
CS281 Section 4: Factor Analysis and PCA

Scott Linderman

At this point we have seen a variety of machine learning models, with a particular emphasis
on models for supervised learning. In particular, we have discussed linear regression for fitting
continuous outputs given their corresponding features, and classification methods which learn
a linear decision boundary, like logistic regression. Finally, we’ve extended these methods to
include nonlinear functions of the input using generalized linear models.

In many settings, however, we do not have a set of outputs and features, we just have a set
of data. This is the domain of unsupervised machine learning. Our goals in this setting are less
clear. Rarely is our data entirely random. We often believe there is some latent, low-dimensional
structure in the data that is corrupted by noise. Unsupervised machine learning is about finding
this latent structure, and today we will discuss some of the most widely used methods for doing
so.

1. Principal Component Analysis (PCA)

Imagine we are presented with a bunch of data {xn}, where each xn lives in RD. For exam-
ple, in Figure 1 we have a cloud of points in R2. In many cases we believe the data is actually
lower dimensional, 1-dimensional in this case. That is, the 2-D data points are well approx-
imated by a line, and each data point is described by a 1-D value indicating the location on
the line. How could we find the line that best explains these data? This is very similar to
linear regression, except in this case we do not know the latent position along the line.

(a) Heuristic motivation
One way is to assume the data is Gaussian distributed and find the MLE covariance.
This corresponds to the sample covariance. Then, intuitively, the best line will be par-
allel to the long axis of the ellipse corresponding to the covariance matrix. That is, the
best line will be parallel to the eigenvector of the covariance matrix with the largest
eigenvalue. Each point will be approximated by its projection onto this eigenvector.
This is the intuition behind PCA: We find the eigenvectors of the sample covariance
matrix, and then summarize the observed data as projections onto the top eigenvectors,
or principal components. The size of this projection for a given datapoint xn is called
the score.

(b) Minimizing reconstruction error
Can we formalize the process by which we arrived at this algorithm? Under what
objective function are the eigenvectors with largest eigenvalues the “best” principal
components? It turns out that given a data matrix X ∈ RD×N (columns correspond to
xn), PCA finds principal components W ∈ RD×L and scores ZL×N that minimize the

1

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

x
1

x
2

Figure 1: A cloud of data in R2 that we would like to approximate with a lower dimensional
representation.

reconstruction error

J(W , Z) = ||X −WZ||2F,

where W is constrained to be orthonormal and the error is measured with respect to
the Frobenius norm.
Let us solve for the optimal first principal component w1 and “scores” z1 under the
objective given in the first characterization

J(w1, z1) =
1
N ∑

n
||xn − z1,nw1||2

=
1
N ∑

n

[
xT

n xn − 2z1,nwT
1 xn + z2

1,nwT
1 w1

]
=

1
N ∑

n

[
xT

n xn − 2z1,nwT
1 xn + z2

1,n

]
.

Taking partial derivatives with respect to z1,n yields

∂J(w1, z1)

∂z1,n
=

1
N

[
−2wT

1 xn + 2z1,n

]
= 0

=⇒ z1,n = wT
1 xn.

Hence the optimal score z1,n is the projection of the data onto the first principal compo-
nent.

2

Plug this back in to get

J(w1) =
1
N ∑

n

[
xT

n xn − 2z1,nwT
1 xn + z2

1,n

]
=

1
N ∑

n

[
xT

n xn − 2z2
1,n + z2

1,n

]
= const.− 1

N ∑
n

z2
1,n

= const.− var[z1],

where the last line follows because

E[z1] = E[XTw]

= E[XT]w
= 0.

Note: It is tempting to make the following substitution

J(w1) =
1
N ∑

n

[
xT

n xn − 2z1,nwT
1 xn + z2

1,n

]
=

1
N ∑

n

[
xT

n xn − 2(wT
1 xn)(wT

1 xn) + z2
1,n

]
=

1
N ∑

n

[
xT

n xn − 2xT
n (w1wT

1)xn) + z2
1,n

]
,

and then claim that w1wT
1 = 1 since w has unit norm, but this is false!. Instead, w1wT

1 =
W̃ is a rank-one matrix with entries W̃i,j = wiwj.

Returning to our objective function, we see that minimizing J(w1) yields a first princi-
pal component w1in the direction that maximizes the variance of the projected data.
What is this variance? Plugging back in for zn yields

var[z1] =
1
N ∑

n
wT

1 xnxT
n w1 = wT

1 Σw1,

where Σ is the empirical covariance matrix. If the magnitude of w1 is unconstrained
then the variance is trivially maximized when ||w1|| → ∞, but by the orthonormality
of W we have the constraint ||w1|| = 1. This can be added to our objective function
with a Lagrange multiplier

J(w1) = wT
1 Σw1 + λ1(wT

1 w1 − 1).

Taking partial derivatives and setting to zero yields

Σw1 = λ1w1.

3

We see that the optimal w1 is an eigenvector of the covariance matrix. Left multiplying
by wT

1 we see that the variance of the projected data is the eigenvalue corresponding to
w1, so to maximize the variance we choose the eigenvector with the largest λ1.

(c) Generative model approach
It would be nice if we could formulate PCA as a generative model and thereby glean
some intuition for why the eigenvectors of the empirical covariance matrix are good
principal components. If we were to invert the process described above, we would first
sample projections zn and then transform them with W in order to get the correspond-
ing observed data xn. There was no noise in the reconstruction error formulation; the
error only stemmed from the fact that we had fewer principal components than dimen-
sions (L < D). Hence, in the generative model, xn would be deterministic given zn and
W .
We can relax this assumption a bit and add isotropic Gaussian noise such that

xn ∼ N (Wzn, σ2I),

where W is still constrained to be orthogonal and where we are ignoring mean shifts
for simplicity. If we assume

zn ∼ N (0, I),

then we have a model known as probabilistic PCA. It turns out that in the limit of
σ2 → 0 the MLE estimate of W and zn recovers the classical PCA solution.

2. Factor Analysis

Factor analysis (FA) is another dimensionality reduction technique with a long history in
statistics, psychology, and other fields. It turns out that both PCA and FA can be viewed as
special cases of the generative model described above. In factor analysis, however, we have
the following model:

zn ∼ N (0, I),
xn | zn ∼ N (Wzn, Ψ),

where Ψ is restricted to be diagonal. This is just like probabilistic PCA except that here
we allow different dimensions of our observations to have different variances. Instead of
principal components, we will call the zn’s latent factors. The model is best motivated with
an example.

Suppose we have a set of of ratings vectors {xn}N
n=1 that N users gave to each of D jokes.

Our goal is to predict a user’s rating on a joke she hasn’t heard, based on her ratings for other
jokes and other users’ ratings for the new joke. This is the collaborative filtering problem.
We will assume that each user has a latent vector of preferences zn along L dimensions,
e.g. “length of the joke,” “knock-knock-iness,” or “years of math required to understand the
joke.” Each joke will have a weighting of these dimensions, wd ∈ RL. Users’ ratings are
weighted sums, wT

d zn, of how well the joke aligns to their latent preferences, plus noise. If
we knew the preference dimensions, weights, and user preferences, we could easily describe

4

the distribution over joke ratings in terms of additive noise, but otherwise we have to model
the potentially complex distribution over ratings directly.

Take the simplest case where

xn = Wzn + µ + noise,

i.e. x is a linear function of z, with W ∈ RD×L. Furthermore, assume that both the z’s and
the noise follow multivariate Gaussian distributions.

zn ∼ N (zn | µ0, Σ0)

xn|zn ∼ N (Wzn + µ, Ψ).

Since both are Gaussian, their joint distribution will be Gaussian and the marginal distribu-
tion over x will be Gaussian.

Our goal is to explain the data in terms of latent variables z. In the Gaussian case this means
explaining covariance in x in terms of covariance in z, rather than in terms of noise. Hence
we restrict Ψ to be diagonal.

Ψ = diag
([

σ2
11, . . . , σ2

DD
])

.

Under this restriction, the model is specified by

θ = {µ0, Σ0, W , µ, Ψ}

= L +
L(L + 1)

2
+ LD + D + D parameters.

This is actually still overparameterized because we can take µ0 = 0 and Σ0 = I without loss
of generality by pushing them into µ and W , respectively. This leaves us with:

θ = {W , µ, Ψ}
= LD + D + D = O(LD) parameters.

With a standard trick of augmenting our factors with a constant we can roll the µ into W . By
these arguments we have arrived at the generative model for factor analysis posited above.

(a) Learning
In order to learn the parameters W and Ψ and infer the latent factors zn of the model,
we make use of the EM algorithm. In the E step we update the latent factors given the
current weights and noise matrices, and in the M step we set the weights and noise
matrices to their MAP estimates under the current factors.
One benefit of the EM algorithm is that it is easy to handle missing data. We simply
estimate it during the E step.

(b) Unidentifiability
Just as in mixture models, the learned weight matrix is not uniquely defined. We can
rotate by any orthogonormal matrix R and the likelihood will not change. Hence one
must take care when interpreting the factors.

5

