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Summary. This paper presents a thorough account of the history of Haskell
from its beginnings in 1987 to 2007, the year when the paper was published. The
paper also discusses the language’s technical contributions, implementations and
tools, and applications and impact.

Haskell came about as a common language to unify notation and stream-
line collaboration among pure FP researchers in the late 80s. At the time of
its inception, there were multiple different languages with similar syntax and
features, following a call to arms by John Backus in the late 70s to “liberate
programming from the von Neumann style” [1] and drawing from the ideas
of pure functional programming [4, 8, 10] (recursive functions, type systems,
algebraic data types, pattern matching, referential transparency) and lazy pro-
gramming [3, 5, 11] (streams, coroutines, call-by-name) that were developed
around that time. Haskell embraced purity and pursued it relentlessly, leading
to the development of monadic I/O [12, 7], which is one of the first examples
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of controlled effects. The trend of restricting side-effects in order to write safer
code continues to this day in mainstream languages (e.g. regions, ownership
types, DSLs for restricted effects).

Throughout its history, Haskell has been a useful testbed for type-system
extensions and also a laboratory where new PL ideas could be tried out. The
most distinctive feature of Haskell’s type system is type classes [13], a mechanism
for principled overloading and more generally a means for type-driven generation
of executable evidence. There has been a useful exchange of ideas between
Haskell and mainstream imperative languages such as C# that has led to new
programming language features, e.g. LINQ, STM.

Evaluation. This paper is a good summary of Haskell’s historical devel-
opment and its impact on programming languages as a whole. Unfortunately,
there have been new developments since 2007 that are not captured in this pa-
per, although some of them were accurately predicted here, such as the inclusion
of a strict mode in GHC. Recent developments in the Haskell type system aim
to improve its expressive power and precision, by allowing type-level computa-
tion [9, 14, 2] with a long-term view to including full dependent types.

Further reading. Apart from the foundational papers referred to in the
summary, a paper by John Hughes under the title “Why functional program-
ming matters” [6] makes a compelling case for lazy evaluation (among other
features), showing that it can be used as powerful glue that encourages modu-
larity.
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