Origins of Garbage Collection

Jason Goodman

1 Recursive functions of symbolic expressions and
their computation by machine, Part I

Q@article{mccarthy-60-recursive,
author = "John McCarthy",
title = "Recursive functions of symbolic expressions and their
computation by machine, Part {I}",
journal = cacm,
volume = 3,
number = 4,
year = 1960,
pages = "184--195",

Summary: McCarthy introduces the LISP language and invents garbage
collection to implement the language, devoting just over a page to a mark
and sweep algorithm that identifies reachable words by depth-first search.
McCarthy insists that S-expression structures be immutable, allowing for
copying by reference sharing. This optimization, as well as a future relax-
ation on immutability, gives a practical motivation for garbage collection.

Evaluation: This paper breaks ground on several areas of research, in-
cluding garbage collection. Presumably after noticing the undecidability of
identifying all values a program will need in the future, McCarthy arrives
at the modern contract between programmers and garbage collectors: Only
structures that aren’t reachable from program variables can be reclaimed.
The given algorithm is useful as a proof of concept but has several drawbacks:
Programs can pause at unpredictable times; memory becomes fragmented
as individual words are reclaimed and allocated, causing poor cache per-
formance; expensive garbage collection calls become frequent as programs
operate near memory capacity; garbage collection takes time on the order
of the size of memory; and depth-first search requires a stack potentially on
the order of the amount of memory used.



2 A method for overlapping and erasure of lists

@article{collins-60-method,
author = "George E. Collins",
title = "A method for overlapping and erasure of lists",
journal = cacm,
volume = 3,
number = 12,
year = 1960,
pages = "655--657",

Summary: Collins improves upon McCarthy’s LISP garbage collector
by generalizing the trivial approach of allowing exactly one reference to each
structure and making copies to for other viewers. Collins realizes the same
approach can be used with “overlapping” lists—structures with multiple
references—by counting the number of references to a word at runtime.
Every assignment updates the reference counts associated with the old and
new words being referenced, and removing a structure’s only reference causes
its memory to be reclaimed. As an optimization, Collins only allocates space
for a reference count when a word has more than two references to it; when
this happens, the word is copied to a new address and the original is replaced
with a reference count and pointer to the value’s new location.

Evaluation: This paper originates the idea of reference counting garbage
collection, which is still used today. Reference counting is particularly useful
for user-facing applications that can’t afford to pause for several seconds at
a time as in McCarthy’s approach. That said, this approach adds instruc-
tions for every assignment, as opposed to other algorithms that take time
proportional to some feature of the world when memory runs out. Another
stumbling block is that structures with reference cycles can’t be collected
by reference counting. McCarthy’s LISP does not originally allow cyclic
data structures, but modern applications of reference counting either break
McCarthy’s abstraction of "abandoned” data or accept these leaks as un-
avoidable.

3 A LISP Garbage Collector Algorithm Using Se-
rial Secondary Storage

@techreport{minksy-63-lisp,



author = "Marvin L. Minsky",

title = "A {LISP} Garbage Collector Algorithm Using Serial
Secondary Storage",

institution = "MIT",

year = 1963,

number = "AIM-58"

Summary: In this Al Memo, Minsky introduces a garbage collector
that copies reachable words to secondary storage in a depth-first search, as-
signing them fresh contiguous addresses, and then loads the words back into
memory. The depth-first ordering causes list structures to occupy consec-
utive addresses, reducing cache misses. Moreover, Minsky briefly suggests
collapsing aligned linked list structures to arrays. The key observation is
that data can be repositioned in memory so long as its pointer structure is
preserved.

Evaluation: The paper lacks polish, introducing the algorithm with
a page of ramp-up and a page of code with single-variable names, GOTO
control, and conceptually unnecessary special casing. That said, the idea
is an improvement over McCarthy’s algorithm and kicks off significant re-
search. Minsky’s approach not only avoids fragmentation but runs in time
proportional to the amount of memory used rather than the size of main
memory. The paper doesn’t discuss this, but the possibility of faster, more
frequent garbage collection eases some downsides to McCarthy’s approach
and avoids a long creep of fragmentation before memory runs out.

4 A LISP garbage-collector for virtual-memory com-
puter systems

Q@article{fenichel-69-1isp,
author = "Robert R and Jerome C. Yochelson",
title = "A {LISP} garbage-collector for virtual-memory computer systems",
journal = cacm,
volume = 12,
number = 11,
year = 1969,
pages = "611--612",
doi = "\url{http://doi.acm.org/10.1145/363269.363280}",



Summary: This two-page paper presents a copying garbage collector
in the context of virtual memory. The algorithm is effectively the same as
Minsky’s, but instead of explicitly copying to disk uses two “semispaces” of
the virtual address space, copying from one to the other during each collec-
tion. The first key observation is that memory will never appear to run out
in a large enough address space. Rather, programs will begin to run slowly.
The second observation is that fragmentation over pages amplifies this ef-
fect, with page misses analogous to processor cache misses. The authors
suggest some possible triggers for garbage collection, such as slow memory
accesses and I/O blocking, but don’t recommend a particular policy.

Evaluation: This paper is significant in identifying the changing priori-
ties of garbage collection with the problem of “running out” of memory less
of a concern. At this point, McCarthy’s approach of visiting each address
would be infeasible, and garbage collection isn’t strictly necessary for most
programs. Instead, the new role of garbage collection is to increase pro-
gram efficiency by compacting structures into contiguous regions that cross
as few page boundaries as possible. Also notable is a clear presentation of
the depth-first copy collection algorithm, identical in spirit to Minsky’s, in
under twenty lines of readable code.

5 A nonrecursive list compacting algorithm

Q@article{cheney-70-nonrecursive,
author = "C. J. Cheney",
title = "A nonrecursive list compacting algorithm",
journal = cacm,
volume = 13,
number = 11,
year = 1970,
pages = "677--678",

Summary: In this two-page paper, Cheney presents a copying garbage
collector that uses a breath-first traversal of reachable memory rather than
the depth-first order used in prior algorithms. This approach avoids the need
for a stack on the order of the size of memory used, but at the expense of
not coalescing list structures. Like Fenichel and Yochelson’s, this algorithm
copies between regions of a virtual address space, but Cheney takes advan-
tage of the ability to read from the “to” space while copying—something



not possible with Minsky’s approach of writing address-value pairs to disk
out of order.

Evaluation: Like reference counting, this is the first big improvement
on the amount of space required by garbage collection. The algorithm is
also straightforward and well-presented, making it a practical alternative to
depth-first ordering in a world where page misses are costlier than processor
cache misses.



