The Birth of Prolog

Aaron Bembenek

October 2016

1 A Machine-Oriented Logic Based on the Res-
olution Principle

@article{Robinson:1965,

author = {Robinson, J. A.},
title = {A Machine-Oriented Logic Based on the Resolution Principle},
journal = {J. ACM},

volume = {12},

number = {1},

month = jan,

year = {1965},

pages = {23--41},

publisher = {ACM},

address = {New York, NY, USA},

Summary: Robinson presents the resolution principle, an inference princi-
ple that can be used to determine the unsatisfiability of a sentence in first-order
logic that is especially well-suited for automation. He observes that existing au-
tomated theorem proving techniques run into avoidable combinatorial problems
because they depend on simple inference principles that were originally designed
for human comprehension and are not a good fit for automation. He proposes
instead the resolution principle, a generalization of the cut rule that allows in-
ferences that are not necessarily intuitive, but does not suffer the combinatorial
issues encountered by previous methods. While a resolution rule for proposi-
tional logic had been presented earlier in Davis and Putnam [1960], Robinson’s
contribution is generalizing resolution to the first-order setting, which he ac-
complishes by giving an algorithm for finding the most general unifying sub-
stitution of a set of literals. Robinson concludes his paper with some “search
principles,” improvements to the resolution principle that in some cases quicken
the convergence of resolution or even help resolution converge when it would not
otherwise. An alternative title for this paper could be “Resolution: A Logical
Inference Principle for Efficient, Automated Theorem Proving.”

Evaluation: Lloyd [1984] describes Robinson’s paper as a “landmark pa-
per.” It led to intense research activity on refinements and variations of res-
olution in the late 1960s, as well as a line of research pushing back against



resolution in favor of more human-oriented, heuristic-based theorem provers
(Loveland [1984]). Beyond its importance for automated theorem proving, the
resolution principle largely enabled the development of logic programming and is
the theoretical foundation of the Prolog line of languages. According to Google
Scholar, this paper has been cited over 5000 times.

2 The Birth of Prolog

@incollection{Colmerauer:1996,
author = {Colmerauer, Alain and Roussel, Philippe},
chapter = {The Birth of Prolog},
title = {History of Programming languages---II},
editor = {Bergin,Jr., Thomas J. and Gibson,Jr., Richard G.},
year = {1996},
pages = {331--367},
publisher = {ACM},
address = {New York, NY, USA},
}

Summary: This paper reports on the original motivations behind the de-
velopment of the logic programming language Prolog and the particular context
in which it was created. It makes clear that Prolog was developed at first not as
a general-purpose programming language, but for a specific application (namely,
making deductions from French-language texts), and reveals that some of the
design choices behind the features most characteristic of Prolog were made with-
out a full understanding of their theoretical ramifications. The authors trace the
development of Prolog from the Q-systems (a language for concisely expressing
text-rewriting rules), through the creation of the preliminary version of Prolog
in 1972, and conclude with the “final” Prolog of 1973. An alternative title for
this paper could be “Prolog = NLP + Automated Theorem Proving.”

Evaluation: Since this is not a research paper, we do not evaluate its influ-
ence per se. However, we can certainly say that Prolog has been (and continues
to be, despite its age) the most influential and most popular language to come
from the logic programming paradigm. It motivated research formalizing the
programming language semantics of the Horn clause formulation of first-order
logic (see, for instance, Van Emden and Kowalski [1976]), and also inspired a
line of research exploring the use of more expressive logics as programming lan-
guages (e.g., non-monotonic logics, as in Ling [1990]). It has served as the basis
both for more restricted languages like Datalog (a syntactic subset of Prolog)
and for languages that extend Prolog with features from outside the logic pro-
gramming paradigm, such as Picat. However, despite fluctuations in academic
interest, logic programming remains overall a niche interest.



3 Algorithm = Logic + Control

Qarticle{Kowalski:1979,

author = {Kowalski, Robertl},
title = {Algorithm = Logic + Controll,
journal = {Commun. ACM},
volume = {22},

number = {7},

month = jul,

year = {1979},

pages = {424--436},

publisher = {ACM},

address = {New York, NY, USA},
}

Summary: Kowalski argues that programs can naturally be split into two
distinct components: logic, which is a declarative expression of what the pro-
gram does, and control, which is how the program does it. He claims that
programs would be easier to write correctly and to reason about if program-
ming languages made a clear distinction between the two. He demonstrates his
point through examples using a logic programming language based (similarly to
Prolog) on the Horn clause formulation of first-order logic, and shows how, for
instance, the same set of logic clauses can be successfully evaluated using either
a bottom-up or top-down technique. His argument can be seen as a powerful
justification for the use of logic programming. He also points out that at the
time of writing the database community had already embraced a similar division
of logic and control. An alternative title for this paper could be “Another Layer
of Abstraction: Separating What Programs Do From How They Do It.”

Evaluation: According to Lloyd [1984], Kowalski’s argument is “[o]ne of
the main ideas of logic programming.” While this claim is certainly true, logic
programming languages have in practice adopted this idea to varying degrees;
for instance, Datalog makes a very clear separation between logic and control,
but Prolog fails to divide the two as cleanly. Kowalski’s argument plays into the
tension between abstraction and performance, a common theme in programming
languages.



References

Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. J. ACM, 7(3):201-215, July 1960.

T. W. Ling. The prolog not-predicate and negation as failure rule. New Gen.
Comput., 8(1):5-31, July 1990.

J.W. Lloyd. Foundations of Logic Programming. Symbolic Computation.
Springer-Verlag, Berlin, 1984.

Donald W. Loveland. Automated theorem-proving: A quarter-century review.
Contemporary Mathematics, 29:1-45, 1984.

M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic as a
programming language. J. ACM, 23(4):733-742, October 1976.



