
A History of Haskell

Pablo Buiras
pbuiras@seas.harvard.edu

November 2, 2016

1 A History of Haskell: Being Lazy With Class

@inproceedings{Hudak2007,

author = {Hudak, Paul and Hughes, John and

Peyton Jones, Simon and Wadler, Philip},

title = {A History of Haskell: Being Lazy with Class},

booktitle = {Proceedings of the Third ACM SIGPLAN

Conference on History of Programming Languages},

series = {HOPL III},

year = {2007},

isbn = {978-1-59593-766-7},

location = {San Diego, California},

pages = {12-1--12-55},

url = {http://doi.acm.org/10.1145/1238844.1238856},

doi = {10.1145/1238844.1238856},

acmid = {1238856},

publisher = {ACM},

address = {New York, NY, USA},

}

Summary. This paper presents a thorough account of the history of Haskell
from its beginnings in 1987 to 2007, the year when the paper was published. The
paper also discusses the language’s technical contributions, implementations and
tools, and applications and impact.

Haskell came about as a common language to unify notation and stream-
line collaboration among pure FP researchers in the late 80s. At the time of
its inception, there were multiple different languages with similar syntax and
features, following a call to arms by John Backus in the late 70s to “liberate
programming from the von Neumann style” [1] and drawing from the ideas
of pure functional programming [4, 8, 10] (recursive functions, type systems,
algebraic data types, pattern matching, referential transparency) and lazy pro-
gramming [3, 5, 11] (streams, coroutines, call-by-name) that were developed
around that time. Haskell embraced purity and pursued it relentlessly, leading
to the development of monadic I/O [12, 7], which is one of the first examples

1



of controlled effects. The trend of restricting side-effects in order to write safer
code continues to this day in mainstream languages (e.g. regions, ownership
types, DSLs for restricted effects).

Throughout its history, Haskell has been a useful testbed for type-system
extensions and also a laboratory where new PL ideas could be tried out. The
most distinctive feature of Haskell’s type system is type classes [13], a mechanism
for principled overloading and more generally a means for type-driven generation
of executable evidence. There has been a useful exchange of ideas between
Haskell and mainstream imperative languages such as C# that has led to new
programming language features, e.g. LINQ, STM.

Evaluation. This paper is a good summary of Haskell’s historical devel-
opment and its impact on programming languages as a whole. Unfortunately,
there have been new developments since 2007 that are not captured in this pa-
per, although some of them were accurately predicted here, such as the inclusion
of a strict mode in GHC. Recent developments in the Haskell type system aim
to improve its expressive power and precision, by allowing type-level computa-
tion [9, 14, 2] with a long-term view to including full dependent types.

Further reading. Apart from the foundational papers referred to in the
summary, a paper by John Hughes under the title “Why functional program-
ming matters” [6] makes a compelling case for lazy evaluation (among other
features), showing that it can be used as powerful glue that encourages modu-
larity.

References

[1] J. Backus. Can Programming Be Liberated from the Von Neumann
Style?: A Functional Style and Its Algebra of Programs. Commun. ACM,
21(8):613–641, Aug. 1978.

[2] R. A. Eisenberg, S. Weirich, and H. G. Ahmed. Visible type application. In
Proceedings of the 25th European Symposium on Programming Languages
and Systems - Volume 9632, pages 229–254, New York, NY, USA, 2016.
Springer-Verlag New York, Inc.

[3] D. P. Friedman and D. S. Wise. CONS should not evaluate its arguments.
Automata, Languages and Programming, pages 257–284, 1976.

[4] M. Gordon, R. Milner, L. Morris, M. Newey, and C. Wadsworth. A Met-
alanguage for Interactive Proof in LCF. In Proceedings of the 5th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
POPL ’78, pages 119–130, New York, NY, USA, 1978. ACM.

[5] P. Henderson and J. H. Morris, Jr. A lazy evaluator. In Proceedings of the
3rd ACM SIGACT-SIGPLAN Symposium on Principles on Programming
Languages, POPL ’76, pages 95–103, New York, NY, USA, 1976. ACM.

2



[6] J. Hughes. Why functional programming matters. Comput. J., 32(2):98–
107, Apr. 1989.

[7] S. P. Jones. Tackling the awkward squad: monadic input/output, concur-
rency, exceptions, and foreign-language calls in Haskell. In Engineering
theories of software construction, pages 47–96. Press, 2001.

[8] R. Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348–375, 1978.

[9] T. Schrijvers, S. Peyton Jones, M. Chakravarty, and M. Sulzmann. Type
checking with open type functions. In Proceedings of the 13th ACM SIG-
PLAN International Conference on Functional Programming, ICFP ’08,
pages 51–62, New York, NY, USA, 2008. ACM.

[10] D. Turner. SASL Language Manual. Document (Functional Language
Implementation Project). University of Kent, Canterbury, UK, 1976.

[11] D. A. Turner. A new implementation technique for applicative languages.
Software: Practice and Experience, 9(1):31–49, 1979.

[12] P. Wadler. Monads for Functional Programming. In Advanced Functional
Programming, First International Spring School on Advanced Functional
Programming Techniques-Tutorial Text, pages 24–52, London, UK, UK,
1995. Springer-Verlag.

[13] P. Wadler and S. Blott. How to Make Ad-hoc Polymorphism Less Ad
Hoc. In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’89, pages 60–76, New York,
NY, USA, 1989. ACM.

[14] S. Weirich, J. Hsu, and R. A. Eisenberg. System fc with explicit kind equal-
ity. In Proceedings of the 18th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’13, pages 275–286, New York, NY, USA,
2013. ACM.

3


