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Dynamic Analysis

* Analysis of the properties of a running program

e Static analysis typically finds properties that hold

of all executions

e Dynamic analysis finds properties that hold of one

or more executions
eCan't prove a program satisfies a particular
eBut can detect violations and provide usefu
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perty

formation

e Usefulness derives from precision of information

and dependence on inputs



Precision of Inf

e Dynamic analysis typically instructs program to
examine or record some of run-time state

*nstrumentation can be tuned to precisely data
needed for a problem
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Dependence on Pr

*Easy to relate changes in program inputs to
changes in program behavior and program
output

¥ Dynamic Analyses Static Analyses
b are are
Y () input-centric program-centric 3
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Complementary Techniques

e Completeness

e Dynamic analyses can generate "dynamic program invariants", i.e.,
invariants of observed execution; static analyses can check them

e Dynamic analyses consider only feasible paths (but may not
consider all paths); static analyses consider all paths (but may
include infeasble paths)

*Scope
* Dynamic analyses examine one very long program path

* Can discover semantic dependencies widely separated in path and in
time
- Static analyses typically and at discovering "dependence at a distance"

e Precision



Iwo (plus a bonus)

* Frequency Spectrum Analysis
e Efficient path profiling
* Dynamic race detection
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Frequency Spectrum Analysis

e Understanding frequency of execution of
program parts can help programmer:

ﬂ
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Understanding an Obfuscated C
Program

#include <stdio.h>

main(t,_,a)

char *a;

{

return!@<t?t<3?’main(-79,-13,a+main(-87,1-_,main(-86,0,a+1)+a)):
1,t<_?main(t+1l,_,a):3,main(-94,-27+t,a)&&t==27_<137

main(2,_+1,"%s %d %d\n"):9:16:t<0?t<-727?main(_,t,

"en'+,#' /*{Iw+/wEcdnr/+, {}r/*de}+, /*{*+, /W{%+, /Wqg#n+, /#{L+,/n{n+, /+#n+, /#\
s#HgHEN+, /+k# ¥+, /'r 2 Td* T3, F{w+K w'K: "+Fe# " ;dg#E" L \

g#'+d"'K#! /+k#;g# ' rieKK#Iw' rieKK{nl] "' /#;#ag#n' ) D#EIW' D{D{nl] " /+#n' ;dirw’ 1;#\
M{nl]!'/n{n#"; r{fw'r nc{nl]'/#{1l,+'K {rw' 1K{;[{nl]"/w#g#n'wk nw' \
IWk{KK{n1]'/w{% ' 1##w#"' 1; :{nl]'/*{g#'ld;r'}{nlwb!/*de}'c \

soinl ' =-{}rw] " /+, }E *HEne, ' #nw] ' /+kd ' +e}+;# ' rdg#w! nr'/ ") F+H{rl#"'{n" "DH# \
YA /™)

:t<-507_==*a?putchar(31[a]):main(-65,_,a+1) :main((*a=="/")+t,_,a+1)
:0<t?main(2,2,"%s"):*a=="/"1Imain(@,main(-61, *a,

"lek;dc 1@bK'(q)-[w]l*%n+r3#1,{}:\nuwloca-0;m .vpbks, fxntdCeghiry"),a+l);
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What it does...
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Program understanding

*\We know what the program does
e Our aim is to understand how it does it

* Before reverse engineering it, let's have a model in mind:
* Gift t mentioned 13-t times in the poem (e.g. "five gold rings" occurs 13-5=8 times)
°So 1+2+...+11+12 = 13*6 = 78 gift mentions (66 mentions of non-partridge gifts)

 All verses except first have form
On the <ordinal> day of Christmas my true love gave to me
<list of gift phrases, from the ordinal day down to the second day>
and a partridge in a pear tree.
and first verse is
On the first day of Christmas my true love gave to me
a partridge in a pear tree.
e Unique strings:
* 3 strings for common structure ("On the", "day of Christmas...", "and a partridge ...")
* 12 strings for the ordinals
* 11 strings for the second through twelfth gifts.

* =approx. 3+12+11 = 26 unique strings in program, prints approx. 3*12 + 12 + 66 = 114 strings.



Mod

12 days of Christmas (also 11, to catch "oft-by-
one’ cases)

*26 unique strings

* 66 occurrences of non-partridge-in-a-pear-tree
presents

* 114 strings printed, and
2358 characters printed.
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Program understanding

eFirst let's make it readable: It's a single
#include <stdio.h> recursive function!
main(t,_,a) char *a; ———— )
{

if ((10) < t) {
if (t < 3) main(-79,-13,a+main(-87,1-_,main(-86,0,a+1)+a));
if (¢t < _ ) main(t+1,_,a);
main(-94,-27+t,a);
if (t==2 && _ < 13 ) main(2,_+1,"");
} else if (t < 0) {
[5] if (t < -72) main(_,t,LARGE_STRING) ;
else if (¢t < -50 ) {
6 if (_ == *a) putchar(31[al);
(7] else main(-65,_,a+1);
8] } else main((*a==’/’)+t,_,a+l);
e
1

B8N

] } else if (0 < t) main (2,2,"%s");
0] else if (*a'=’/’) main(0,main(-61,*a,SMALL_STRING) ,a+1);

}



Path Profiling

e Count executions of paths of the function

°F.g., path executed 2358 times likely involved in printing characters

Path ID ||[Frequency Condition Call Lines
main:( 1 t == [9]
main:19 1 t==2 && t >= _ [1,3,4]
main:22 1 t==2 && t < _ && _ >= 13 [1,2,3]
main:23 10 t==2 && t < _ && _ < 13 [1,2,3,4]
main:9 11 t >= 3 && t >= _ [3]
main:13 5% t >= 3 && t < _ [2,3]
main:2 114 t == 0 && *a == ’/? no call lines
main:3 114 t < =72 [5]

main:1 2358 t == 0 && *a !'= ’/? [10]
main:7 2358|t > -72 && t < -50 && _ == *a| [6]

main:4 24931 t <0 && t >= -50 [8]

main:H 39652|t > -72 && t < -50 && _ !'= =*a|[7]

Table 2. Summary of the twelve executed paths in the readable obfuscated C program

of Figure 2.




Stephen Chong, Harvard University

Path Profiling

Efficient Path
Profiling, Ball and
Larus, MICRO 1996
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Problem: path profiling

*\Which paths through a procedure are most common?

ee.g., perform aggressive optimization on hot paths, make sure all
paths are tested.

e Naive approach: count edge transitions

A
Path Profl Prof2

lZV \|_50
B ¥ C ACDF 90 110
nwa ACDEF 60 40

5 ABCDF 0 0
160 110 ABCDEF 100 100

/ \ 270 ABDF 20 0

ll ppny B ABDEF 0 20

e Not enough information to determine paths!



Efficient Path Profiling

e (For DAGS)

e Encode each path as a unique integer and record
path as state

ei.e., at end of DAG, value of a register identifies path
through DAG

Path Encoding

ACDF
ACDEF
ABCDF
ABCDEF

r+:1 AB DF
ABDEF

r=4

WP O




Algorithm overview

e 1. Number paths uniquely

2. Use spanning tree to select edges to
instrument (and compute appropriate increment
for each instrumented edge)

*3. Select appropriate instrumentation

4. After profiling, given path number, figure out
which path it corresponds to



Compact path numbering

* Aim: assign non-negative constant value to each edge
such that sum of values along any path from ENTRY
to EXIT is unique. Moreover, path sums should be in
range 0..(NumPaths - 1) (i.e., minimal encoding)



Compact path numbering

foreach vertex v 1in reverse topological order ({
1f v 1s a leaf vertex {

NumPaths{(v)} = 1;
} else {
NumPaths(v) = 0;
for each edge e = v->w {
Val(e) = NumPaths(v);
NumPaths (v} = NumPaths{(v) + NumPaths({w) ;

Vertex v NumPaths (v)
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Efficiently compute sums

* Find min-cost spanning tree

(= max cost chord edges)

* Chord edges will be instrumented

* Move weights from non-chord

edges to chord edges

4 \
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D
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Instrumentation

e Needed instrumentation:
*|Initialize path register (r = @) at ENTRY

*|Increment register on instrumented edges (I += Inc(e))
*Record path's counter at EXIT (count[r]++)
e Can optimize:

*Chord edge e can initialize counter (r = Inc(e)) iff first
chord edge on every path from ENTRY to EXIT containing e

e Chord edge e may increment path register and memory

counter (count[ r+inc(e)]++) iff last chord edge on every
path from ENTRY to EXIT containing e



count [r+1] ++,‘ ‘ount [r]++
R ,

E F
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* Algorithm works for DAGs

e Need to transform programs to be DAG like (and
profile on DAG sub-graphs of cyclic graph)

Stephen Chong, Harvard University 24
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Path Profiling
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Path Profiling

Path ID |[Frequency Condition Call Lines
main:0 1 t == [9]
main:19 1 t==2 && t >= _ [1,3,4]
main:22 1 t==2 && t < _ && _ >= 13 [1,2,3]
main:23 10 t==2 && t < _ && _ < 13 [1,2,3,4]
main:9 11 t >= 3 && t >= _ [3]
main:13 55 t >= 3 && t < _ [2,3]
main:2 114 t == 0 && *a == */’ no call lines
main:3 114 t < -T2 [5]

main:1 2358 t == 0 && *a !'= */’ [10]
main:7 2358t > -72 && t < -50 && _ == *a| [6]

main:4 24931 t <0 && t >= -50 [8]

main:5 39652(t > -72 && t < -50 && _ !'= *a|[7]

e \With manual examination:

12 days of Christmas (also 11, to catch
"off-by-one" cases)

26 unique strings

66 occurrences of non-partridge-in-a-
pear-tree presents

114 strings printed, and

2358 characters printed.

e Path O (executed once) initializes the recursion with the call main(2,2,...).

ePaths 19, 22, and 23 control printing of the 12 verses.
« P19 first verse, P23 middle 10 verses, and P22 last verse.

ePaths 9 and 13 control printing of non-partridge-gifts within verse. (Frequencies of P9 + P13 = 66)

ePaths 2 and 3 responsible for printing out a string.

ePaths 1 and 7 print out the characters in a string. (why two?)

e Path 4 skips over n sub-strings in the large string, each sub-string terminated with '/'

ePath 5 linearly scans the string that encodes the character translation



Reversed-engineered Program

#include <stdio.h>

static char *strings = LARGE_STRING; /* the original set of strings */
static char *translate = SMALL_STRING; /* the translation mapping */
#define FIRST_DAY 1

#define LAST_DAY 12

/* the original "indices" of the various strings */

enum { ON_THE = O, FIRST = -1, TWELFTH = -12, DAY_OF_CHRISTMAS = -13,
TWELVE_DRUMMERS_DRUMMING = -14, PARTRIDGE_IN_A_PEAR_TREE = -2b

¥

char* skip_n_strings(int n,char *s) { /* skip -n strings (separator is /), */
if (n == 0) return s; /* where n is a negative value */
if (*s==’/’) return skip_n_strings(n+1l,s+1);
else return skip_n_strings(n,s+1);

/* find the character in the translation buffer
matching c¢ and output the translation */

void translate_and_put_char(char c, char *trans) {
if (c == *trans) putchar(trans[31]);
else translate_and_put_char(c,trans+1);



Reversed-engineered Program

void output_chars(char *s) {
if (#s == ’/’) return;
translate_and_put_char (*s,translate) ;
output_chars(s+1);

}

/* skip to the "n"th" string and print it */
void print_string(int n) { output_chars(skip_n_strings(n,strings)); }

/* print the list of gifts */

void inner_loop(int count_day, int current_day) {
if (count_day < current_day) inner_loop(count_day+1l,current_day);
print_string (PARTRIDGE_IN_A_PEAR_TREE+(count_day-1));

}

void outer_loop(int current_day) {
print_string(ON_THE) ; /* "On the " %/
print_string(-current_day) ; /* ordinal, ranges from -1 to -12 */
print_string (DAY_OF_CHRISTMAS) ; /* "day of Christmas ..." */

inner_loop(FIRST_DAY,current_day); /* print the list of gifts */
if (current_day < LAST_DAY)
outer_loop(current_day+1) ;

void main() { outer_loop(FIRST_DAY); }
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Adversarial Memory for Detecting
Destructive Data Races

*By Flanagan and Freund, PLDI 2010

* A dynamic analysis to find data races in
concurrent programs

e\What's a data race?



Program Model

a € Trace .:= Operation™
a,b € Operation ::= rd(t,z,v) | wr(t,z,v)
| acq(t,m) | rel(t,m)
| fork(t,u) | join(t,u)

s, t,u € Tid x,y € Var m € Lock v € Value

* A multithreaded program has concurrently executing
threads (each with thread identifier t € Tid)

e Fach thread manipulates variables and locks
* A trace lists sequence of operations performed by threads

*|gnores everything except read/writes to variables, lock
operations, and fork/join.



Happens-before relation and races

The happens-before relation <., for a trace « is the smallest

transitively-closed relation over the operations’ in « such that the

relation a <, b holds whenever a occurs before b in @ and one of
the following holds:

® [PROGRAM ORDER] Both operations are by the same thread.
® [LOCKING ORDER]: a releases a lock that is later acquired by b.
® [FORK ORDER]: a is fork(t,u) and b is by thread w.

® [JOIN ORDER]: a is by thread v and b is join (¢, u).

* Two operations a and b are concurrent if neither a
<q b norb <y a

* A trace has a race if there are two memory accesses
to the same variable, at least one of them is a write
operation, and the accesses are concurrent



Races are bad

e Often cause errors only on certain rare executions
*Hard to reproduce and reason about

e Exacerbated by multi-core processors and relaxed memory models

BUT many races are benign
*E.g., approximate counters, optimistic protocols

e ots of work on race detection
o Static: can be difficult to reason about all possible interleaving
e Dynamic: interleavings with races may be rare

* This work:
estandard dynamic analysis to detect "racy" variables

*Then try to produce an erroneous execution that exhibits the race and
produces observable incorrect behavior (e.g., crash, uncaught exception,
etc.)



Double-checked locking example

1 class Point {

. double %, ¥ e Relaxed memory

3 static Point p;

. model means that

5 Point() { x = 1.0; y = 1.0; }

: static Point get() { get<)'x COUId

8 Point t = p;

9 if (t !'= nﬁll) return t; evaluate tO ZerO.

10 synchronized (Point.class) {

I Gremil) p = new Point(); *(Thus, the race on p is
S destructive, i.e., non-
12 static double slope() A benlgn)

17 return get().y / get().x; .

o ) e But most of the time,
20 ublic static void main(String[] args) { " "

21 ’ fork { System.out.println( sglope()g ); } deStrUCtlve behaVIOr
22 ork { stem.out.println( slope() ); } )

S not exhibited

}

N
=



Adversarial Memory

e Exploits full flexibility of relaxed memory model
to try and cause crashes

* Tool tracks memory and synchronization
operations of execution, and keeps a write
buffer recording history of writes to racy
variables

*\When a thread asks for a value, return older (but
still legal) values whenever possible



Memory Models

*Sequential Memory Model: read operation a =
rd(t,x,v) in trace & may only return the value of
the most recent write to that variable in &

e |ntuitive but limits optimization by compiler, virtual
machine, and hardware.

* Happens-Before Memory Model: read operation
a = rd(t,x,v) in trace & may return the value of
any write operation b = wr(u, x, v) provided:

1. b does not happen after a; and
2. no intervening write c to x where b <¢ C <g a



Out-of-thin-air

e Consider

x=y||ly:=x
* Assume x and y are initially zero.

e Under happens-before memory model, the following trace is possible:
rd(t1, x, 42) wr(tl, y, 42) rd(t2, vy, 42) wr(t2, x, 42)
e Where did 42 come from??2!?

 Java Memory Model extends the happens-before memory model with a
causality requirement to preclude non-sensical traces as above

* This paper uses Progressive Java Memory Model: read operation a =
rd(tx,v) in trace & may return the value of any write operation b =
wr(u, x, v) provided:
1. b is before a in trace «; and
2. no intervening write c to x where b <, c <, a



Adversarial Memory Implementation

* Uses vector clocks to record time stamps of write

operatior

e \ector c

S
ocks can be used to determine the happens-

before relation

* Read operation for x at time C; can return any
value so long as it satisfies the Progressive Java
Memory Model

°i.e., a write in the write buffer for x that happened at

time K;such that there is no write at time K;where
K; EK/' C (;




Adversarial Memory Heuristics

*Sequentially consistent: always return most recently

written value

e Oldest: chose "most stale" value. (occasiona

most-recent value to satisfy fai

e Oldest-but-different: return o

I

ness assumpti

C

est element t

different from the last value read

ly return
ons)

nat Is

e Random: return a random value from the permitted

values

e Random-but-different: return a random value from the
permitted value that is dfferent from the last value read



Effective

Erroneous Behavior Observation Rate (%)
JUMBLE Configurations
: No Sequentially Oldest-But- Random-But- | Destructive
Program Field Jumble Consistent Oldest Different Random Different Race?
Figure 8 X 0 0 0 83 84 92 Yes
Figure 2 P 0 0 0 0 0 0 No
Figure 2 p.Xx 0 0 60 52 32 30 Yes
Figure 2 p.y 0 0 48 53 27 30 Yes
jbb Company.elapsed_time 0 0 100 0 15 5 Yes
jbb Company .mode 0 0 100 100 95 98 Yes
montecarlo | Universal.UNIVERSAL_DEBUG 0 0 0 0 0 0 No
mtrt RayTracer.threadCount 0 0 0 0 0 0 No
raytracer JGFRayTracerBench.checksuml 0 0 100 100 100 100 Yes
tsp TspSolver.MinTourLen 0 0 100 100 100 100 QoS
sor array index [0] and [1] 0 0 100 100 100 100 Yes
lufact array index [0] and [1] 0 0 100 100 100 100 Yes
moldyn array index [0] and [1] 0 0 100 100 100 100 Yes

Stephen Chong, Harvard University
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Perfor

Size Num. Base Slowdown Num. Num. Max. Buffer Size

Program (lines) |Threads Field Time (s) | Empty | Jumble |Instances| Writes No Comp. | With Comp.
jbb 30,491 5 | Company.elapsed_time 74.4 1.3 1.3 1 2 2 2
jbb 30,491 5 | Company.mode 74.4 1.3 1.4 2 10 8 4
montecarlo 3,669 4 | Universal.UNIVERSAL_DEBUG 1.6 1.2 1.2 1 40,005 40,005 5
mtrt 11,317 5 | RayTracer.threadCount 0.5 4.5 4.9 1 10 10 5
raytracer 1,970 4 | JGFRayTracerBench.checksum 5.6 1.1 1.1 | 6 6 5
tsp 742 5 | TspSolver.MinTourLen 0.7 2.3 4.0 1 26 26 23
sor 883 4 | array index [0] and [1] 0.6 3.9 5.8 2,106 | 104,620 255 32
lufact 1,627 4 | array index [0] and [1] 0.4 4.1 4.2 1,108 14,526 2,047 7
moldyn 1,407 4 | array index [0] and [1] 0.9 4.1 8.9 62 53,433 16,383 32

Figure 10. Performance of JUMBLE under the Sequentially-Consistent configuration.
Stephen Chong, Harvard University 41



