMPTY. Most of this overhead is due to instrumenting
class files and generating events for synchronization operations.
The slowdown for JUMBLE is roughly the same as EMPTY in most
cases, with only minor variations due to instrumentation and event
handling. This low overhead is because JUMBLE performs rela-
tively few write-buffer operations, since it tracks a small number
of racy memory locations and each one is updated only a small
number of times (as shown in the “Num. Instances” and “Num.
Writes” columns). More significant differences were seen for the
array-based programs, since the barrier defects in those programs
described above cause the write buffers to become much larger and
more heavily used. In these cases, more aggressive sampling or
tracking fewer arrays would help keep the overhead lower.

The last two columns of Figure 10 shows the maximum buffer
size required, both with and without the use of our three compres-
sion rules. When using these rules, JUMBLE limited buffers to con-
tain at most 32 entries, but the garbage collection rules [GC1] and
[GC2] were sufficient to ensure that this bound was never reached
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Performance

41

Size Num. Base Slowdown Num. Num. Max. Buffer Size
Program (lines) Threads Field Time (s) Empty Jumble Instances Writes No Comp. With Comp.

jbb 30,491 5 Company.elapsed time 74.4 1.3 1.3 1 2 2 2
jbb 30,491 5 Company.mode 74.4 1.3 1.4 2 10 8 4
montecarlo 3,669 4 Universal.UNIVERSAL DEBUG 1.6 1.2 1.2 1 40,005 40,005 5
mtrt 11,317 5 RayTracer.threadCount 0.5 4.5 4.9 1 10 10 5
raytracer 1,970 4 JGFRayTracerBench.checksum 5.6 1.1 1.1 1 6 6 5
tsp 742 5 TspSolver.MinTourLen 0.7 2.3 4.0 1 26 26 23
sor 883 4 array index [0] and [1] 0.6 3.9 5.8 2,106 104,620 255 32
lufact 1,627 4 array index [0] and [1] 0.4 4.1 4.2 1,108 14,526 2,047 7
moldyn 1,407 4 array index [0] and [1] 0.9 4.1 8.9 62 53,433 16,383 32

Figure 10. Performance of JUMBLE under the Sequentially-Consistent configuration.

for all but two programs, and the garbage collection overhead was
negligible. The montecarlo and lufact benchmarks benefited
the most, and garbage collection enabled the buffers for those pro-
grams to be several orders of magnitude smaller that otherwise.
For some array-intensive benchmarks, JUMBLE had to apply the
[REMOVE OLDEST] rule to maintain this bound on write buffers, but
in practice this rule did not limit JUMBLE’s ability to detect de-
structive races.

6.3 Checking the Eclipse Development Environment
To validate JUMBLE in a more realistic environment, we also ap-
plied it to the Eclipse development environment, version 3.4.0.
FASTTRACK reported 27 race conditions on a test configuration
that involved starting-up Eclipse and rebuilding a collection of
projects. Our subsequent experiments were limited by the require-
ment to run Eclipse interactively, since we did not have an appro-
priate automated test harness. Therefore, for each of these 27 racy
fields, we interactively ran JUMBLE only a single time looking for
incorrect behaviors.

For four of these racy fields, these JUMBLE tests produced null
pointer exceptions, providing clear evidence of a destructive race.
Four other fields produced non-deterministic reads, but the read
value did not cause incorrect behavior (at least in this single run).
For the remaining fields, JUMBLE did not detect non-deterministic
reads, indicating that the races were on fields to which the same
value was written, or were similar to the read-then-write race in
Figure 4. An automated test infrastructure would provide the ability
to perform more test runs and to identify more destructive races.

Nevertheless, by showing how to easily identify four previously-
unknown destructive race conditions in a well-tested and robust
software system such as Eclipse, these preliminary experiments
already demonstrate the effectiveness of adversarial memory.

7. Related Work
The difficulty of manually identifying destructive races has moti-
vated prior work on this problem. One approach uses replay anal-
ysis [29] to re-execute a racy trace after swapping the relative or-
der of the two racy operations. Unlike JUMBLE, this approach re-
quires a somewhat complex replay infrastructure, and is prone to
“falling off the trace” during replay, resulting in false positives.
Race-directed random testing [36] explores a similar approach, but
avoids the need for a replay infrastructure. Both of these approaches
assume sequential consistency and will not detect destructive race
conditions as in Figures 1 and 2 (or in the moldyn benchmark) that
cause incorrect behavior only under relaxed memory models. In
particular, results from race-directed random testing [36] suggest
that the race conditions in moldyn are benign (under the assump-
tion of sequential consistency).

In concurrent work, Burnim et al also explore testing-based
methodologies for relaxed memory models. For three hardware-
level memory models (TSO, PSO, and PSLO), their work success-

fully detects violations of sequential consistency [9, 10], but does
not identify which sequential consistency violations cause destruc-
tive behavior. An interesting area for future work is to adapt Jum-
ble’s adversarial memory approach to detect destructive race con-
ditions for these memory models.

Much other work (including, for example, [27, 40]) identifies
defects in multithreaded programs by exploring many (or possibly
all) possible interleavings. Most of these tools assume sequential
consistency. In contrast to this prior work based on scheduling non-
determinism, this paper proposes a complementary approach of
using memory-model non-determinism to expose destructive races.

Dynamic analyses to detect race conditions include Eraser’s
LockSet algorithm [35] and its refinements [30, 41], happens-
before-based detectors [32], and detectors combining those two
approaches, e.g., [15, 33, 45]. Others have also combined dy-
namic analysis with a global static analysis to improve precision
and performance [12, 42]. Post-mortem race identification tech-
niques record program events for later analysis (see, for exam-
ple, [3, 13, 34]), but might be difficult to use for long-running
programs. The FASTTRACK algorithm preserves the precision of
happens-before-based detectors, but with significantly improved
performance [17], and the PACER algorithm uses sampling to pro-
vide increased performance, while still providing strong probabilis-
tic coverage guarantees [6].

Many type-based and whole program static analysis techniques
have been developed for identifying races in various languages, in-
cluding C [16, 38], Java [1, 4, 8, 28, 43], and SPMD programs [5].
While static race detection provides the potential to detect all race
conditions over all program paths, decidability limitations imply
that, for all realistic programming languages, any sound static race
detector is incomplete and may produce false alarms. A variety
of other approaches have also been developed, including model
checking [11, 27, 44].

Recent work [7] developed an operational semantics for pro-
grams under a relaxed memory model. Operational PJMM is sim-
ilar in some ways (e.g., in making write buffers explicit), but our
specification only needs to define the legality of traces, not pro-
grams, and is somewhat less involved. In addition, whereas [7] de-
velops a new relaxed memory model, the development of JUMBLE
required an operational formulation of a subset of an existing mem-
ory model, namely the JMM.

8. Conclusions and Future Work
Race conditions are becoming increasingly problematic given the
relaxed memory models implemented by modern multi-core pro-
cessors and virtual machines. This work presents a promising dy-
namic analysis approach of using adversarial memory to expose
destructive race conditions, which has proven highly effective in
our experiments. Adversarial memory complements the traditional
approach of exploring many or all possible thread interleavings un-
der the assumption of sequential consistency (as in [27, 40]), and
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