
From Interpreters and Abstract Machines to
the λ Insight

1 The Mechanical Evaluation of Expressions
@article{ pl:secd,
author={Landin, P. J.},
title={The Mechanical Evaluation of Expressions},
journal={Computer Journal},
volume=6,
issue=4,
pages={308--320},
year=1964

}
Summary: Landin introduces the language of applicative structures as a small

but abstract language that can naturally express various forms of calculations such as
calculations with numbers, booleans and lists. Landin gives meaning to programs in
the language through their evaluation by an abstract and formally defined machine.

Evaluation: This paper introduces numerous novel and important ideas: 1) it
makes an explicit syntactic connection between the λ-calculus and programming lan-
guages; 2) it suggests the use of abstract syntax as a way to sidestep cosmetic superfi-
cial differences between the syntaxes of different languages; 3) it pioneers the formal
definition of programming languages with the innovation of abstract machines that
manipulate the abstract syntax of programs; 4) it coins the term “syntactic sugar” to
explain how we can grow a core language with more programmer-friendly forms that
are in reality compositions of the core language. Overall, Landin suggests the use of
formal small model languages as the means to understand real languages.

2 The Next 700 Programming Languages
@article{ pl:iswim,
author={Landin, P. J.}
title={The Next 700 Programming Languages},
journal={Communications of the ACM},
volume=9,

1



issue=3,
pages={157--166},
year=1966

}
Summary: Landin builds on his previous work on the language of applicative

structures to suggest a systematic way to design new languages. In particular, he ar-
gues that each language consists of two distinct sets of features that are often conflated:
a set of features that address the basic computational requirements of any language and
a set of features that are specific to the domain of the problem that the language is
intended to help with. Furthermore, he identifies the language of applicative structure
as the minimal language that can capture the computational aspect of any language.
The combination of this minimal core with domain-specific plugins gives rise to a fam-
ily of languages dubbed ISWIM. Landin claims ISWIM helps programming language
designers avoid the pitfalls of various idiosyncrasies of real languages and helps them
focus on the problem of designing for the domain the language targets.

Evaluation: This paper together with “The Mechanical Evaluation of Expressions”
has had significant impact on the way programming languages researchers analyze and
design languages. The analysis and design of programming languages using a formally
specified and studied core model is nowadays the norm.

2


	1 The Mechanical Evaluation of Expressions
	2 The Next 700 Programming Languages

