
The Chemical Abstract Machines (CHAM): Solutions to

Model Concurrency

Lily Tsai

19 October, 2016

1 The Gamma Language: A Solution Achieving True Concurrency

@ a r t i c l e {
Banatre : 1 9 9 0 :GMD: 1 1 3 5 5 6 . 1 1 3 5 5 9 ,
author = {Banatre , Jean−P i e r r e and Le Metayer , Daniel } ,
t i t l e = {The Gamma Model and I t s D i s c i p l i n e of Programming} ,
j o u r n a l = { S c i . Comput . Program . } ,
i s s u e d a t e = {Nov . 1990} ,
volume = {15} ,
number = {1} ,
pages = {55−−77} ,
u r l = {http ://dx . doi . org /10.1016/0167−6423(90)90044−E} ,
doi = {10.1016/0167−6423(90)90044−E} ,
publ i sher = { E l s e v i e r North−Holland , Inc . } ,
address = {Amsterdam , The Netherlands , The Netherlands } ,

}

Summary. Banatre and Metayer introduce the idea of the Γ language, which is based upon the
premise that “concurrent computation should be expressed as ‘the global result of the successive
applications of local, independent, atomic reactions.‘” Γ expresses programs as multisets with
transformation rules that alter the components and structure of the multisets. They demonstrate
the effectiveness of this new way of reasoning about parallel programs and demonstrate how the
Γ model approach entails a novel approach to program design. They also provide a number of
small examples and the implementation details of how Γ might be applied.

Evaluation. This paper is a seminal paper because it introduces a completely novel paradigm
for thinking about concurrent. Its formalism (the chemical reaction model) for expressing programs
removes the rigid sequential/geometrical way of viewing concurrency in previous models. Prior
to this paper, sequentiality had been inherent in the reasoning about program development; Γ
introduces for the first time a complete model that generates systematic way to reason about pro-
grams with ‘true’ concurrency without thinking in an imperative style of programming. This min-
imal language model has inspired work such as the CHAM and models of software architectures,
and has been extended for logic programming, reactive programming, and other applications.
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2 The Chemical Abstract Machine (CHAM)

@inproceedings{
bb : chem−machine ,
author = {Gerard Berry and Gerard Boudol } ,
t i t l e = {The chemical a b s t r a c t machine } ,
b o o k t i t l e = {Proceedings of the 17 th Symposium on POPL} ,
year = {1990} ,
pages = {81−−94} ,
l o c a t i o n = {San Francisco , C a l i f o r n i a , United S t a t e s } ,
doi = {http :// doi . acm . org /10.1145/96709.96717}

}

Summary. This paper describes the Chemical Abstract Machine, which takes the Γ model and
the chemical metaphor for programs as inspiration for a new way to describe the operational se-
mantics of process calculi. The Chemical Abstract Machine refines and extends the Γ language
into a semantic framework. Molecules are given structure as terms and subsolutions are defined
using the membrane operator, which allow for more elaborate encodings of data and more com-
putational locality. With these extensions, the CHAM is used to model process calculi such as
TCCS, the π-calculus, and encode a higher-order concurrent λ-calculus. The paper shows how
the CHAM, compared to the process calculi, allows for a much simpler way to model parallel
programs.

Evaluation. The CHAM refines Γ with molecule syntax and additional rules that allow for
subsolutions and localized reactions to take place. The locality introduced by the CHAM better
represents the idea of several processes running sequential code in parallel (locally, e.g. on a single
core), and then communicating with other subsolutions in the complete solution. The CHAM
represents a formalization of a way of thinking about concurrency that is radically different from
the previously dominant way of thinking about concurrency: process calculi. It shows that process
calculi such as CCS only provide synchronous communication (processes sending and receiving
must rendezvous), and that a much more natural way of representing the asynchrony desired in
parallel programs is through the chemical metaphor (i.e using multisets) and reactions that can
occur at any time, given the appropriate molecules. With the CHAM, the chemical metaphor
becomes closer to being realized as an actual programming language for parallel programming.
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3 Adding Reflexion to the CHAM

@inproceedings{
fg : jo in−ca lc ,
author = ” Cedric Fournet and Georges Gonthier ” ,
t i t l e = ”The R e f l e x i v e {CHAM} and the Join−Calculus ” ,
b o o k t i t l e = ” Proceedings of the 23 rd Symposium on POPL” ,
pages = ”372−−385”,
year = ”1996” ,
u r l = ” c i t e s e e r . i s t . psu . edu/ f o u r n e t 9 5 r e f l e x i v e . html”

}

Summary. This paper extends the CHAM with reflexion to provide a better model for dis-
tributed settings and asynchronous, distributed, and mobile programming. This enforces locality
of reactions (all reactions must occur at a specified reaction site). The paper argues that basing a
practical programming languages for distributed environments off the RCHAM is possible. The
reflexive CHAM is also described syntactically as a process calculus: the join-calculus. This calcu-
lus is shown to be equivalent to the π-calculus.

Evaluation. The RCHAM combines the idea of the CHAM with practical issues such as how
the reaction rules and molecules in the solution will be efficiently identified and localized. The
paper identifies two large issues with the CHAM, namely the lack of a mixing mechanism (“Brow-
nian motion”) that brings molecules together to react, and the complicated pattern matching that
might result with many different types of molecules and rules. With these additions, the CHAM
becomes a practical model for distributed programming, and shortens the distance between model
and program. This paper demonstrates how an idea (the chemical metaphor/CHAM) can be de-
veloped so that it can be used for a practical application and deal with implementation realities of
distributed programming.
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4 JoCaml: The Join Calculus as a practical programming language

@techreport {
mandel : i n r i a −00166125 ,
t i t l e = {{Programming in JoCaml −−− extended vers ion }} ,
author = {Mandel , Louis and Maranget , Luc} ,
u r l = {ht tps :// hal . i n r i a . f r / i n r i a −00166125} ,
type = { research repor t } ,
number = { rr −6261} ,
i n s t i t u t i o n = {{ i n r i a }} ,
year = {2007} ,
pdf = {ht tps :// hal . i n r i a . f r / i n r i a −00166125/ f i l e /rr −6261. pdf } ,
h a l i d = { i n r i a −00166125} ,
h a l v e r s i o n = {v2 } ,

}

Summary. This paper describes how the language JoCaml is developed based on the join-
calculus. It explains how the OCaml program is extended with join-definitions and how reaction
rules and molecules are defined. The paper then demonstrates how an OCaml program can be
made into a JoCaml program with distributed and concurrent computations. The paper provides
an example application—a ray tracer—and how JoCaml can implement failure detection. Lastly,
the paper evaluates the performance of the application implemented in JoCaml.

Evaluation. This paper demonstrates how the idea of the CHAM can be put into practice. It
concludes the development cycle of idea (Γ) to model (CHAM) to model refinement (RCHAM) to
practical applications (JoCaml).
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The History and Future of Chemical Abstract Machines (CHAM)
October 19, 2016

Lily Tsai

1 The Γ Language (Banatre & Metayer, 1986)

“Concurrent computation should be expressed as ‘the global result of the successive applications of local,
independent, atomic reactions’”

Γ is a kernel language (core language with minimal features) which models computation as mul-
tiset transforms and draws upon the chemical reaction metaphor. It captures the intuition of com-
putation as a global evolution (i.e. within a ’solution’) of a collection of atoms (molecules) which
interact (react) freely. Any subset of elements in the multiset can react if they satisfy the reaction
condition, and concurrent transitions are non-overlapping reactions can occur in parallel.

• Goal: High-level language that imposes no artificial sequentiality (to be left to the imple-
mentation on a particular computation model)

• Imperative and functional approaches need to choose a representation of data (e.g. a set)
which then has a hierarchical/recursive structure which the program walks and decomposes
to get atomic elements. Γ proposes a program to be understood as a sequence of multiset
transforms, which has no hierarchy.

Components of Γ:

• Data Structure: multiset ≡ chemical solution

• Execution Rules: (Reaction Condition, Action) ≡ (Reactants, Products)
From examples, they extract five basic programming schemes (mapping an operation over
all elements, application of a function to pairs of elements, decomposing elements, selecting
elements, optimiser)

Example program using Γ (fib is 0-indexed):

fib(n) = add(zero(dec(n)))

dec = (∀x.x > 1, {x− 1, x− 2})

zero = (∀x.x = 0, {1})

add = (∀x, y.True, {x+ y})

Γ has been extended with composition laws, used to program OS kernels and image process-
ing applications, and applied to model process calculi, imperative programming, and software
architectures. Today, we explore one particular extension: the Chemical Abstract Machine.
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2 The Chemical Abstract Machine (CHAM) Berry & Boudol, 1990

The Chemical Abstract Machine refines and extends the Γ language into a semantic framework.
Molecules are given structure as terms and subsolutions are defined using the membrane operator,
which allow for more elaborate encodings of data and more computational locality. This allows it
to model the semantics of process calculi (CCS and the π-calculus in particular).

(a) Components of CHAM:

Molecule :: = S | Molecule ⊳ S

S :: = {|Bag(Molecule)|}

• {| . |} is the membrane operator that defines a multiset.

• Airlock m ⊳ S where ⊳ is the airlock constructor

• C[] is a solution with a hole [] in which to place another molecule

(b) CHAM Rules S → S′

m1,m2, . . . ,mk → m′

1
,m′

2
, . . . ,m′

l

where the mi are not necessarily distinct. Molecules in the rule can only contain subsolution
terms which are either solution meta-variables or have the form {|m|} where m is a molecule
term. This prevents overly complicated pattern matching.

Allowed: {|m|} {|m ⊳ S|} {|m ⊳ {m′}|}

Not Allowed: {|m,S|} {|m,m′|} {|m,m′, S|}

All rules have no premises.

(c) CHAM General Laws:

• Reaction Law: CHAM rules can only apply in solutions (wrapped by a membrane) and
not arbitrarily wherever they match.

REACTION
m1,m2, · · · ,mk → m′

1
,m′

2
, · · · ,m′

l

CHAM ⊢ {|M1,M2, · · · ,Mk|} → {|M ′

1
,M ′

2
, · · · ,M ′

l |}

Mi, Mj are instances of mi ,mj by a common substitution.

• Chemistry Law: if a reaction can take place in a certain solution, it can take place in any
larger solution.

CHEM
CHAM ⊢ S → S′

CHAM ⊢ S ⊎ S′′ → S′ ⊎ S′′
⊎ is multiset union

(Combined with Reaction law, this means a CHAM rule can apply inside any solutions
having some molecules that match the left-hand side of the rule)
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• Membrane Law: a subsolution can evolve freely in any context

MEMBRANE
CHAM ⊢ S → S′

{CHAM ⊢ |C[S]|} → {|C[S′]|}

• Airlock Law: how to extract or put molecules into a solution (since rule sub-solutions
cannot specify a particular molecule term among the rest of the solution)

AIRLOCK
CHAM ⊢ {|m|} ⊎ S ↔ {|m ⊳ S|}

Note: The CHAM Laws differ from ordinary rewriting rules because of

i. The natural associativity, commutativity and identity of the molecule grouping (inside
a solution) operation

ii. CHAM rules only apply within solutions (which are wrapped by membranes) no mat-
ter whether the rule contains one or more molecules in its left-hand or right-hand terms,
while ordinary rewriting rules apply anywhere they match

(d) Rule Categorization

• Reversible Rules (structural rearrangements):

Heating rules: ⇀ decompose single molecules into simpler ones (hot)

Cooling rules: ⇁ recompose a compound molecule from its components (frozen)

• Irreversible Reaction rules: → change the information in a solution in an irreversible
way (inert)

(e) Calculus of Communicating Systems (CCS-) Structural Operational Semantics

One of the major motivations of the CHAM was to simplify the expression of concurrent
programs from the SOS of CCS and other process calculus. To see the CHAM as a semantic
framework, we provide an abstract machine representation of a subset of CCS (CCS-).

CCS- Syntax:
Agents p ::= 0 | α.p | (p|p) | p\α

0 is inaction, . is prefixing, | is parallel, and \ is restriction

CCS- Semantics have two types of transitions

i. p → p′ (internal actions)

ii. p
α
−→ p′ (where p offers environment action α and becomes p′). α and ᾱ are the input and

output actions that are required to synchronize communication. Restriction prevents an
agent α.p from performing action α if α is the restricted action’s name.
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EMIT
α.p

α
−→ p

PARALLEL
p → p′

p|q → p′|q, q|p → q|p′

α-PARALLEL
p

α
−→ p′

p|q
α
−→ p′|q q|p

α
−→ q|p′

SYNC
p

α
−→p′ q

ᾱ
−→ q′

p|q → p′|q′

RESTRICTION
p → p′

p\a → p′\a

α-RESTRICTION
p

α
−→ p′

p\a
α
−→ p′\a

α 6∈ {a, ā}

Example SOS Derivation:

SYNC

EMIT
a.0

a
−→ 0

α-RESTR

α-PAR

EMIT
ā.p

ā
−→ p

ā.p|q
ā
−→ p|q

(ā.p|q)\b
ā
−→ (p|q)\b

a.0|(ā.p|q)\b → 0|(p|q)\b

(A further equivalence rule is required to show that 0|p ≡ p)

(f) A CHAM for CCS-

molecules ≡ Agents p ::= 0 | (p|p) | α.p | p\α

Rules:

• Decomposition:
p|q ⇋ p, q

• Communication:
a.p, ā.q → p, q

• Cleanup: (evaporation)
0 ⇀
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• Ion release:
(α.q)\a ⇋ α.(q\a) α 6∈ {a, ā}

• Restriction membrane:
p\a ⇋ {|p|}\a

• Heavy ion release: This rule must work for compound molecules but be expressed in
terms of simple molecules/arbitrary solutions. Our first attempt might be

{|α.p, p1...|} ⇀ α.{|p, p1, ...|}

However, this involves complex molecules, is irreversible, and must find an ion within
an arbitrary solution. Instead, we use the airlock operator:

(α.p) ⊳ S ⇋ α.(p ⊳ S)

Example Derivation in CHAM:

{|a.0|(ā.p|q)\b|}

⇀∗ {|a.0, {|(ā.p, q)|}\b|} decomposition, restriction membrane

⇀ {|a.0, {|(ā.p ⊳ {|q|})|}\b|} airlock

⇀ {|a.0, {|ā.(p ⊳ {|q|})|}\b|} heavy ion

⇁ {|a.0, ā.(p ⊳ {|q|})\b|} restriction membrane

⇀ {|a.0, ā.((p ⊳ {|q|})\b)|} ion release

→ {|0, (p ⊳ {|q|})\b|} communication

⇋
∗ {|{|(p, q)|})\b|} cleanup, restriction membrane, airlock

(g) Comparison of CCS- and CHAM

• Internal vs. External: Internal (rewriting) steps can be abstracted away from external
(reaction) steps, allowing one to reason about relations only on reaction steps. CCS

contains labeled transitions
α
−→ and internal rules have premises based on external phe-

nomena.

• Lack of Congruence Rules: Multisets are unordered, giving natural associativity and
commutativity. SOS requires an extra addition of equivalence to prove commutativity,
for example.

• Asynchrony as a primitive: A reaction may execute concurrently and at any time, given
that the appropriate molecules are present. Parallel operations in the same solution still
continue to evolve. A callback reaction rule can be defined to invoke operations after
synchronization of a send/receive occurs.

For example, Sends/Receives can make progress regardless of whether there is a recip-
rocating call (just ‘throw out’ the molecule into the solution).
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Sync: send(v) & receive() → return v to receive()
Callback: receive(v) & print() → print(v)
Spawn:

(

receive() | fib() | print()
)

&
(

send(1) | send(2)
)

CCS has a ‘rigid geometrical vision of concurrency’ (i.e. channels and ports) in which
components must be brought together to synchronize/rendezvous. Process calculi
based off CCS based on atomic non-local interaction and synchronous channels (ren-
devzous), which introduce global atomic interaction between distant emitters and re-
ceivers. In order to send/receive on a channel, global synchronization is necessary to
deal with shared, global channel names and coordinate rendezvous between processes
listening/sending on the same channel.

The CHAM has been used to simplify reasoning about program execution and program transfor-
mations, as is seen in its simulation of CCS, TCCS, π (Milner’s calculus of mobile processes), and
other representations of of concurrent programs.
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3 The Join-Calculus and the Reflexive CHAM Fournet & Gonthier, 1996

(a) Contribution:

The reflexive CHAM extends the CHAM with reflexion to provide a better model for dis-
tributed settings and asynchronous, distributed, and mobile programming. It provides a
model that both describes how an implemented programming language should be designed
and also reflects the implementation constraints.

The reflexive CHAM can also be described syntactically as a process calculus, called the join-
calculus, that is equivalent to Milner’s π calculus. Because this calculus has been described
with implementation in mind, it has provided the base for practical programming languages.

(b) Motivation

• Why CHAM instead of π-Calculus?

Implementation constraints of asynchronous systems mean that transmission has to be
decoupled from synchronization. The process calculi have two issues: 1) rendezvous
and synchronous channels are a primitive, and 2) names are global, meaning that global
synchronization is required.

The CHAM provides a simple, purely asynchronous setting in which the transmission
of messages, calls, and returns do not add any contention.

As we will see, the RCHAM/join calculus makes synchronization behavior explicit,
allowing for easy encodings of both asynchronous and synchronous communication.

• Problems with the CHAM:

The CHAM cites some type of “magical mixing”—Brownian motion in chemistry—that
brings molecules close together to react. This random motion has two problems:

i. A catalyst phenomenon (assuming that the chemical rules have disjoint domains),
where molecules must travel to a reaction site (associated with their rule) to be
sorted, matched, and reacted. Communication is restricted to these sites, which
creates a concurrency bottleneck if these sites are few in number and very complex.

ii. Pattern matching on molecule shapes can grow arbitrarily complicated, making
management of each catalyst site (reaction rule) complicated (clogging the reaction
rule). (This is equivalent to complications of the global shared namespace of the π-
calculus).

The solution that RCHAM proposes is to allow for new reactions (local reactions) to be
created with simpler pattern matching for “local” molecules.

(c) Syntax of RCHAM:

Values are names, represented by name variables x, v. x̃ is a tuple of names. x〈ṽ〉 is a mes-
sage: a channel x sends message v.

def D in P acts as a defining molecule that defines a new reaction D and a molecule P . This
adds reflexion to the model: reactions can now be dynamically created.

D or J ⊲ P represents a reaction that consumes molecules with a specific join pattern J and
produces product P . We can think of this as let J = run P

This corresponds to a transformation rule (R ⊢ M → (R ⊢ M ′).
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Definitions act as catalysts, where reactants can assemble and react. If a definition is not
present (defined), the reaction cannot occur. Thus, reactions are constrained to their local
definitions.

P ::= x〈ṽ〉 | def D in P | (P |P )

J ::= x〈ṽ〉 | (J |J)

D ::= J ⊲ P | D ∧D | ∅

Solutions ::= R ⊢ M where M is a molecule (multiset of P ) and R are the reactions (D)

• P is a process, which can either be a message sent on channel x, a definition of new
names, or a parallel composition of processes.

• J is a join pattern that determines when reactions can be run. We can think of this as
defining a new channel, and the reactions running as sending messages along channels
(potentially more than one) at once.

• D consists of definitions in the form J⊲P that match J to guarded process P . Definitions
can be arbitrarily (nondeterministically) applied.

(d) Rules

⇋ represents structural congruence (as defined by the π-calulus) transformation rules (re-
versible and nondeterministic). Intuitively, these rules “dissolve” the solution enough that a
reaction can take place, which is expressed in a single reduction rule (→)

(Note: only the elements in both multisets participating in the rule are included)

⊢ P |Q ⇋ ⊢ P,Q

D ∧ E ⊢ ⇋ D,E ⊢

⊢ def D in P ⇋ Dσ ⊢ Pσ

J ⊲ P ⊢ Jρ → J ⊲ P ⊢ Pρ

σ substitutes fresh names for the defined channel names in D
ρ substitutes transmitted names for the formal (receiving) parameters in J
(instantiates the reaction rule)

(e) Examples

def x〈u〉 ⊲ y〈u〉 in P

def y〈u〉 ⊲ x〈u〉 in def x〈u〉 ⊲ y〈u〉 in P (requires renaming of innermost x)

def x1〈u〉|x2〈v〉 ⊲ x〈u, v〉 in P (multiplexing)

def once〈〉|y〈v〉 ⊲ x〈v〉 in y〈1〉|y〈2〉|y〈3〉|once (nondeterminism/once is a lock)

def loop〈〉 ⊲ P |loop〈〉 in loop〈〉|Q

def newCCSchannel() ⊲

def send(v)|receive() ⊲ return to send|return v to receive

in return send, receive

in · · ·
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(f) Join Calculus

Process calculus produced from RCHAM: terms are the molecules of RCHAM, and struc-
tural equivalence/transition rules correspond to RCHAM calculus.

Structural Equivalence: P and Q are the same up to alpha-conversion and rearrangement of
unguarded subterms that preserve bindings

⊢ P ⇋
∗ ⊢ Q means P ≡ Q

Labelled Transition System:

Transitions
δ
−→ s.t. δ ∈ D ∪ {τ}

∀D = x〈u〉|y〈v〉 ⊲ R, x〈s〉|y〈t〉
D
−→ R[s/u, t/v]

τ is a silent transition:
τ
−→ contains exactly the pairs of processes P,Q up to ≡ s.t. ⊢ P → ⊢ Q

If P
δ
−→ P ′:

P |Q
δ
−→ P ′|Q

def D in P
δ
−→ def D in P ′ (fv(D) ∩ dv(δ) = ∅)

def δ in P
τ
−→ def δ in P ′ (δ 6= τ)

Q
δ
−→ Q′ (P ≡ Q ∩ P ′ ≡ Q′)
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4 JoCaml: A Practical PL based upon the Join Calculus Mandel & Maranget, 2007

JoCaml is the latest implementation of the join calculus. It is a distributed extension of OCaml.
It takes from OCaml native-code and bytecode compilers, and extends OCaml, in the sense that
OCaml programs and libraries are just a special kind of JoCaml programs and libraries.

spawn injects a molecule into the solution, and def . . . or . . . defines reactions.

(a) Mergesort example:

In mergesort, we want to break the array down into pairs, sort these pairs, and then merge
the arrays. Note that we cannot merge the arrays in arbitrary orders: the ”divide-and-
conquer” approach will not work if we don’t merge arrays of equivalent size.

We want a reaction to merge two arrays to form a molecule of the form sorted[1;2;3;4].
However, we cannot allow any two sorted molecules to merge. Instead, we have to form
hierarchies based upon array length and somehow tell the CHAM to only merge particular
molecules.

Note: the CHAM does not do any computations before starting a reaction, so reactions occur
unconditionally.

Solutions:

i. Store information about which items have been merged (requires complicated data
structure)

ii. Separate reactions for merging arrays of different sizes (merge smaller molecules to
build new larger ones).

Problems: molecules have to be statically defined, so we can’t know how many types
of reactions to define until later!

Solution: recurse on locally defined molecules and reactions! Molecules cannot react
with molecules produced in another recursive function call.

(* Attempt 1 *)

def mergesort ( a r r ) =
if ( a r r has length 1) then sor ted ( a r r )
else def sor ted ( x ) & sorted ( y ) = sor ted ( array merge x y )
in let ( arr1 , ar r2 ) = a r r a y s p l i t a r r

in mergesort ( ar r1 ) & mergesort ( ar r2 )
(* results will be sorted(arr1’) and sorted(arr2’), which will be merged recursively *)

This code will not work:

i. Cannot have a reaction with two identical molecules.

def a ( x ) & a ( y ) = c ( x , y ) => def a ( x ) & b ( ) = a ’ ( x ) or a ( x ) & a ’ ( y ) = c ( x , y )

ii. The name “sorted” will be undefined outside “mergesort,” but we want to use merge-
sort recursively. If “sorted” is undefined outside “mergesort“, we cannot use a reaction
to combine the results of the reactions starting from “mergesort(arr1)” and “merge-
sort(arr2)“.

The defined “sorted & sorted = sorted” reaction will never start because it is defined
for the local “sorted” molecule instead of the (two different) “sorted” molecules that are
locally defined inside the recursive calls to “mergesort(arr1)” and “mergesort(arr2)“
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To fix this, it seems like we must define “sorted” outside of “mergesort“. But if all
“mergesort” reactions yield the same “sorted” molecule, the result of every “merge-
sort” will be free to combine arbitrarily with other results, and we lose the hierarchical
organization of the merging reactions, which brings us back to our original problem.

To actually fix problem (2), we need to define two different molecules: one internal and one
external of the mergesort.

• External: passed to “mergesort” molecule as a parameter (part of the constructor).
“mergesort“ then produces a molecule of external type.

• Internal: locally defined, passed to “mergesort” molecule as a parameter (part of the
constructor), and used to sort the recursive results. These can only react with molecules
defined within the same scope (i.e. at the same level of recursion).

def mergesort ( arr , e x t e r n s o r t e d ) =
if Array . length a r r <= 1 then e x t e r n s o r t e d ( a r r ) else

let ( part1 , part2 ) = a r r a y s p l i t a r r in

(* define the reactions for the recursive calls *)

def l o c a l s o r t e d ( x ) & a ( ) = l o c a l s o r t e d ’ ( x )
or l o c a l s o r t e d ( x ) & l o c a l s o r t e d ’ ( y ) = e x t e r n s o r t e d ( array merge x y ( < ) )

(* call mergesort with the newly defined molecules, to be produced by the recursive calls *)

in mergesort ( part1 , l o c a l s o r t e d ) & mergesort ( part2 , l o c a l s o r t e d ) & a ( )
in (* mergesort is now defined; now we set up the initiating call *)

def p r i n t r e s u l t ( a r r ) = P r i n t f . p r i n t f "finished: [%s]" ( s t r i n g o f a r r a y a r r s t r i n g o f i n t "

in (* now we call mergesort with an "extern_sorted" molecule argument of "print_result" *)

spawn mergesort ( [ | 3 ; 2 ; 5 ; 1 ; 4 | ] , p r i n t r e s u l t )

(b) Observations:

i. Cannot detect the absence of a molecule in the solution.

ii. Cannot combine two solutions (running on two machines, for example) into one com-
putation.

iii. All molecules have to be statically defined, so they cannot be computed dynamically
or based on inputs. However, this reduces system errors from dynamically generating
inconsistent reactions. e.g. injecting molecules that produce ”out of bounds” errors is
impossible.

iv. All “local sorted” molecules are different molecules because of their different scope,
and all reactions where a molecule appears must be in one scope. New reactions cannot
be added to input molecules previously defined.

v. Reactions do not allow for some type of dynamically computed condition to dictate
whether they run or not. However, the lack of inherent control flow can lead to overly
complex solutions (no pun intended) when conditions need to be met before a reaction
occurs.

vi. def creates locally defined molecules, but not locally defined reactions: all reactions are
always available to the chemical machine.

vii. A function cannot evaluate to a molecule because molecules are not OCaml values.
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