
Typeful Programming: Moving Towards the Pragmatics 

of Programming 
 

 

1    Typeful Programming 
@article{cardelli1991typeful, 

  title={Typeful Programming. Formal Descriptions of Programming Concepts}, 

  author={Cardelli, L}, 

  journal={Springer-Verlag, Berlin/New York}, 

  volume={45}, 

  pages={1989}, 

  year={1991} 

} 

Summary: Cardelli defines typeful programming and its use in a variety of different programming 

concepts and flavors.  The paper argues that a sophisticated type system and the combination of static and 

dynamic type checking leads to programming that is free from certain classes of errors and software 

development that leads to robust and evolvable systems.  He uses a toy language, Quest, to build up the 

principles of basic types in a language to complex typing constructs. He shows how these constructs can 

be applied to large and even huge software systems.  Lastly, the paper explores how types can even be 

useful in unsound contexts, and how typing may still prove useful in categorizing where potential errors 

might occur. 

Evaluation: The concepts covered in this paper had a large influence on the way certain programming 

languages are structured today.  Many of the typing principles outlined in the paper are central to the 

design of languages such as Haskell and OCaml.  Additionally, with gradual typing, typeful programming 

has become more prevalent even in languages that are commonly considered dynamically typed, such as 

JavaScript.  For example, Typescript, a a language with the same syntax and semantics as JavaScript, 

brings the benefits of static types and typeful programming to the dynamic world of JavaScript programs.  

Overall, the paper makes a compelling argument for the importance of type systems in software 

development.  However, it also predicts that languages like C will soon be considered unsuitable for 

creating large systems, and these predictions have not come to pass.   


