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Abstract

We give a tutorial overview of several geometric methods for dimension

reduction. We divide the methods into projective methods and meth-

ods that model the manifold on which the data lies. For projective

methods, we review projection pursuit, principal component analysis

(PCA), kernel PCA, probabilistic PCA, canonical correlation analysis,

oriented PCA, and several techniques for sufficient dimension reduc-

tion. For the manifold methods, we review multidimensional scaling

(MDS), landmark MDS, Isomap, locally linear embedding, Laplacian

eigenmaps and spectral clustering. The Nyström method, which links

several of the manifold algorithms, is also reviewed. The goal is to pro-

vide a self-contained overview of key concepts underlying many of these

algorithms, and to give pointers for further reading.
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Introduction

Dimension reduction1 is the mapping of data to a lower dimensional

space such that uninformative variance in the data is discarded, or

such that a subspace in which the data lives is detected. Dimension re-

duction has a long history as a method for data visualization, and for

extracting key low dimensional features (for example, the 2-dimensional

orientation of an object, from its high dimensional image representa-

tion). In some cases the desired low dimensional features depend on

the task at hand. Apart from teaching us about the data, dimension

reduction can lead us to better models for inference. The need for di-

mension reduction also arises for other pressing reasons. [Stone, 1982]

showed that, under certain regularity assumptions (including that the

samples be IID), the optimal rate of convergence2 for nonparametric

1 We follow both the lead of the statistics community and the spirit of the paper to reduce
“dimensionality reduction” and “dimensional reduction” to “dimension reduction”.

2 For convenience we reproduce Stone’s definitions [Stone, 1982]. A “rate of convergence” is
defined as a sequence of numbers, indexed by sample size. Let θ be the unknown regression
function, Θ the collection of functions to which θ belongs, T̂n an estimator of θ using n
samples, and {bn} a sequence of positive constants. Then {bn} is called a lower rate of
convergence if there exists c > 0 such that limn inf

T̂n

supΘ P (‖T̂n − θ‖ ≥ cbn) = 1, and

it is called an achievable rate of convergence if there is a sequence of estimators {T̂n}

1
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regression varies as m−p/(2p+d), where m is the sample size, the data

lies in Rd, and where the regression function is assumed to be p times

differentiable. We can get a very rough idea of the impact of sample

size on the rate of convergence as follows. Consider a particular point

in the sequence of values corresponding to the optimal rate of conver-

gence: m = 10, 000 samples, for p = 2 and d = 10. Suppose that d is

increased to 20; what number of samples in the new sequence gives the

same value? The answer is approximately 10 million. If our data lie

(approximately) on a low dimensional manifold L that happens to be

embedded in a high dimensional manifold H, then modeling the data

directly in L rather than in H may turn an infeasible problem into a

feasible one.

The purpose of this review is to describe the mathematics and key

ideas underlying the methods, and to provide some links to the liter-

ature for those interested in pursuing a topic further3. The subject of

dimension reduction is vast, so we use the following criterion to limit

the discussion: we restrict our attention to the case where the inferred

feature values are continuous. The observables, on the other hand, may

be continuous or discrete. Thus this review does not address clustering

methods, or, for example, feature selection for discrete data, such as

text. Furthermore implementation details, and important theoretical

details such as consistency and rates of convergence of sample quanti-

ties to their population values, although important, are not discussed.

Regarding notation: vectors are denoted by boldface, whereas compo-

nents are denoted by xa, or by (xi)a for the a’th component of the i’th

vector. Random variables are denoted by upper case; we use E[X|y]

as shorthand for the function E[X|Y = y], in contrast to the random

variable E[X|Y ]. Following [Horn and Johnson, 1985], the set of p by

q matrices is denoted Mpq, the set of (square) p by p matrices by Mp,

and the set of symmetric p by p matrices by Sp (all matrices considered

are real). e with no subscript is used to denote the vector of all ones;

on the other hand ea denotes the a’th eigenvector. We denote sample

and c > 0 such that limn supΘ P (‖T̂n − θ‖ ≥ cbn) = 0; {bn} is called an optimal rate of
convergence if it is both a lower rate of convergence and an achievable rate of convergence.
Here the inf

T̂n

is over all possible estimators T̂n.
3 This paper is a revised and extended version of [Burges, 2005].
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size by m, and dimension usually by d or d′, with typically d′ � d.

δij is the Kronecker delta (the ij’th component of the unit matrix).

We generally reserve indices i, j, to index vectors and a, b to index

dimension.

We place dimension reduction techniques into two broad categories:

methods that rely on projections (Chapter 2 2) and methods that at-

tempt to model the manifold on which the data lies (Chapter 3 3).

Chapter 2 gives a detailed description of principal component analysis;

apart from its intrinsic usefulness, PCA is interesting because it serves

as a starting point for many modern algorithms, some of which (kernel

PCA, probabilistic PCA, and oriented PCA) are also described here.

However it has clear limitations: it is easy to find even low dimensional

examples where the PCA directions are far from optimal for feature

extraction [Duda and Hart, 1973], and PCA ignores correlations in the

data that are higher than second order. We end Chapter 2 with a brief

look at projective methods for dimension reduction of labeled data:

sliced inverse regression, and kernel dimension reduction. Chapter 3

starts with an overview of the Nyström method, which can be used

to extend, and link, several of the algorithms described in this paper.

We then examine some methods for dimension reduction which assume

that the data lie on a low dimensional manifold embedded in a high

dimensional space, namely locally linear embedding, multidimensional

scaling, Isomap, Laplacian eigenmaps, and spectral clustering.
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Projective Methods

If dimension reduction is so desirable, how should we go about it?

Perhaps the simplest approach is to attempt to find low dimensional

projections that extract useful information from the data, by maximiz-

ing a suitable objective function. This is the idea of projection pursuit

[Friedman and Tukey, 1974]. The name ’pursuit’ arises from the iter-

ative version, where the currently optimal projection is found in light

of previously found projections (in fact originally this was done manu-

ally1). Apart from handling high dimensional data, projection pursuit

methods can be robust to noisy or irrelevant features [Huber, 1985], and

have been applied to regression [Friedman and Stuetzle, 1981], where

the regression is expressed as a sum of ’ridge functions’ (functions of

the one dimensional projections) and at each iteration the projection

is chosen to minimize the residuals; to classification; and to density

estimation [Friedman et al., 1984]. How are the interesting directions

found? One approach is to search for projections such that the pro-

jected data departs from normality [Huber, 1985]. One might think

that, since a distribution is normal if and only if all of its one dimen-

1 See J.H. Friedman’s interesting response to [Huber, 1985] in the same issue.

4
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sional projections are normal, if the least normal projection of some

dataset is still approximately normal, then the dataset is also necessar-

ily approximately normal, but this is not true; Diaconis and Freedman

have shown that most projections of high dimensional data are approx-

imately normal [Diaconis and Freedman, 1984] (see also below). Given

this, finding projections along which the density departs from normal-

ity, if such projections exist, should be a good exploratory first step.

The sword of Diaconis and Freedman cuts both ways, however. If

most projections of most high dimensional datasets are approximately

normal, perhaps projections are not always the best way to find low

dimensional representations. Let’s review their results in a little more

detail. The main result can be stated informally as follows: consider

a model where the data, the dimension d, and the sample size m de-

pend on some underlying parameter ν, such that as ν tends to infinity,

so do m and d. Suppose that as ν tends to infinity, the fraction of

vectors which are not approximately the same length tends to zero,

and suppose further that under the same conditions, the fraction of

pairs of vectors which are not approximately orthogonal to each other

also tends to zero2. Then ([Diaconis and Freedman, 1984], Theorem

1.1) the empirical distribution of the projections along any given unit

direction tends to N(0, σ2) weakly in probability3. However, if the con-

ditions are not fulfilled, as for some long-tailed distributions, then the

opposite result can hold - that is, most projections are not normal (for

example, most projections of Cauchy distributed data4 will be Cauchy

[Diaconis and Freedman, 1984]).

As a concrete example, consider data uniformly distributed over the

unit n+1-sphere Sn+1 for odd5 n. Let’s compute the density projected

along any line I passing through the origin. By symmetry, the result

will be independent of the direction we choose. If the distance along

2 More formally, the conditions are: for σ2 positive and finite, and for any positive ε,
(1/m)card{j ≤ m : |‖xj‖2 − σ2d| > εd} → 0 and (1/m2)card{1 ≤ j, k ≤ m : |xj · xk| >
εd} → 0 [Diaconis and Freedman, 1984].

3 Some authors refer to convergence ’weakly in probability’ simply as convergence in prob-
ability. A sequence Xn of random variables is said to converge in probability to a random
variable X if limn→∞P (|Xn − X| > ε) = 0 for all ε > 0 [Grimmet and Stirzaker, 2001].

4 The Cauchy distribution in one dimension has density c/(c2 + x2) for constant c.
5 The story for even n is similar but the formulae are slightly different.
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the projection is parameterized by ξ ≡ cos θ, where θ is the angle

between I and the line from the origin to a point on the sphere, then

the density at ξ is proportional to the volume of an n-sphere of radius

sin θ: ρ(ξ) = C(1 − ξ2)
n−1

2 . Requiring that
∫ 1
−1 ρ(ξ)dξ = 1 gives the

constant C:

C = 2−
1

2
(n+1) n!!

(1
2(n − 1))!

(2.1)

Let’s plot this density and compare against a one dimensional Gaus-

sian density fitted using maximum likelihood. For that we just need the

variance, which can be computed analytically: σ2 = 1
n+2 , and the mean,

which is zero. Figure 2.1 shows the result for the 20-sphere. Although

data uniformly distributed on S20 is far from Gaussian, its projection

along any direction is close to Gaussian for all such directions, and we

cannot hope to uncover such structure using one dimensional projec-

tions.
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Fig. 2.1 Dotted line: a Gaussian with zero mean and variance 1/21. Solid line: the density
projected from data distributed uniformly over the 20-sphere, to any line passing through
the origin.

The notion of searching for non-normality, which is at the heart

of projection pursuit (the goal of which is dimension reduction), is

also a key idea underlying independent component analysis (ICA)

[Hyvärinen et al., 2001]. ICA views the data as being generated by a
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mixture of unknown latent variables, and although typically the num-

ber of latent variables is assumed to equal the dimension of the data,

the method has parallels with dimension reduction, so we briefly de-

scribe it here. ICA searches for projections such that the probability

distributions of the data along those projections are statistically inde-

pendent. Consider for example the case of two speakers speaking into

two microphones, where each microphone captures sound from both

speakers. The microphone signals may be written y = Ax, x, y ∈ R2,

where the components of x are the (assumed statistically independent

and zero mean) signals from each individual speaker, and where A is

a fixed two dimensional mixing matrix. In principle, we could sepa-

rate out the source signals by finding A and inverting it. However,

both A and x are unknown here, and any invertible scaling of each

component of x, followed by any permutation of the components of

the rescaled x (the net result of which is another pair of statistically

independent variables) can be compensated by redefining A. We can

remove the scaling degrees of freedom from the problem by whiten-

ing the data y and then assuming that A is a rotation matrix, which

amounts to choosing a coordinate system in which x is white (which,

since the xi are independent and zero mean, is equivalent to just rescal-

ing the xi). Note that this also means that if x happens to be normally

distributed, then ICA fails, since A can then be any orthogonal ma-

trix (since any orthogonal matrix applied to independent, unit vari-

ance Gaussian variables results in independent, unit variance Gaussian

variables). To give nontrivial results, ICA therefore requires that the

original signals be non-Gaussian (or more precisely, that at most one is

Gaussian distributed), and in fact it turns out that finding the maxi-

mally non-Gaussian component (under the assumptions that the x are

IID, zero mean, and unit variance) will yield an independent compo-

nent [Hyvärinen et al., 2001]. ICA components may also be found by

searching for components with minimum mutual information, since zero

mutual information corresponds to statistical independence. Such func-

tions - whose optimization leads to the desired independent components

- are called contrast functions. [Bach and Jordan, 2002] generalize ICA

by proposing contrast functions based on canonical correlation anal-

ysis (CCA) in Reproducing Kernel Hilbert Spaces (RKHSs); we will



D
R

A
FT

8 Projective Methods

encounter CCA, and RKHS’s used in similar ways, below.

2.1 Principal Components Analysis (PCA)

2.1.1 PCA: Finding an Informative Direction

Given data xi ∈ Rd, i = 1, · · · ,m, suppose you’d like to find a direction

v ∈ Rd for which the projection xi · v gives a good one dimensional

representation of your original data: that is, informally, the act of pro-

jecting loses as little information about your expensively-gathered data

as possible (we will examine the information theoretic view of this be-

low). Suppose that unbeknownst to you, your data in fact lies along a

line I embedded in Rd, that is, xi = µ + θin, where µ is the sample

mean6, θi ∈ R,
∑

i θi = 0, and n ∈ Rd has unit length. The sample

variance of the projection along n is then7

vn ≡ 1

m

m
∑

i=1

((xi − µ) · n)2 =
1

m

m
∑

i=1

θ2
i (2.2)

and that along some other unit direction n′ is

v′n ≡ 1

m

m
∑

i=1

((xi − µ) · n′)2 =
1

m

m
∑

i=1

θ2
i (n · n′)2 (2.3)

Since (n · n′)2 = cos2 φ, where φ is the angle between n and n′, we see

that the projected variance is maximized if and only if n = ±n′. Hence

in this case, finding the projection for which the projected variance

is maximized gives you the direction you are looking for, namely n,

regardless of the distribution of the data along n, as long as the data

has finite variance. You would then quickly find that the variance along

all directions orthogonal to n is zero, and conclude that your data in

fact lies along a one dimensional manifold embedded in Rd. This is one

of several basic results of PCA that hold for arbitrary distributions, as

we shall see.

Even if the underlying physical process generates data that ideally

lies along I, noise will usually modify the data at various stages up to

6 Note that if all xi lie on a given line then so does µ.
7 When the choice is immaterial to the argument, we use denominator m (sample viewed
as the whole population) rather than m − 1 (unbiased estimator of population variance).
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and including the measurements themselves, and so your data will very

likely not lie exactly along I. If the overall noise is much smaller than

the signal, it makes sense to try to find I by searching for that projec-

tion along which the projected data has maximal variance. If instead

your data lies in a two (or higher) dimensional subspace, the above

argument can be repeated, picking off the highest variance directions

in turn. Let’s see how that works.

2.1.2 PCA: Ordering by Variance

We have seen that directions of maximum variance can be interesting,

but how can we find them? From here on, unless otherwise stated, we

allow the xi to be arbitrarily distributed. The sample variance along

an arbitrary unit vector n is nT Cn where C is the sample covariance

matrix. Since C is positive semidefinite, its eigenvalues are positive or

zero; let us choose the indexing such that the (unit norm) eigenvectors

ea, a = 1, . . . , d are arranged in order of decreasing size of the corre-

sponding eigenvalues λa. Since the {ea} span the space (or can be so

chosen, if several share the same eigenvalue), we can expand any n in

terms of them: n =
∑d

a=1 αaea, and we would like to find the αa that

maximize nT Cn = nT ∑

a αaCea =
∑

a λaα
2
a, subject to

∑

a α2
a = 1

(to give unit normed n). This is just a convex combination of the λ’s,

and since a convex combination of any set of numbers is maximized by

taking the largest, the optimal n is just e1, the principal eigenvector

(or any one of the principal eigenvectors, if the principal eigenvalue has

geometric multiplicity greater than one), and furthermore, the sample

variance of the projection of the data along n is then just λ1.

The above construction captures the variance of the data along the

direction n. To characterize the remaining variance of the data, let’s

find that direction m which is both orthogonal to n, and along which

the projected data again has maximum variance. Since the eigenvectors

of C form an orthonormal basis (or can be so chosen), we can expand

m in the subspace Rd−1 orthogonal to n as m =
∑d

a=2 βaea. Just as

above, we wish to find the βa that maximize mT Cm =
∑d

a=2 λaβ
2
a, sub-

ject to
∑d

a=2 β2
a = 1, and by the same argument, the desired direction

is given by the (or any) remaining eigenvector with largest eigenvalue,
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and the corresponding variance is just that eigenvalue. Repeating this

argument gives d orthogonal directions, in order of monotonically de-

creasing projected variance. PCA for feature extraction thus amounts

to projecting the data to a lower dimensional space: given an input

vector x, the mapping consists of computing the projections of x along

the ea, a = 1, . . . , d′, thereby constructing the components of the pro-

jected d′-dimensional feature vectors. Finally, since the d directions are

orthogonal, they also provide a complete basis. Thus if one uses all d

directions, no information is lost; and as we’ll see below, given that one

wants to project to a d′ < d dimensional space, if one uses the d′ princi-

pal directions, then the mean squared error introduced by representing

the data by their projections along these directions is minimized.

2.1.3 PCA Decorrelates the Data

Now suppose we’ve performed PCA on our samples, and instead of

using it to construct low dimensional features, we simply use the full set

of orthonormal eigenvectors as a choice of basis. In the old basis, a given

input vector x is expanded as x =
∑d

a=1 xaua for some orthonormal

set {ua}, and in the new basis, the same vector is expanded as x =
∑d

b=1 x̃beb, so x̃a ≡ x · ea = ea ·∑b xbub. The mean µ ≡ 1
m

∑

i xi has

components µ̃a = µ ·ea in the new basis. The sample covariance matrix

depends on the choice of basis: if C is the covariance matrix in the

old basis, then the corresponding covariance matrix in the new basis is

C̃ab ≡ 1
m

∑

i(x̃ia−µ̃a)(x̃ib−µ̃b) = 1
m

∑

i{ea·(
∑

p xipup−µ)}{(∑q xiquq−
µ) ·eb} = e′aCeb = λbδab. Hence in the new basis the covariance matrix

is diagonal and the samples are uncorrelated. It’s worth emphasizing

two points: first, although the covariance matrix can be viewed as a

geometric object in that it transforms as a tensor (since it is a summed

outer product of vectors, which themselves have a meaning independent

of coordinate system), nevertheless, the notion of correlation is basis-

dependent (data can be correlated in one basis and uncorrelated in

another). Second, no assumptions regarding the distribution of X has

been made here.
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2.1.4 PCA: Reconstruction with Minimum Squared Error

The basis provided by the eigenvectors of the covariance matrix is also

optimal for dimension reduction in the following sense. Again consider

some arbitrary orthonormal basis {ua, a = 1, . . . , d}, and take the first

d′ of these to perform the dimension reduction: x̃ ≡ ∑d′

a=1(x · ua)ua.

The chosen ua form a basis for Rd′ , so we may take the components of

the dimensionally reduced vectors to be x · ua, a = 1, . . . , d′ (although

here we leave x̃ with dimension d). Define the reconstruction error

summed over the dataset as
∑m

i=1 ‖xi − x̃i‖2. Again assuming that the

eigenvectors {ea} of the covariance matrix are indexed in order of non-

increasing eigenvalues, then choosing those eigenvectors as basis vectors

will give minimal reconstruction error, as we will show. If the data is

not centered, then the mean should be subtracted first, the dimension

reduction performed, and the mean then added back8; thus in this case,

the dimensionally reduced data will still lie in the subspace Rd′ , but

that subspace will be offset from the origin by the mean. Bearing this

caveat in mind, to prove the claim we can assume that the data is

centered. Expanding ua ≡∑d
p=1 βapep, we have

1

m

∑

i

‖xi − x̃i‖2 =
1

m

∑

i

‖xi‖2 − 1

m

d′
∑

a=1

∑

i

(xi · ua)
2 (2.4)

with orthogonality constraints
∑d

p=1 βapβbp = δab. The second term on

the right is

−
d′
∑

a=1

uT
a Cua = −

d′
∑

a=1

(
d
∑

p=1

βape
T
p )C(

d
∑

q=1

βaqeq) = −
d′
∑

a=1

d
∑

p=1

λpβ
2
ap (2.5)

Introducing Lagrange multipliers ωab to enforce the orthogonality con-

straints [Burges, 2004], in order to minimize the reconstruction error

we must maximize

F =
d′
∑

a=1

d
∑

p=1

λpβ
2
ap −

d′
∑

a,b=1

ωab





d
∑

p=1

βapβbp − δab



 (2.6)

8 The principal eigenvectors are not necessarily the directions that give minimal reconstruc-
tion error if the data is not centered: imagine data whose mean is both orthogonal to
the principal eigenvector and far from the origin. The single direction that gives minimal
reconstruction error will be close to the mean.
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Choosing9 ωab ≡ ωaδab and taking derivatives with respect to βcq gives

λqβcq = ωcβcq. Both this and the constraints can be satisfied by choos-

ing ωa = λa and βap = δap for p ≤ d′, βap = 0 otherwise. The objective

function then simply becomes
∑d′

p=1 λp, which is maximized by choos-

ing the first d′ largest λp. Note that this also amounts to a proof that,

for projections that give minimal reconstruction error, the ’greedy’ ap-

proach to PCA dimension reduction - solve for a single optimal direc-

tion (which gives the principal eigenvector as first basis vector), then

project your data into the subspace orthogonal to that, then repeat -

also results in the global optimal solution, found by solving for all direc-

tions at once. The same observation applies to finding projections that

maximally reduce the residual variance. Again, note that this argument

is distribution independent.

2.1.5 PCA Maximizes Mutual Information on Gaussian

Data

Now consider some proposed set of projections W ∈ Md′d, where

the rows of W are orthonormal, so that the projected data is y ≡
Wx, y ∈ Rd′ , x ∈ Rd, d′ ≤ d. Suppose that X ∼ N (0, C).

Then since the y’s are linear combinations of the x’s, they are also

normally distributed, with zero mean and sample covariance Cy ≡
(1/m)

∑m
i yiy

′
i = (1/m)W (

∑m
i xix

′
i)W

′ = WCW ′. It’s interesting to

ask how W can be chosen so that the mutual information between the

distribution of X and that of Y is maximized [Baldi and Hornik, 1995,

Diamantaras and Kung, 1996]. Since the mapping W is deterministic,

the conditional entropy H(Y |X) vanishes, and the mutual information

is just I(X,Y ) = H(Y ) − H(Y |X) = H(Y ). Using a small, fixed bin

size, we can approximate this by the differential entropy,

H(Y ) = −
∫

p(y) log2 p(y)dy =
1

2
log2(e(2π)d

′

)+
1

2
log2 det(Cy) (2.7)

This is maximized by maximizing det(Cy) = det(WCW ′) over choice

of W , subject to the constraint that the rows of W are orthonor-

9 Recall that Lagrange multipliers can be chosen in any way that results in a solution
satisfying the constraints.
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mal. The general solution to this is W = UE, where U is an arbi-

trary d′ by d′ orthogonal matrix, and where the rows of E ∈ Md′d

are formed from the first d′ principal eigenvectors of C, and at the

solution, det(Cy) is just the product of the first d′ principal eigen-

values. Clearly, the choice of U does not affect the entropy, since

det(UECE′U ′) = det(U) det(ECE′) det(U ′) = det(ECE′). In the spe-

cial case where d′ = 1, so that E consists of a single, unit length vector

e, we have det(ECE′) = e′Ce, which is maximized by choosing e to

be the principal eigenvector of C, as shown above. (The other extreme

case, where d′ = d, is easy too, since then det(ECE′) = det(C) and

E can be any orthogonal matrix). We refer the reader to [Wilks, 1962]

for a proof for the general case 1 < d′ < d.

2.2 Probabilistic PCA (PPCA)

Suppose you’ve applied PCA to obtain low dimensional feature vectors

for your data, but that you have also somehow found a partition of

the data such that the PCA projections you obtain on each subset are

quite different from those obtained on the other subsets. It would be

tempting to perform PCA on each subset and use the relevant pro-

jections on new data, but how do you determine what is ’relevant’,

and how in general would you even find such subsets? These problems

could be addressed if we could learn a mixture of generative models for

the data, where each model corresponded to its own PCA decompo-

sition. [Tipping and Bishop, 1999A, Tipping and Bishop, 1999B] pro-

posed such a model - “Probabilistic PCA” - building on earlier work

linking PCA decomposition to factor analysis. The advantages of a

probabilistic model are numerous: for example, the weight that each

mixture component gives to the posterior probability of a given data

point can be computed, solving the ’relevance’ problem stated above.

In this section we briefly review PPCA.

The approach is in fact a form of factor analysis, which itself is a

classical dimension reduction technique. Factor analysis first appeared

in the behavioral sciences community over a century ago, when Spear-

man hypothesised that intelligence could be reduced to a single un-

derlying factor [Spearman, 1904]. If, given an n by n correlation ma-
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trix between variables Xi ∈ R, i = 1, · · · , n, there is a single vari-

able g such that the conditional correlation between Xi and Xj van-

ishes for i 6= j given the value of g, then g is the underlying ’factor’

and the off-diagonal elements of the correlation matrix can be writ-

ten as the corresponding off-diagonal elements of zz′ for some z ∈ Rn

[Darlington, 1997]. Modern factor analysis usually considers a model

where the underlying factors X ∈ Rd′ are Gaussian, and where a Gaus-

sian noise term ε ∈ Rd is added:

Y = WX + µ + ε (2.8)

X ∼ N (0,1)

ε ∼ N (0,Ψ)

Here Y ∈ Rd are the observations, the parameters of the model are

W ∈ Mdd′ (d′ ≤ d), Ψ and µ, and Ψ is assumed to be diagonal. By

construction, Y has mean µ and ’model covariance’ WW ′ + Ψ. For

this model, given X, the vectors Y − µ become uncorrelated, and εi

captures the variance that is unique to Yi. Since X and ε are Gaussian

distributed, so is Y , and so the maximum likelihood estimate of µ

is just the empirical expectation of the y’s. However, in general, W

and Ψ must be estimated iteratively, using for example EM. There is

an instructive exception to this [Basilevsky, 1994]. Suppose that Ψ =

σ21, so that the d − d′ smallest eigenvalues of the model covariance

are the same and are equal to σ2. Suppose also that S, the sample

covariance of the y’s, is equal to the model covariance; we can then

read off d′ as the multiplicity of the smallest eigenvalue σ2 of S. Let

e(j) be the j’th orthonormal eigenvector of S with eigenvalue λj. Then

it is straightforward to check that Wij =
√

(λj − σ2)e
(j)
i , i = 1, · · · , d,

j = 1, · · · , d′ satisfies WW ′ + Ψ = S if the e(j) are in principal order.

The model thus arrives at the PCA directions, but in a probabilistic

way. Probabilistic PCA (PPCA) assumes a model of the form (2.8)

with Ψ = σ21, but it drops the above assumption that the model and

sample covariances are equal (which in turn means that σ2 must now

be estimated). The resulting maximum likelihood estimates of W and

σ2 can be written in closed form, as [Tipping and Bishop, 1999A]

WML = U(Λ − σ21)R (2.9)
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σ2
ML =

1

d − d′

d
∑

i=d′+1

λi (2.10)

where U ∈ Mdd′ is the matrix of the d′ principal column eigenvectors

of S, Λ is the corresponding diagonal matrix of principal eigenvalues,

and R ∈ Md′ is an arbitrary orthogonal matrix. Thus σ2 captures the

variance lost in the discarded projections and the PCA directions ap-

pear in the maximum likelihood estimate of W (and in fact re-appear

in the expression for the expectation of X given Y , in the limit σ → 0,

in which case the components of X become the PCA projections of Y ).

This closed form result is rather striking in view of the fact that for

general factor analysis (for example, for diagonal but non-isotropic Ψ)

we must resort to an iterative algorithm. The probabilistic formulation

makes PCA amenable to a rich variety of probabilistic methods: for

example, PPCA allows one to perform PCA when some of the data

has missing components; and d′ (which so far we’ve assumed known)

can itself be estimated using Bayesian arguments [Bishop, 1999]. Re-

turning to the problem posed at the beginning of this Section, a mix-

ture of PPCA models, each with weight πi ≥ 0,
∑

i πi = 1, can

be computed for the data using maximum likelihood and EM, thus

giving a principled approach to combining several local PCA models

[Tipping and Bishop, 1999B].

2.3 Kernel PCA

PCA is a linear method, in the sense that the reduced dimension rep-

resentation is generated by linear projections (although the eigenvec-

tors and eigenvalues depend non-linearly on the data), and this can

severely limit the usefulness of the approach. Several versions of nonlin-

ear PCA have been proposed (see e.g. [Diamantaras and Kung, 1996])

in the hope of overcoming this problem. In this section we describe one

such algorithm called kernel PCA [Schölkopf et al., 1998]. Kernel PCA

relies on the “kernel trick”, the essence of which rests on the following

observation: suppose you have an algorithm (for example, k’th near-

est neighbour) which depends only on dot products of the data. Con-

sider using the same algorithm on transformed data: x → Φ(x) ∈ F ,
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where F is a (possibly infinite dimensional) vector space, which we

will call feature space. Operating in F , your algorithm depends only

on the dot products Φ(xi) · Φ(xj). Now suppose there exists a (sym-

metric) ’kernel’ function k(xi,xj) such that for all xi, xj ∈ Rd,

k(xi,xj) = Φ(xi) · Φ(xj). Then since your algorithm depends only on

these dot products, you never have to compute Φ(x) explicitly; you can

always just substitute the kernel form. In fact this ’trick’ is very gen-

eral, and since it is widely used, we summarize it briefly here. Consider

a Hilbert space H (a complete vector space for which an inner product

is defined). We will take H to be a space whose elements are real valued

functions defined over Rd, for concreteness. Consider the set of linear

evaluation functionals Ix : f ∈ H → f(x) ∈ R, indexed by x ∈ Rd.

If every such linear functional is continuous, then there is a special

function kx associated with H, also indexed by x, and called a repro-

ducing kernel, for which 〈f, kx〉 = f(x). Such Hilbert spaces are called

Reproducing Kernel Hilbert Spaces (RKHSs) and this particular rela-

tion is called the reproducing property. In particular, the function kx1

evaluated at some other point x2 is defined as k(x1,x2) ≡ kx1
(x2), and

using the reproducing property on kx itself yields 〈kx1
, kx2

〉 = k(x1,x2).

From this follow the usual properties we associate with kernels - they

are symmetric in their arguments, and are positive definite functions.

Mapping the notation back to our informal description above, F is H,

and Φ(x) is kx. RKHS’s were first introduced as a method to work

implicitly in high dimensional spaces (in which classifiers are linearly

separating hyperplanes), by [Aizerman et al., 1964] in their theory of

potential functions (although their formalism was not cast in terms

of Hilbert spaces and kernels, the potential functions they introduced

are kernels in RKHSs); RKHSs gained further traction in the work of

[Kimeldorf and Wahba, 1971], who introduced the “Representer Theo-

rem”, which shows that under general conditions, the solution to a gen-

eral regularized optimization problem in an RKHS can be written as

an expansion over functions kxi
, where the xi are training samples; and

RKHSs appeared on the machine learning scene in [Boser et al., 1992],

where they were first applied to support vector machines, to obtain clas-

sifiers that, although linear in the RKHS, are nonlinear when viewed
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as functions over the sample space.

Kernel PCA applies the kernel trick to create a nonlinear version of

PCA in sample space by performing ordinary PCA in F . It’s striking

that, since projections are being performed in a space whose dimen-

sion can be much larger than d, the number of useful such projections

can actually exceed d. It is not immediately obvious that PCA is eligi-

ble for the kernel trick, since in PCA the data appears in expectations

over products of individual components of vectors, not over inner prod-

ucts between the vectors. However [Schölkopf et al., 1998] show how

the problem can indeed be cast entirely in terms of inner products.

They make two key observations: first, that the eigenvectors of the co-

variance matrix in F lie in the span of the (centered) mapped data, and

second, that therefore no information in the eigenvalue equation is lost

if the equation is replaced by m equations, formed by taking the inner

product of each side of the eigenvalue equation with each (centered)

mapped data point. Let’s see how this works. The covariance matrix

of the mapped data in feature space is

C ≡ 1

m

m
∑

i=1

(Φi − µ)(Φi − µ)T (2.11)

where Φi ≡ Φ(xi) and µ ≡ 1
m

∑

i Φi. We are looking for eigenvector

solutions v of

Cv = λv (2.12)

Since this can be written 1
m

∑m
i=1(Φi − µ)[(Φi − µ) · v] = λv, the

eigenvectors v lie in the span of the Φi − µ’s, or

v =
∑

i

αi(Φi − µ) (2.13)

for some αi. We will denote the vector whose ith component is αi by

α ∈ Rm. Since (both sides of) Eq. (2.12) lie in the span of the Φi −µ,

we can replace it with the m equations

(Φi − µ)T Cv = λ(Φi − µ)Tv (2.14)

We can easily compute the kernel matrix Kij, the matrix of inner prod-

ucts10 in F : Kij ≡ 〈Φi,Φj〉 = k(xi,xj), i, j = 1, . . . ,m. However, what

10 A matrix of inner products is called a Gram matrix. Any Gram matrix G is necessarily
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we need is the centered kernel matrix, KC
ij ≡ 〈(Φi−µ), (Φj −µ)〉. Note

that we do not need to compute µ explicitly since any m by m inner

product matrix can be centered by left- and right- multiplying by the

projection matrix P ≡ 1 − 1
mee′, where 1 is the unit matrix in Mm

and where e is the m-vector of all ones (see Section 3.2 for further

discussion of centering). Thus KC = PKP and Eq. (2.14) becomes

KCKCα = νKCα (2.15)

where ν ≡ mλ. Now clearly any solution of

KCα = να (2.16)

is also a solution of (2.15). It’s straightforward to show that any solution

of (2.15) can be written as a solution α to (2.16) plus a vector β

which is orthogonal to α (and which satisfies
∑

i βi(Φi − µ) = 0),

and which therefore does not contribute to (2.13); therefore we need

only consider Eq. (2.16). Finally, to use the eigenvectors v to compute

principal components in F , we need v to have unit length, that is,

v·v = 1 = να·α (using (2.13) and (2.16)), so the α must be normalized

to have length 1/
√

ν.

The recipe for extracting the i’th principal component in F using

kernel PCA is therefore:

(1) Compute the i’th principal eigenvector of KC , with eigen-

value ν.

(2) Normalize the corresponding eigenvector, α, to have length

1/
√

ν.

(3) For a training point xk, the principal component is then just

(Φ(xk) − µ) · v = ναk (2.17)

(4) For a general test point x, the principal component is

(Φ(x) − µ) · v =
∑

i

αik(x,xi) −
1

m

∑

i,j

αik(x,xj)

− 1

m

∑

i,j

αik(xi,xj) +
1

m2

∑

i,j,n

αik(xj ,xn)

positive semidefinite, as is easily seen in this case from z
′Kz =

∑

ij
zizj〈Φi,Φj〉 =

‖
∑

i
ziΦi‖2.
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where the last two terms can be dropped since they don’t

depend on x.

Kernel PCA may be viewed as a way of putting more effort into the

up-front computation of features, rather than putting the onus on the

classifier or regression algorithm. Kernel PCA followed by a linear SVM

on a pattern recognition problem has been shown to give similar results

to using a nonlinear SVM using the same kernel [Schölkopf et al., 1998].

It shares with other kernel methods the attractive property of math-

ematical tractability and of having a clear geometrical interpretation:

for example, this has led to using kernel PCA for de-noising data, by

finding that vector z ∈ Rd such that the Euclidean distance between

Φ(z) and the vector computed from the first few PCA components in

F is minimized [Mika et al., 1999]. Classical PCA has the significant

limitation that it depends only on first and second moments of the

data, whereas kernel PCA does not (for example, a polynomial kernel

k(xi,xj) = (xi ·xj +b)p contains powers up to order 2p, which is partic-

ularly useful for e.g. image classification, where one expects that prod-

ucts of several pixel values will be informative as to the class). Kernel

PCA has the computational limitation of having to compute eigenvec-

tors for square matrices of side m, but again this can be addressed,

for example by using a subset of the training data, or by using the

Nyström method for approximating the eigenvectors of a large Gram

matrix (see below).

2.4 Canonical Correlation Analysis

Suppose we have two datasets x1i ∈ S1,x2j ∈ S2, where S1 ≡ Rd1 ,

S2 ≡ Rd2 , and i = 1, ...,m1, j = 1, ...,m2. Note that d1 may not equal d2

and that m1 may not equal m2. Canonical Correlation Analysis (CCA)

[Hotelling, 1936] finds paired directions {w1,w2}, w1 ∈ S1, w2 ∈ S2

such that the projection of the first dataset along w1 is maximally cor-

related with the projection of the second dataset along w2. In addition,

for i 6= j, the projections along the pairs {w1i,w1j}, {w2i,w2j} and

{w1i,w2j} are all uncorrelated. Furthermore, the values of the w · x’s

themselves are invariant to invertible affine transformations of the data,

which gives CCA a coordinate independent meaning, in contrast to
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ordinary correlation analysis. Hotelling gives the following example,

taken from [Kelly, 1928]: 140 seventh-grade school children were tested

for their ability in reading and arithmetic. Two measures of efficacy

were used for reading (speed and ’power’) and two for arithmetic (also

called speed and ’power’). In this case CCA revealed that, according

to this data, reading and arithmetic involve one and only one common

mental factor, with a p-value of approximately 0.0001. Note that in

cases like this, the datasets are themselves paired, so that m1 = m2.

CCA may be summarized as follows (in this section, we will reserve

the subscripts {p, q} to lie in {1, 2}, and we remind the reader that

subscripts {i, j} index vectors, and {a, b} index vector components).

We are given two random variables, X1, X2 with sample spaces Ω1 ∈
Rd1 and Ω2 ∈ Rd2 . We assume for now that we are able to compute

expectations of quadratic products of the X’s. To keep the discussion

uncluttered we also assume that both X1 and X2 have zero mean.

Introduce random variables U ≡ X1 ·w1 and V ≡ X2 ·w2. We wish to

find w1 ∈ Rd1 , w2 ∈ Rd2 , such that the correlation

ρ ≡ E[UV ]
√

E[U2]E[V 2]
=

w′
1C12w2

√

(w′
1C11w1)(w′

2C22w2)
≡ A12√

A11A22
(2.18)

is maximized, where Cpq ≡ E[XpX
′
q] and we have introduces scalars

Apq ≡ w′
pCpqwq. Setting the derivative of ρ2 with respect to wpa equal

to zero for p = {1, 2} gives

C−1
11 C12w2 =

A12

A11
w1 (2.19)

C−1
11 C12C

−1
22 C21w1 = ρ2w1 (2.20)

(where we have assumed that the covariance matrices C11 and C22 are

nonsingular; note that A12 = A21 and that C12 = C ′
21), and similarly

for {1 ⇔ 2}.
The matrices left-multiplying the w’s in Eqs. (2.19, 2.20) are not

necessarily symmetric (note that C12 is not necessarily square). Since

the eigenvalues of general square matrices need not be real, it would

be comforting to check that solving Eqs. (2.19, 2.20) will always result

in real, positive ρ2. We can use Choleski decomposition to write Cpp ≡
RppR

′
pp where Rpp is lower triangular [Horn and Johnson, 1985]: then
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writing z1 ≡ R′
11w1, Eq. (2.20) becomes

R−1
11 C12C

−1
22 C21R

′−1
11 z1 = ρ2z1 (2.21)

The left hand multiplicand is now a (symmetric) positive definite ma-

trix, since for any vector s ∈ Rd1, we have

s′R−1
11 C12C

−1
22 C21R

′−1
11 s = t′t (2.22)

where t ≡ R−1
22 C21R

−1
11 s, so ρ2 is indeed real and positive.

While we’re on the subject of sanity checks, it’s conceivable that

(2.20) is necessary but not sufficient, so we should also check that its

eigenvalues always take the form ρ2 = A2
12/(A11A22). Eq. (2.20) and

the {1 ⇔ 2} version of Eq. (2.19) gives

ρ2A11 = w′
1C12C

−1
22 C21w1 = w′

1C12
A12

A22
w2 =

A2
12

A22
(2.23)

2.4.1 CCA Decorrelates the Data

CCA shares with PCA the property that the projections decorrelate

the data. For CCA, the data is decorrelated both within S1 and S2 and

between S1 and S2, and the directions are conjugate with respect to

the covariance matrices. To see this, consider the set of solutions w1i

and corresponding w2i. First note that from Eq. (2.20), for ρi 6= ρj ,

w′
1jC12C

−1
22 C21w1i = ρ2

i w
′
1jC11w1i = ρ2

jw
′
1iC11w1j = 0 (2.24)

Hence w′
1iC11w1j = 0 = w′

2iC22w2j. Similarly from (2.19), we have

w′
2jC21w1i = (A12/A22)w

′
2jC22w2i = 0, again for distinct eigenvalues.

For repeated eigenvalues, the w’s may again be chosen to be conjugate

with respect to the covariance matrices. Thus in the new basis, the

variables are uncorrelated:

E[UiU
′
j ] = E[w1i ·X1w1j · X1] = w′

1iC11w1j = 0 for i 6= j (2.25)

and similarly E[ViV
′
j ] = E[UiV

′
j ] = 0 if i 6= j.

2.4.2 CCA is Invariant under Invertible Affine Transforma-

tions

What happens to the w·x projections if we translate, rotate or scale the

data? Perhaps we should whiten the data in both S1 and S2 first. One of
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the strengths of CCA is that this is not necessary: the projected values

are invariant under invertible affine transformations x ∈ Rd → Bx +

b, B ∈ Md, b ∈ Rd, provided the w’s are appropriately transformed.

Invariance with respect to translations follows directly from the

definition of ρ, since covariance matrices are functions of the centered

data. We can check invariance under the invertible transformation x̄1 ≡
Bx1 as follows: in the new coordinate system, Eq. (2.20) becomes

C̄−1
11 C̄12C

−1
22 C̄21w̄1 = ρ2w̄1 (2.26)

where C̄11 = BC11B
′, C̄12 = BC12 and C̄21 = C21B

′, so that

C−1
11 C12C

−1
22 C21B

′w̄ = ρ2B′w̄ (2.27)

Hence the eigenvalues ρ take the same values. Thus solving in the

transformed coordinate system we see that we will find w̄1 which are

related to w1 by w1 = B′w̄1, so that for any x1 ∈ S1, w1 ·x1 = (w̄1B) ·
(B−1x̄1) = w̄1 · x̄1. Thus the projections themselves remain invariant,

and hence the correlations between projections remain invariant. By

simply swapping {1 ↔ 2} in the above argument we see that in this

sense, CCA is invariant under invertible affine transformations of both

S1 and S2 independently.

Note that the above two properties - decorrelation and affine in-

variance - are not shared by ordinary correlation analysis: the matrix

whose ab’th element is E[x1ax2b]/
√

E[x2
1a]E[x2

2b] can take very different

forms in different coordinate systems. For example, given a set of ran-

dom variables that are distributed as the components of a multivariate

Gaussian, one can choose an affine transformation to a new coordi-

nate system in which the data are uncorrelated: correlation alone is a

coordinate dependent concept.

2.4.3 CCA in Practice; Kernel CCA

So far we have assumed that expectations of products of the X’s can

be computed. This is usually a tall order, and in practice CCA is ap-

plied to paired datasets, x1i, x2j , i, j = 1, ...,m, where the empiri-

cal distribution (used to compute the above expectations) is simply

P (xpia, xqjb) = (1/m)δij , giving covariance matrices (for zero mean
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data) Cpq = (1/m)
∑m

i=1 xpix
′
qi. The underlying assumption here is

that x1i and x2i are different views of the same object (for example,

measurements of mathematical ability, and reading ability, for the i’th

seventh-grader). While CCA was originally proposed as a kind of factor

analysis for paired datasets, the projections can also be used as (heuris-

tic) similarity measures: [Hardoon, Szedmak and Shawe-Taylor, 2004]

consider the problem of content-based image retrieval from the web,

where vectors in S1 represent the image content and vectors in S2 rep-

resent the text surrounding the image. At run time, the user enters some

text, and an appropriate image is hopefully retrieved. The similarity of

a piece of text and an image is defined as the cosine between the vector

whose ith component is x1 · w1i and the vector whose ith component

is x2 ·w2i; the lookup requires a scan over the image database for each

incoming text query. [Hardoon, Szedmak and Shawe-Taylor, 2004] also

show how CCA can be kernelized, which we summarize briefly here.

Kernel CCA follows kernel PCA in spirit. The data x1 ∈ Rd1 ,

x2 ∈ Rd2 are mapped to feature spaces F1 and F2 by maps Φ1, Φ2

respectively (note that F1 and F2 may or may not be the same). Since

the w1i ∈ F1, w2i ∈ F2 are used only to take projections, we can as-

sume that they lie in the span of the data, so that there exist αp such

that

wp =
m
∑

i=1

αpiΦp(xpi) (2.28)

where we have dropped the index enumerating the w’s (and the cor-

responding index on the α’s) for clarity. Thus, for a given solution,

αp ∈ Rm. Since CCA depends only on inner products the Φ’s are never

explicitly needed:

wp · Φp(xpj) =
m
∑

i=1

αpi〈Φp(xpi),Φp(xpj)〉 =
m
∑

i=1

αpiKp(xpi,xpj) (2.29)

Following the above analysis, but in the spaces Fp, yields

ρ = max
α1,α2

α′
1K1K2α2

√

α′
1K

2
1α1α′

2K
2
2α2

(2.30)

where each Kp is a square matrix of side m. For any data and mapping

Φp for which the K’s are invertible, this can be solved analytically;
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however the solutions have perfect correlation (or anti correlation):

ρ = ±1. An example of such a choice of F is the space corresponding

to radial basis function kernels. Such a mapping clearly gives too much

’wiggle room’ to the data; we need to regularize. This can be achieved

with the same regularization device used in partial least squares, by

penalizing the norm of the wp vectors. For large datasets, and addi-

tional problem must be addressed: matrices of side equal to the sample

size must be inverted. This can be overcome using approximate tech-

niques such as incomplete Choleski decomposition. We refer the reader

to [Hardoon, Szedmak and Shawe-Taylor, 2004] for details.

2.5 Oriented PCA and Distortion Discriminant Analysis

Before leaving projective methods, we describe another extension of

PCA, which has proven very effective at extracting robust features from

audio [Burges et al., 2002, Burges et al., 2003]. We first describe the

method of oriented PCA (OPCA) [Diamantaras and Kung, 1996]. Sup-

pose we are given a set of ’signal’ vectors xi ∈ Rd, i = 1, . . . ,m, where

each xi represents an undistorted data point, and suppose that for each

xi, we have a set of N distorted versions x̃k
i , k = 1, . . . , N . Define the

corresponding ’noise’ difference vectors to be zk
i ≡ x̃k

i − xi. Roughly

speaking, we wish to find linear projections which are as orthogonal as

possible to the difference vectors, but along which the variance of the

signal data is simultaneously maximized. Denote the unit vectors defin-

ing the desired projections by ni, i = 1, . . . , d′, ni ∈ Rd, where d′ will

be chosen by the user. By analogy with PCA, we could construct a fea-

ture extractor n which minimizes the mean squared reconstruction er-

ror 1
mN

∑

i,k(xi−x̂k
i )

2, where x̂k
i ≡ (x̃k

i ·n)n. The n that solves this prob-

lem is that eigenvector of R1−R2 with largest eigenvalue, where R1, R2

are the correlation matrices of the xi and zi respectively. However this

feature extractor has the undesirable property that the direction n will

change if the noise and signal vectors are globally scaled with two dif-

ferent scale factors. OPCA [Diamantaras and Kung, 1996] solves this

problem. The first OPCA direction is defined as that direction n that

maximizes the generalized Rayleigh quotient [Duda and Hart, 1973,

Diamantaras and Kung, 1996] q0 = n
′C1n

n′C2n
, where C1 is the covariance
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matrix of the signal and C2 that of the noise. For d′ directions collected

into a column matrix N ∈ Mdd′ , we instead maximize det(N ′C1N )
det(N ′C2N ) . For

Gaussian data, this amounts to maximizing the ratio of the volume of

the ellipsoid containing the data, to the volume of the ellipsoid contain-

ing the noise, where the volume is that lying inside an ellipsoidal surface

of constant probability density. We in fact use the correlation matrix of

the noise rather than the covariance matrix, since we wish to penalize

the mean noise signal as well as its variance (consider the extreme case

of noise that has zero variance but nonzero mean). Explicitly, we take

C ≡ 1

m

∑

i

(xi − E[x])(xi − E[x])′ (2.31)

R ≡ 1

mN

∑

i,k

zk
i (zk

i )
′ (2.32)

and maximize q = n
′Cn

n′Rn
, whose numerator is the variance of the projec-

tion of the signal data along the unit vector n, and whose denominator

is the projected mean squared “error” (the mean squared modulus of

all noise vectors zk
i projected along n). We can find the directions nj

by setting ∇q = 0, which gives the generalized eigenvalue problem

Cn = qRn; those solutions are also the solutions to the problem of

maximizing det(N ′CN )
det(N ′RN ) . If R is not of full rank, it must be regularized

for the problem to be well-posed. It is straightforward to show that, for

positive semidefinite C, R, the generalized eigenvalues are positive, and

that scaling either the signal or the noise leaves the OPCA directions

unchanged, although the eigenvalues will change. Furthermore the ni

are, or may be chosen to be, linearly independent, and although the ni

are not necessarily orthogonal, they are conjugate with respect to both

matrices C and R, that is, n′
iCnj ∝ δij , n′

iRnj ∝ δij .

OPCA is similar mathematically to multiclass discriminant

analysis (MDA) where the number of classes is equal to m

[Duda and Hart, 1973], but there is a crucial difference: in MDA, there

is no notion of a ’canonical’ (or ’signal’) sample for each class; the MDA

within-class scatter for a given class is computed as the covariance ma-

trix for that class. In OPCA, for each class, the mean vector used in

MDA is replaced by the single canonical (zero noise) point, which can

lie far from the sample mean. This is done in both the numerator,
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where each MDA class means is replaced by the corresponding signal

point, and where the overall mean is replaced by the mean of the sig-

nal points; and in the denominator, where the sample covariance for a

given class is replaced by sums of squares of differences between noise

vectors for that class and the signal vector for that class. This amounts

to leveraging additional, valuable information about the problem, and

can lead to significantly improved results for problems where such data

is available (such as the audio fingerprinting task, where a very clean

version of each original clip can be obtained).

’Distortion discriminant analysis’ [Burges et al., 2002,

Burges et al., 2003] uses layers of OPCA projectors both to re-

duce dimensionality (a high priority for audio or video data) and to

make the features more robust. The above features, computed by

taking projections along the n’s, are first translated and normalized

so that the signal data has zero mean and the noise data has unit

variance. For the audio application, for example, the OPCA features

are collected over several audio frames into new ’signal’ vectors, the

corresponding ’noise’ vectors are measured, and the OPCA directions

for the next layer found. This has the further advantage of allowing

different types of distortion to be penalized at different layers, since

each layer corresponds to a different time scale in the original data

(for example, a distortion that results from comparing audio whose

frames are shifted in time to features extracted from the original data

- ’alignment noise’ - can be penalized at larger time scales).

2.6 Sufficient Dimension Reduction

This review is aimed primarily at dimension reduction in the unsuper-

vised setting, but OPCA could be considered as attaching a label to

each signal point, and in this section we continue exploring this super-

visory thread by considering techniques for dimension reduction where

the data consists of predictor-response pairs {xi, yi}, i = 1, . . . ,m.

There are several reasons one might want to do this: if the x’s appear

in the underlying functional dependence only through a small number

of projections, then those projections may be used to construct various

plots to visualize the data; and smaller, more accurate models of the
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regression itself can be constructed if one knows that an entire subspace

can be ignored.

We consider models of the form

y = f(a′
1x,a′

2x, ...,a′
kx, ε), ai,x ∈ Rd, ε ∈ R (2.33)

where the ε’s model the noise and are assumed independent of X. The

presence of the y’s can drastically change the picture: for example, X

could be distributed in such a way that no useful dimension reduction

of the X alone is possible, whereas Y might depend only on a single

component of X. Let a denote that matrix whose columns are the

ai. Then the above list of dot products may be written as aTx and

this defines a subspace spanned by the columns of aT , which we will

denote by Sa. An alternative way of writing (2.33), which emphasizes

its underlying statistical independence assumption, is

Y ⊥⊥ X | aT X (2.34)

Here we will follow the notation of [Cook, 1998], who defines a min-

imum dimension-reduction subspace (minimum DRS) as a space Sa

satisfying Eq. (2.34) for which k is minimal. A central subspace is de-

fined as the intersection of all DRS’s, if that intersection is itself a DRS.

If so, then the central subspace is the unique minimum DRS. However

a central subspace may not in fact be a DRS (it’s easy to construct an

example for which one minimum DRS is spanned by x1 and another

by x2 [Cook, 1998], so that the intersection is null). The goal of Suffi-

cient Dimension Reduction11 is to estimate the central subspace, when

it exists (or, here, to estimate a minimum DRS when it doesn’t). Let’s

start by describing one of the earliest approaches to SDR.

2.6.1 Sliced Inverse Regression

Sliced Inverse Regression (SIR) was introduced in a seminal paper by

[Li, 1991a]. Since this paper sparked a fruitful line of research, we will

11 The phrase Sufficient Dimension Reduction was introduced to the statistics community
by [Cook and Lee, 1999]. The phrase Sufficient Dimensionality Reduction was introduced
to the machine learning community by [Globerson and Tishby, 2003]. The approaches are
quite different; we briefly summarize the latter below.
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examine the basic ideas in detail here. Normal (forward) regression es-

timates E[Y |x]12. Inverse regression instead estimates E[X|y], which

is a much easier problem since it amounts to solving d one dimensional

regression problems: E[X|y]a =
∫

xap(x|y)dx =
∫

xap(xa|y)dxa =

E[Xa|y]. It is a remarkable fact that a minimum DRS for the above

problem (Eq. (2.33)) can be estimated when the marginal p(X) is ellip-

tic13, and assuming that the xi are IID. This can be done despite the

fact that the problem as stated is ill-posed (i.e. by redefining f , the α’s

can be redefined) and despite the fact that we know nothing about f

or ε directly. As y varies, E[X|y] will trace a curve in Rd. Noting that,

given the form (2.33), for fixed ε, a small change x → x + δx in the

subspace orthogonal to Sa leaves y unchanged, one might hope to find

conditions under which E[X|y] can be shown to lie in Sa. [Li, 1991a]

gives us one such sufficient condition. Given this, the SIR algorithm

consists of grouping the measured xi by their corresponding values of

y (binned if necessary), computing the mean for each group, and per-

forming a weighted PCA on the resulting set of vectors in order to

estimate Sa.

Theorem 2.1. Given Eq. (2.33), further assume that

E[X|a′
1x,a′

2x, . . . ,a′
kx] lies in the subspace spanned by ΣXXai,

where ΣXX is the covariance matrix of X. Then the centered inverse

regression curve E[X|y] − E[X] lies in that subspace.

Proof. Here we will sacrifice brevity and a little generality in the cause

of gaining further insight: we will assume that p(X) is elliptic, and first

show that this leads to the condition in the proof. We will denote the

hyperplane defined by ∩k
i {x : a′

ix = αi}, simply by {a′
ix = αi}. First

note that for any density p(X), E[X|{a′
ix = αi}] must itself lie on the

hyperplane {a′
ix = αi}, since

a′
jE[X|{a′

ix = αi}] = E[a′
jX|{a′

ix = αi}] = E[αj |{a′
ix = αi}] = αj

(2.35)

12 We restrict the disussion here to one dimensional y.
13 An elliptic density is one for which the contours of constant density are ellipsoids, such

as the Gaussian.
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However this is not quite what we need: while this does mean that

the expectation lies in a subspace, that subspace will vary as the αi

vary. We are interested in a stronger characterization of a subspace

that depends on the ai only.

Let’s change coordinates to a basis in which the density is spheri-

cal14, z = Σ
−1/2
XX x. Introducing bi = Σ

1/2
XXai, in this coordinate system

the constraints a′
ix = αi become a′

iΣ
1/2
XXz ≡ b′

iz = αi. Consider the

quantity

E[Z|{b′
iz = αi}] (2.36)

The bi need not be orthogonal: however we can always introduce an

orthonormal set ui such that for some βi, the hyperplane

H ≡ {a′
ix = αi} = {b′

iz = αi} = {u′
iz = βi} (2.37)

Since p(Z) is spherical and is centered at the origin, the induced density

on H will also be spherical, and will be centered on the point of closest

approach of H to the origin. Now points on H can be written as z =
∑k

i=1 uiβi + u⊥, where u′
⊥ui = 0: the u⊥ lie in H. The nearest point

on H to the origin is therefore
∑k

i=1 uiβi, since u⊥ = 0 minimizes

‖∑k
i=1 uiβi + u⊥‖2, and so transforming back to the b’s, there must

exist scalars γi such that

E[Z|{u′
iz = βi}] =

k
∑

i=1

uiβi =
k
∑

i=1

biγi =
k
∑

i=1

Σ
1/2
XXaiγi (2.38)

Applying Σ
1/2
XX to both sides gives the result:

E[X|{a′
ix = αi}] =

k
∑

i=1

ΣXXaiγi (2.39)

so E[X|{a′
ix = αi}] is spanned by the ΣXXai.

This geometric argument has brought us quite close to the desired

result: we wish to show a similar result for

E[X|Y ] = E[X|f(a′
1x,a′

2x, ...,a′
kx, ε)] (2.40)

14 We assume that ΣXX has been regularized if necessary so that Σ−1

XX
(and the density

p(X) itself) exists.
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By the tower property [Ross and Peköz, 2007], and by conditional in-

dependence, E[X|Y ] = E[E[X|{aiX}, Y ]|Y ] = E[E[X|{aiX}]|Y ], so

by linearity of expectation, for any s in the space orthogonal to the

ΣXXai, we have that s′E[X|Y ] = E[E[s′X|{aiX}]|Y ] = 0.

We end this section with a brief tour of some related work.

[Cook and Weisberg, 1991] point out that the above condition in fact

implies that p(x) is elliptical, although [Li, 1991b] rejoinds that the

condition only has to hold for the a’s such that the ΣXXα project

to the central subspace, and additionaly argues that the result of

[Diaconis and Freedman, 1984] shows that the method will be robust

to non-ellipticity for high dimensional data. [Cook and Weisberg, 1991]

and [Li, 1992] note that the directions found by SIR lie in the cen-

tral subspace but need not span it: for example, Y = X2
1 + ε will

give E[X|Y ] = 0 despite the fact that the central subspace is spanned

by x1. [Cook and Weisberg, 1991] propose SAVE (Sliced Average Vari-

ance Estimate) to help address this, in which var(X|Y ) rather than

E[X|Y ] is expanded in terms of the central subspace directions, and

they also propose a more robust permutation test for statistical signif-

icance, rather than using the smallest eigienvalues of the PCA as pro-

posed in [Li, 1991a]. [Li, 1992] also proposes a second order method,

“principal Hessian directions” (pHd), to handle the symmetry prob-

lem. The idea is based on the fact that the Hessian of the forward

regression function will be degenerate along directions orthogonal to

the central subspace. A basis is chosen in which, for the first coordi-

nate, the average curvature of the regression function along that axis is

maximal, then this is repeated for each successive coordinate. Those co-

ordinates are then identified as central subspace directions. [Li, 1992]

recommends using both SIR and pHd for any given problem, since

the former tends to be more stable, but the latter handles symmetric

cases. [Li, Zha and Chiaromonte, 2005] propose approaching SDR by

estimating contour directions of small variations in the response; the

method solves the problem of finding the full set of central subspace di-

rections (unlike SIR and pHd), but it still assumes elliptic X, although

robustness to departures from ellipticity is claimed.
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2.6.2 Kernel Dimension Reduction

SIR, where applicable, has the significant advantages that is easy to

implement and can handle large datasets. However it has some limita-

tions. First, SIR, and the above methods it inspired, assume elliptically

distributed data. SIR can miss finding central subspace directions, for

example if the data has symmetries under which the inverse regres-

sion is invariant, and similarly, pHd can miss such directions if the

corresponding coordinates only appear as variances in f . In fact, the

dimension of the space that SIR finds is bounded above, for tasks in

which y takes one of c discrete values, by c − 1, which limits its ap-

plicability to classification tasks. Kernel dimension reduction (KDR)

[Fukumizu, Bach and Jordan, 2009] addresses all of these issues, and

the approach is aimed directly at the defining condition for Sufficient

Dimension Reduction: Y ⊥⊥ X|αT x. Furthermore the approach is very

general. We briefly summarize the ideas here and refer the reader to

[Fukumizu, Bach and Jordan, 2009] for details. Associate with the ran-

dom variables X and Y (where the latter is no longer restricted to be

a scalar), Reproducing Kernel Hilbert Spaces (RKHSs), HX and HY .

In addition assign to HX and HY the Lebesque measures of the proba-

bility spaces over which X and Y are defined (so that, for example, for

f1, f2 ∈ HX , 〈f1, f2〉 =
∫

f1(x)f2(x)dP (X)). Then a “cross covariance”

operator ΣY X : HX → HY can be defined so that

〈g,ΣY Xf〉 = EXY [(f(X) − EX [f(X)])(g(Y ) − EY [g(Y )])] (2.41)

A conditional covariance operator ΣY Y |X ≡ ΣY Y − ΣY XΣ−1
XXΣXY is

then defined15. Next, introduce a matrix whose d columns (if X takes

values in Rd) are orthonormal, so that BBT is a projection operator to

the subspace spanned by those columns. Let KX , KY be the kernels as-

sociated with RKHS’s HX and HY respectively. Define a corresponding

kernel over the subspace by KB(x1,x2) ≡ K(BTx1, B
Tx2). Since the Σ

operators can be defined in terms of the kernels, this leads to a cross co-

variance operator for the subspace: ΣB
Y Y |X ≡ ΣY Y − ΣB

Y XΣB −1
XX ΣB

XY .

15 This is shorthand for a form in which the last term is written in terms of bounded
operators between the Hilbert spaces, and is in fact well defined when Σ−1

XX
does not

exist.
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[Fukumizu, Bach and Jordan, 2009] then show that, subject to some

weak conditions on HX , HY and the probability measures, ΣB
Y Y |X ≥

ΣY Y |X (where the inequality refers to an ordering that can be defined

for self-adjoint operators), and that ΣB
Y Y |X ≥ ΣY Y |X ⇔ Y ⊥⊥ X|BT X.

Thus the conditional covariance operator for the projected space is di-

rectly related to the conditional independence quantity we are after.

Finally, the authors write a sample version of the objective function,

using centered Gram matrices GB
X , GY of the data (we will enounter

such quantities again below), as

Tr[GY (GB
X + mεmIm)−1]

subject to BTB = 1 (2.42)

where m is the sample size and ε a regularization parameter. B is then

found using gradient descent.

So far, we have not considered the case in which there is structure

in the high dimensional space. For example, suppose that your 100

dimensional data actually lies on a two dimensional torus, with noise

added in the remaining 98 directions. [Nilsson, Sha and Jordan 2007]

solve such structured problems for the supervised (regression) case by

combining KDR with the Laplacian eigenmaps approach to manifold

modeling. We will cover the latter, which is an unsupervised version of

dimension reduction on manifolds, in the next chapter.

We end by noting that, while KDR is appealing in how it directly

solves the SDR problem, and in its freedom from the drawbacks attend-

ing the previously mentioned methods, the above optimization prob-

lem, as stated, will be intractable for large datasets (the Gram matrices

are in Mmm; the kernels are required to be universal [Steinwart, 2001],

and will in general have high rank). However as for kernel PCA, this

could be addressed by subsampling, or by using the Nyström method.

Recent, parallel work by [Hsing and Ren, 2009] also propose RKHS’s

as providing a unified framework for dimension reduction through in-

verse regression. Here we have not considered the issue of consistency

or convergence properties of the methods: we refer the reader to the

papers for details.
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2.6.3 Sufficient Dimensionality Reduction

Here we briefly describe Sufficient Dimensionality Reduc-

tion (SDR’), a similarly named but quite different technique

[Globerson and Tishby, 2003]13. SDR’ is not a supervised method.

Rather than searching for a subspace that satifies Eq. (2.34), SDR’

models the density p(X), parameterized by y, using two-way contin-

gency tables. X and the model parameters Y are discrete variables

(the parameters are also treated as random variables), and SDR’

is a dimension reduction method in the sense that the number

of parameters needed to describe p(X) is reduced from |X||Y | to

(d+1)(|X|+ |Y |), where d is the dimension of a feature space to which

X is mapped. The key idea of SDR’ is to identify feature mappings

φ(x) such that the y’s can be described by a small set of such features.

When p is in the exponential family, such sufficient statistics can

be constructed, but this is not the case otherwise: SDR’ uses an

information theoretic max-min framework to quantify the information

about the y’s that can be gleaned from the φ(x)’s: hence the term

“sufficient” in the designation. Although interesting, the method is

not dimension reduction in the usual sense and so we will not pursue

it here.
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Manifold Modeling

In Chapter 2 we gave an example of data with a particular geometric

structure which would not be immediately revealed by examining one

dimensional projections in input space1. How, then, can such underly-

ing structure be found? This section outlines some methods designed to

accomplish this. However we first describe the Nyström method (here-

after simply abbreviated as ’Nyström’), which provides a thread linking

several of the algorithms we describe.

3.1 The Nyström method

Suppose that K ∈ Mn and that the rank of K is r � n. Nyström gives

a way of approximating the eigenvectors and eigenvalues of K using

those of a small submatrix A. If A has rank r, then the decomposi-

tion is exact. This is a powerful method that can be used to speed

up kernel algorithms [Williams and Seeger, 2001], to efficiently ex-

tend some algorithms (described below) to out-of-sample (test) points

1 Although in that simple example, the astute investigator would notice that all her data
vectors have the same length, and conclude from the fact that the projected density is
independent of projection direction that the data must be uniformly distributed on the
sphere.

34
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[Bengio et al., 2004], and in some cases, to make an otherwise infeasible

algorithm feasible [Fowlkes et al., 2004]. In this section only, we adopt

the notation that matrix indices refer to sizes unless otherwise stated,

so that e.g. Amm means that A ∈ Mm.

3.1.1 Original Nyström

The Nyström method originated as a method for approximating

the solution of Fredholm integral equations of the second kind

[Press et al., 1992]. Let’s consider the homogeneous d-dimensional form

with density p(x), x ∈ Rd. This family of equations has the form
∫

k(x,y)u(y)p(y)dy = λu(x) (3.1)

The integral is approximated using the quadrature rule

[Press et al., 1992]

λu(x) ≈ 1

m

m
∑

i=1

k(x,xi)u(xi) (3.2)

which when applied to the sample points becomes a matrix equation

Kmm um = mλum (with components Kij ≡ k(xi,xj) and ui ≡ u(xi)).

This eigensystem is solved, and the value of the integral at a new point

x is approximated by using (3.2), which gives a much better approx-

imation that using simple interpolation [Press et al., 1992]. Thus, the

original Nyström method provides a way to smoothly approximate an

eigenfunction u, given its values on a sample set of points. If a different

number m′ of elements in the sum are used to approximate the same

eigenfunction, the matrix equation becomes Km′m′um′ = m′λum′ so

the corresponding eigenvalues approximately scale with the number of

points chosen. Note that we have not assumed that K is symmetric or

positive semidefinite; however from now on we will assume that K is

positive semidefinite.

3.1.2 Exact Nyström Eigendecomposition

Suppose that a kernel matrix K̃mm has rank r < m. Since K̃mm is

positive semidefinite it is a Gram matrix and can be written as K̃ =
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ZZ ′ where Z ∈ Mmr and Z is also of rank r [Horn and Johnson, 1985].

Order the row vectors in Z so that the first r are linearly independent:

this just reorders rows and columns in K̃ to give a new kernel matrix

K, but in such a way that K is still a (symmetric) Gram matrix. Then

the principal submatrix A ∈ Sr of K (which itself is the Gram matrix

of the first r rows of Z) has full rank. Now letting n ≡ m− r, write the

matrix K as

Kmm ≡
[

Arr Brn

B′
nr Cnn

]

(3.3)

Since A is of full rank, the r rows
[

Arr Brn

]

are linearly indepen-

dent, and since K is of rank r, the n rows
[

B′
nr Cnn

]

can be ex-

panded in terms of them, that is, there exists Hnr such that
[

B′
nr Cnn

]

= Hnr

[

Arr Brn

]

(3.4)

The first r columns give H = B′A−1, and the last n columns then give

C = B′A−1B. Thus K must be of the form2

Kmm =

[

A B

B′ B′A−1B

]

=

[

A

B′

]

mr

A−1
rr

[

A B
]

rm
(3.5)

The fact that we’ve been able to write K in this ’bottleneck’ form sug-

gests that it may be possible to construct the exact eigendecomposition

of Kmm (for its nonvanishing eigenvalues) using the eigendecomposi-

tion of a (possibly much smaller) matrix in Mr, and this is indeed

the case [Fowlkes et al., 2004]. First use the eigendecomposition of A,

A = UΛU ′, where U is the matrix of column eigenvectors of A and Λ

the corresponding diagonal matrix of eigenvalues, to rewrite this in the

form

Kmm =

[

U

B′UΛ−1

]

mr

Λrr

[

U Λ−1U ′B
]

rm
≡ DΛD′ (3.6)

2 It’s interesting that this can be used to perform ’kernel completion’, that is, reconstruction
of a kernel with missing values; for example, suppose K has rank 2 and that its first two
rows (and hence columns) are linearly independent, and suppose that K has met with
an unfortunate accident that has resulted in all of its elements, except those in the first
two rows or columns, being set equal to zero. Then the original K is easily regrown using
C = B′A−1B.
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This would be exactly what we want (dropping all eigenvectors whose

eigenvalues vanish), if the columns of D were orthogonal, but in general

they are not. It is straightforward to show that, if instead of diagonal-

izing A we diagonalize Qrr ≡ A + A−1/2BB′A−1/2 ≡ UQΛQU ′
Q, then

the desired matrix of orthogonal column eigenvectors is

Vmr ≡
[

A

B′

]

A−1/2UQΛ
−1/2
Q (3.7)

(so that Kmm = V ΛQV ′ and V ′V = 1rr) [Fowlkes et al., 2004].

Although this decomposition is exact, this last step comes at a price:

to obtain the correct eigenvectors, we had to perform an eigendecom-

position of the matrix Q which depends on B. If our intent is to use this

decomposition in an algorithm in which B changes when new data is

encountered (for example, an algorithm which requires the eigendecom-

position of a kernel matrix constructed from both train and test data),

then we must recompute the decomposition each time new test data is

presented. If instead we’d like to compute the eigendecomposition just

once, we must approximate.

3.1.3 Approximate Nyström Eigendecomposition

Two kinds of approximation naturally arise. The first occurs if K is

only approximately low rank, that is, its spectrum decays rapidly, but

not to exactly zero. In this case, B′A−1B will only approximately equal

C above, and the approximation can be quantified as
∥

∥C − B′A−1B
∥

∥

for some matrix norm ‖·‖, where the difference is known as the Schur

complement of A for the matrix K [Golub and Van Loan, 1996].

The second kind of approximation addresses the need to compute

the eigendecomposition just once, to speed up test phase. The idea is

simply to take Equation (3.2), sum over d elements on the right hand

side where d � m and d > r, and approximate the eigenvector of

the full kernel matrix Kmm by evaluating the left hand side at all m

points [Williams and Seeger, 2001]. Empirically it has been observed

that choosing d to be some small integer factor larger than r works

well [Platt, 2004]. How does using (3.2) correspond to the expansion

in (3.6), in the case where the Schur complement vanishes? Expanding
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A, B in their definition in Eq. (3.3) to Add, Bdn, so that Udd contains

the column eigenvectors of A and Umd contains the approximated (high

dimensional) column eigenvectors, (3.2) becomes

UmdΛdd ≈ KmdUdd =

[

A

B′

]

Udd =

[

UΛdd

B′Udd

]

(3.8)

so multiplying by Λ−1
dd from the right shows that the approximation

amounts to taking the matrix D in (3.6) as the approximate column

eigenvectors: in this sense, the approximation amounts to dropping the

requirement that the eigenvectors be exactly orthogonal.

We end with the following observation [Williams and Seeger, 2001]:

the expression for computing the projections of a mapped test point

along principal components in a kernel feature space is, apart from

proportionality constants, exactly the expression for the approximate

eigenfunctions evaluated at the new point, computed according to (3.2).

Thus the computation of the kernel PCA features for a set of points

can be viewed as using the Nyström method to approximate the full

eigenfunctions at those points.

3.2 Multidimensional Scaling

We begin our look at manifold modeling algorithms with multi-

dimensional scaling (MDS), which arose in the behavioral sciences

[Borg and Groenen, 1997]. MDS starts with a measure of dissimilarity

between each pair of data points in the dataset (note that this measure

can be very general, and in particular can allow for non-vectorial data).

Given this, MDS searches for a mapping of the (possibly further trans-

formed) dissimilarities to a low dimensional Euclidean space such that

the (transformed) pair-wise dissimilarities become squared distances.

The low dimensional data can then be used for visualization, or as low

dimensional features.

We start with the fundamental theorem upon which ’classical MDS’

is built (in classical MDS, the dissimilarities are taken to be squared dis-

tances and no further transformation is applied [Cox and Cox, 2001]).

We give a detailed proof because it will serve to illustrate a recurring

theme. Let e be the column vector of m ones. Consider the ’centering’
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matrix P e ≡ 1 − 1
mee′. Let X be the matrix whose rows are the dat-

apoints x ∈ Rn, X ∈ Mmn. Since ee′ ∈ Mm is the matrix of all ones,

P eX subtracts the mean vector from each row x in X (hence the name

’centering’), and in addition, P ee = 0. In fact e is the only eigenvec-

tor (up to scaling) with eigenvalue zero, for suppose P ef = 0 for some

f ∈ Rm. Then each component of f must be equal to the mean of all

the components of f , so all components of f are equal. Hence P e has

rank m− 1, and P e projects onto the subspace Rm−1 orthogonal to e.

By a ’distance matrix’ we will mean a matrix whose ij’th ele-

ment is ‖xi − xj‖2 for some xi, xj ∈ Rd, for some d, where ‖·‖ is

the Euclidean norm. Notice that the elements are squared distances,

despite the name. P e can also be used to center both Gram matri-

ces and distance matrices. We can see this as follows. Let [C(i, j)]

be that matrix whose ij’th element is C(i, j). Then P e[xi · xj]P
e =

P eXX ′P e = (P eX)(P eX)′ = [(xi − µ) · (xj − µ)]. In addition, using

this result, P e[‖xi −xj‖2]P e = P e[‖xi‖2eiej +‖xj‖2eiej −2xi ·xj]P
e =

−2P exi · xjP
e = −2[(xi − µ) · (xj − µ)].

For the following theorem, the earliest form of which is due to

Schoenberg [Schoenberg, 1935], we first note that, for any A ∈ Mm,

and letting Q ≡ 1
mee′,

P eAP e = {(1 − Q)A(1 − Q)}ij = Aij − AR
ij − AC

ij + ARC
ij (3.9)

where AC ≡ AQ is the matrix A with each column replaced by the

column mean, AR ≡ QA is A with each row replaced by the row mean,

and ARC ≡ QAQ is A with every element replaced by the mean of all

the elements.

Theorem 3.1. Consider the class of symmetric matrices A ∈ Sn such

that Aij ≥ 0 and Aii = 0 ∀i, j. Then Ā ≡ −P eAP e is positive semidef-

inite if and only if A is a distance matrix (with embedding space Rd

for some d). Given that A is a distance matrix, the minimal embedding

dimension d is the rank of Ā, and the embedding vectors are any set of

Gram vectors of Ā, scaled by a factor of 1√
2
.
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Proof. Assume that A ∈ Sm, Aij ≥ 0 and Aii = 0 ∀i, and that Ā is

positive semidefinite. Since Ā is positive semidefinite it is also a Gram

matrix, that is, there exist vectors xi ∈ Rm, i = 1, · · · ,m such that

Āij = xi · xj . Introduce yi = 1√
2
xi. Then from Eq. (3.9),

Āij = (−P eAP e)ij = xi · xj = −Aij + AR
ij + AC

ij − ARC
ij (3.10)

so that

2(yi − yj)
2 ≡ (xi − xj)

2 = AR
ii + AC

ii − ARC
ii + AR

jj + AC
jj − ARC

jj

−2(−Aij + AR
ij + AC

ij − ARC
ij )

= 2Aij (3.11)

using Aii = 0, AR
ij = AR

jj, AC
ij = AC

ii , and from the symmetry of A,

AR
ij = AC

ji. Thus A is a distance matrix with embedding vectors yi.

Now consider a matrix A ∈ Sn that is a distance matrix, so that Aij =

(yi − yj)
2 for some yi ∈ Rd for some d, and let Y be the matrix

whose rows are the yi. Then since each row and column of P e sums

to zero, we have Ā = −(P eAP e) = 2(P eY )(P eY )′, hence Ā is positive

semidefinite. Finally, given a distance matrix Aij = (yi −yj)
2, we wish

to find the dimension of the minimal embedding Euclidean space. First

note that we can assume that the yi have zero mean (
∑

i yi = 0), since

otherwise we can subtract the mean from each yi without changing

A. Then Āij = xi · xj , again introducing xi ≡
√

2yi, so the embedding

vectors yi are a set of Gram vectors of Ā, scaled by a factor of 1√
2
. Now

let r be the rank of Ā. Since Ā = XX ′, and since rank(XX ′) = rank(X)

for any real matrix X [Horn and Johnson, 1985], and since rank(X) is

the number of linearly independent xi, the minimal embedding space

for the xi (and hence for the yi) has dimension r.

3.2.1 General Centering

Is P e the most general matrix that will convert a distance matrix

into a matrix of dot products? Since the embedding vectors are not

unique (given a set of Gram vectors, any global orthogonal matrix

applied to that set gives another set that generates the same posi-

tive semidefinite matrix), it’s perhaps not surprising that the answer
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is no. A distance matrix is an example of a conditionally negative def-

inite (CND) matrix. A CND matrix D ∈ Sm is a symmetric matrix

that satisfies
∑

i,j aiajDij ≤ 0 ∀{ai ∈ R :
∑

i ai = 0}; the class of

CND matrices is a superset of the class of negative semidefinite matri-

ces [Berg et al., 1984]. Defining the projection matrix P c ≡ (1 − ec′),
for any c ∈ Rm such that e′c = 1, then for any CND matrix

D, the matrix −P cDP ′c is positive semidefinite (and hence a dot

product matrix) [Schölkopf, 2001, Berg et al., 1984] (note that P c is

not necessarily symmetric). This is straightforward to prove: for any

z ∈ Rm, P ′cz = (1 − ce′)z = z − c(
∑

a za), so
∑

i(P
′cz)i = 0, hence

(P ′cz)′D(P ′cz) ≤ 0 from the definition of CND. Hence we can map a

distance matrix D to a dot product matrix K by using P c in the above

manner for any set of numbers ci that sum to unity.

3.2.2 Constructing the Embedding

To actually find the embedding vectors for a given distance matrix,

we need to know how to find a set of Gram vectors for a positive

semidefinite matrix Ā. Let E be the matrix of column eigenvectors

e(α) (labeled by α), ordered by eigenvalue λα, so that the first column

is the principal eigenvector, and ĀE = EΛ, where Λ is the diagonal

matrix of eigenvalues. Then Āij =
∑

α λαe
(α)
i e

(α)
j . The rows of E form

the dual (orthonormal) basis to e
(α)
i , which we denote ẽ

(i)
α . Then we can

write Āij =
∑

α(
√

λαẽ
(i)
α )(

√
λαẽ

(i)
α ). Hence the Gram vectors are just

the dual eigenvectors with each component scaled by
√

λα. Defining

the matrix Ẽ ≡ EΛ1/2, we see that the Gram vectors are just the rows

of Ẽ.

If Ā ∈ Sn has rank r ≤ n, then the final n − r columns of Ẽ

will be zero, and we have directly found the r-dimensional embedding

vectors that we are looking for. If Ā ∈ Sn is full rank, but the last

n − p eigenvalues are much smaller than the first p, then it’s reason-

able to approximate the i’th Gram vector by its first p components√
λαẽ

(i)
α , α = 1, · · · , p, and we have found a low dimensional approx-

imation to the y’s. This device - projecting to lower dimensions by

lopping off the last few components of the dual vectors corresponding

to the (possibly scaled) eigenvectors - is shared by MDS, Laplacian
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eigenmaps, and spectral clustering (see below). Just as for PCA, where

the quality of the approximation can be characterized by the unex-

plained variance, we can characterize the quality of the approximation

here by the squared residuals. Let Ā have rank r, and suppose we only

keep the first p ≤ r components to form the approximate embedding

vectors. Then denoting the approximation with a hat, the summed

squared residuals are

m
∑

i=1

‖ŷi − yi‖2 =
1

2

m
∑

i=1

‖x̂i − xi‖2

=
1

2

m
∑

i=1

p
∑

a=1

λaẽ
(i)2
a +

1

2

m
∑

i=1

r
∑

a=1

λaẽ
(i)2
a −

m
∑

i=1

p
∑

a=1

λaẽ
(i)2
a

but
∑m

i=1 ẽ
(i)2
a =

∑m
i=1 e

(a)2
i = 1, so

m
∑

i=1

‖ŷi − yi‖2 =
1

2

(

r
∑

a=1

λa −
p
∑

a=1

λa

)

=
r
∑

a=p+1

λa (3.12)

Thus the fraction of ’unexplained residuals’ is
∑r

a=p+1 λa/
∑r

a=1 λa, in

analogy to the fraction of ’unexplained variance’ in PCA.

If the original symmetric matrix A is such that Ā is not posi-

tive semidefinite, then by the above theorem there exist no embed-

ding points such that the dissimilarities are distances between points

in some Euclidean space. In that case, we can proceed by adding a

sufficiently large positive constant to the diagonal of Ā, or by using the

closest positive semidefinite matrix, in Frobenius norm3, to Ā, which

is Â ≡∑

α:λα>0 λαe(α)e(α)′ . Methods such as classical MDS, that treat

the dissimilarities themselves as (approximate) squared distances, are

called metric scaling methods. A more general approach - ’non-metric

scaling’ - is to minimize a suitable cost function of the difference be-

tween the embedded squared distances, and some monotonic function

of the dissimilarities [Cox and Cox, 2001]; this allows for dissimilarities

which do not arise from a metric space; the monotonic function, and

other weights which are solved for, are used to allow the dissimilari-

ties to nevertheless be represented approximately by low dimensional

3 The only proof I have seen for this assertion is due to Frank McSherry, Microsoft Research.
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squared distances. An example of non-metric scaling is ordinal MDS,

whose goal is to find points in the low dimensional space so that the

distances there correctly reflect a given rank ordering of the original

data points.

3.2.3 Landmark MDS

MDS is computationally expensive: since the distances matrix is not

sparse, the computational complexity of the eigendecomposition is

O(m3). This can be significantly reduced by using a method called

Landmark MDS (LMDS) [Silva and Tenenbaum, 2002]. In LMDS the

idea is to choose q points, called ’landmarks’, where q > r (where r

is the rank of the distance matrix), but q � m, and to perform MDS

on landmarks, mapping them to Rd. The remaining points are then

mapped to Rd using only their distances to the landmark points (so in

LMDS, the only distances considered are those to the set of landmark

points). As first pointed out in [Bengio et al., 2004] and explained in

more detail in [Platt, 2005], LMDS combines MDS with the Nyström

algorithm. Let E ∈ Sq be the matrix of landmark distances and U (Λ)

the matrix of eigenvectors (eigenvalues) of the corresponding kernel ma-

trix A ≡ −1
2P cEP ′c, so that the embedding vectors of the landmark

points are the first d elements of the rows of UΛ1/2. Now, extending

E by an extra column and row to accommodate the squared distances

from the landmark points to a test point, we write the extended dis-

tance matrix and corresponding kernel as

D =

[

E f

f ′ g

]

, K ≡ −1

2
P cDP ′c =

[

A b

b′ c

]

(3.13)

Then from Eq. (3.6) we see that the Nyström method gives the approx-

imate column eigenvectors for the extended system as
[

U

b′UΛ−1

]

(3.14)

Thus the embedding coordinates of the test point are given by the
first d elements of the row vector b′UΛ−1/2. However, we only want
to compute U and Λ once - they must not depend on the test point.
[Platt, 2005] has pointed out that this can be accomplished by choosing
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the centering coefficients ci in P c ≡ 1−ec′ such that ci = 1/q for i ≤ q
and cq+1 = 0: in that case, since

Kij = −

1

2

(

Dij − ei(

q+1
∑

k=1

ckDkj) − ej(

q+1
∑

k=1

Dikck) + eiej(

q+1
∑

k,m=1

ckDkmcm)

)

(3.15)

the matrix A (found by limiting i, j to 1, . . . , q above) depends only on

the matrix E above. Finally, we need to relate b back to the measured

quantities - the vector of squared distances from the test point to the

landmark points. Using bi = (−1
2P cDP ′c)q+1,i, i = 1, · · · , q, we find

that

bk = −1

2



Dq+1,k − 1

q

q
∑

j=1

Dq+1,jek − 1

q

q
∑

i=1

Dik +
1

q2





q
∑

i,j=1

Dij



 ek





(3.16)

The first term in the square brackets is the vector of squared distances

from the test point to the landmarks, f . The third term is the row

mean of the landmark distance squared matrix, Ē. The second and

fourth terms are proportional to the vector of all ones e, and can be

dropped4 since U ′e = 0. Hence, modulo terms which vanish when con-

structing the embedding coordinates, we have b ' −1
2(f − Ē), and

the coordinates of the embedded test point are 1
2Λ−1/2U ′(Ē − f); this

reproduces the form given in [Silva and Tenenbaum, 2002]. Landmark

MDS has two significant advantages: first, it reduces the computational

complexity from O(m3) to O(q3 + q2(m − q) = q2m); and second, it

can be applied to any non-landmark point, and so gives a method of

extending MDS (using Nyström) to out-of-sample data.

3.3 Isomap

MDS is valuable for extracting low dimensional representations for

some kinds of data, but it does not attempt to explicitly model the

underlying manifold. Two methods that do directly model the man-

ifold are Isomap and Locally Linear Embedding. Suppose that as in

Section 2.1.1, again unbeknownst to you, your data lies on a curve,

4 The last term can also be viewed as an unimportant shift in origin; in the case of a single
test point, so can the second term, but we cannot rely on this argument for multiple test
points, since the summand in the second term depends on the test point.
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but in contrast to Section 2.1.1, the curve is not a straight line; in

fact it is sufficiently complex that the minimal embedding space Rd

that can contain it has high dimension d. PCA will fail to discover

the one dimensional structure of your data; MDS will also, since it

attempts to faithfully preserve all distances. Isomap (isometric fea-

ture map) [Tenenbaum, 1998], on the other hand, will succeed. The

key assumption made by Isomap is that the quantity of interest, when

comparing two points, is the distance along the curve between the two

points; if that distance is large, it is to be taken, even if in fact the

two points are close in Rd (this example also shows that noise must

be handled carefully). The low dimensional space can have more than

one dimension: [Tenenbaum, 1998] gives an example of a 5 dimensional

manifold embedded in a 50 dimensional space. The basic idea is to con-

struct a graph whose nodes are the data points, where a pair of nodes

are adjacent only if the two points are close in Rd, and then to approx-

imate the geodesic distance along the manifold between any two points

as the shortest path in the graph, computed using the Floyd algorithm

[Gondran and Minoux, 1984]; and finally to use MDS to extract the

low dimensional representation (as vectors in Rd′ , d′ � d) from the re-

sulting matrix of squared distances ([Tenenbaum, 1998] suggests using

ordinal MDS, rather than metric MDS, for robustness).

Isomap shares with the other manifold mapping techniques we de-

scribe the property that it does not provide a direct functional form

for the mapping I : Rd → Rd′ that can simply be applied to new

data, so computational complexity of the algorithm is an issue in test

phase. The eigenvector computation is O(m3), and the Floyd algorithm

also O(m3), although the latter can be reduced to O(hm2 log m) where

h is a heap size [Silva and Tenenbaum, 2002]. Landmark Isomap sim-

ply employs landmark MDS [Silva and Tenenbaum, 2002] to addresses

this problem, computing all distances as geodesic distances to the land-

marks. This reduces the computational complexity to O(q2m) for the

LMDS step, and to O(hqm log m) for the shortest path step.



D
R

A
FT

46 Manifold Modeling

3.4 Locally Linear Embedding

Locally linear embedding (LLE) [Roweis and Saul, 2000] models the

manifold by treating it as a union of linear patches, in analogy to using

coordinate charts to parameterize a manifold in differential geometry.

Suppose that each point xi ∈ Rd has a small number of close neighbours

indexed by the set N (i), and let yi ∈ Rd′ be the low dimensional repre-

sentation of xi. The idea is to express each xi as a linear combination of

its neighbours, and then construct the yi so that they can be expressed

as the same linear combination of their corresponding neighbours (the

latter also indexed by N (i)). To simplify the discussion let’s assume

that the number of the neighbours is fixed to n for all i. The condition

on the x’s can be expressed as finding that W ∈ Mmn that minimizes

the sum of the reconstruction errors,
∑

i ‖xi −
∑

j∈N (i) Wijxj‖2. Each

reconstruction error Ei ≡ ‖xi −
∑

j∈N (i) Wijxj‖2 should be unaffected

by any global translation xi → xi + δ, δ ∈ Rd, which gives the condi-

tion
∑

j∈N (i) Wij = 1 ∀i. Note that each Ei is also invariant to global

rotations and reflections of the coordinates. Thus the objective function

we wish to minimize is

F ≡
∑

i

Fi ≡
∑

i





1

2
‖xi −

∑

j∈N (i)

Wijxj‖2 − λi





∑

j∈N (i)

Wij − 1









where the constraints are enforced with Lagrange multipliers λi

[Burges, 2004]. Since the sum splits into independent terms we can

minimize each Fi separately. Thus fixing i and letting x ≡ xi, v ∈ Rn,

vj ≡ Wij, and λ ≡ λi, and introducing the matrix C ∈ Sn, Cjk ≡ xj ·xk,

j, k ∈ N (i), and the vector b ∈ Rn, bj ≡ x · xj , j ∈ N (i),

then requiring that the derivative of Fi with respect to vj vanishes

gives v = C−1(λe + b). Imposing the constraint e′v = 1 then gives

λ = (1−e′C−1b)/(e′C−1e). Thus W can be found by applying this for

each i.

Given the W ’s, the second step is to find a set of yi ∈ Rd′ that

can be expressed in terms of each other in the same manner. Again no

exact solution may exist and so
∑

i ‖yi−
∑

j∈N (i) Wijyj‖2 is minimized

with respect to the y’s, keeping the W ’s fixed. Let Y ∈ Mmd′ be the

matrix of row vectors of the points y. [Roweis and Saul, 2000] enforce



D
R

A
FT

3.4. Locally Linear Embedding 47

the condition that the y’s span a space of dimension d′ by requiring

that (1/m)Y ′Y = 1, although any condition of the form Y ′PY = Z

where P ∈ Sm and Z ∈ Sd′ is of full rank would suffice (see Section

3.5.1). The origin is arbitrary; the corresponding degree of freedom can

be removed by requiring that the y’s have zero mean, although in fact

this need not be explicitly imposed as a constraint on the optimization,

since the set of solutions can easily be chosen to have this property. The

rank constraint requires that the y’s have unit covariance; this links

the variables so that the optimization no longer decomposes into m

separate optimizations: introducing Lagrange multipliers λαβ to enforce

the constraints, the objective function to be minimized is

F =
1

2

∑

i

‖yi −
∑

j

Wijyj‖2 − 1

2

∑

αβ

λαβ

(

∑

i

1

m
YiαYiβ − δαβ

)

(3.17)

where for convenience we treat the W ’s as matrices in Mm, where

Wij ≡ 0 for j /∈ N (i). Taking the derivative with respect to Ykδ and

choosing λαβ = λαδαβ ≡ Λαβ gives18 the matrix equation

(1 − W )′(1 − W )Y =
1

m
Y Λ (3.18)

Since (1 − W )′(1 − W ) ∈ Sm, its eigenvectors are, or can be chosen

to be, orthogonal; and since (1 − W )′(1 − W )e = 0, choosing the

columns of Y to be the next d′ eigenvectors of (1 − W )′(1 − W ) with

the smallest eigenvalues guarantees that the y are zero mean (since they

are orthogonal to e). We can also scale the y so that the columns of

Y are orthonormal, thus satisfying the covariance constraint Y ′Y = 1.

Finally, the lowest-but-one weight eigenvectors are chosen because their

corresponding eigenvalues sum to m
∑

i ‖yi −
∑

j Wijyj‖2, as can be

seen by applying Y ′ to the left of (3.18).

Thus, LLE requires a two-step procedure. The first step (finding

the W ’s) has O(n3m) computational complexity; the second requires

eigendecomposing the product of two sparse matrices in Mm. LLE has

the desirable property that it will result in the same weights W if the

data is scaled, rotated, translated and / or reflected.
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3.5 Graphical Methods

In this section we review two interesting methods that connect with

spectral graph theory. Let’s start by defining a simple mapping from a

dataset to an undirected graph G by forming a one-to-one correspon-

dence between nodes in the graph and data points. If two nodes i, j

are connected by an arc, associate with it a positive arc weight Wij,

W ∈ Sm, where Wij is a similarity measure between points xi and

xj . The arcs can be defined, for example, by the minimum spanning

tree, or by forming the N nearest neighbours, for N sufficiently large.

The Laplacian matrix for any weighted, undirected graph is defined

[Chung, 1997] by L ≡ D−1/2LD−1/2, where Lij ≡ Dij −Wij and where

Dij ≡ δij(
∑

k Wik). We can see that L is positive semidefinite as follows:

for any vector z ∈ Rm, since Wij ≥ 0,

0 ≤ 1

2

∑

i,j

(zi − zj)
2Wij =

∑

i

z2
i Dii −

∑

i,j

ziWijzj = z′Lz

and since L is positive semidefinite, so is the Laplacian. Note that L

is never positive definite since the vector of all ones, e, is always an

eigenvector with eigenvalue zero (and similarly LD1/2e = 0).

Let G be a graph and m its number of nodes. For Wij ∈ {0, 1}, the

spectrum of G (defined as the set of eigenvalues of its Laplacian) char-

acterizes its global properties [Chung, 1997]: for example, a complete

graph (that is, one for which every node is adjacent to every other node)

has a single zero eigenvalue, and all other eigenvalues are equal to m
m−1 ;

if G is connected but not complete, its smallest nonzero eigenvalue is

bounded above by unity; the number of zero eigenvalues is equal to the

number of connected components in the graph, and in fact the spec-

trum of a graph is the union of the spectra of its connected components;

and the sum of the eigenvalues is bounded above by m, with equality

iff G has no isolated nodes. In light of these results, it seems reasonable

to expect that global properties of the data - how it clusters, or what

dimension manifold it lies on - might be captured by properties of the

Laplacian. The following two approaches leverage this idea. We note

that using similarities in this manner results in local algorithms: since

each node is only adjacent to a small set of similar nodes, the resulting
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matrices are sparse and can therefore be eigendecomposed efficiently.

3.5.1 Laplacian Eigenmaps

The Laplacian eigenmaps algorithm [Belkin and Niyogi, 2003] uses

Wij = exp−‖xi−xj‖2/2σ2

. Let y(x) ∈ Rd′ be the embedding of sam-

ple vector x ∈ Rd, and let Yij ∈ Mmd′ ≡ (yi)j . We would like to find

y’s that minimize
∑

i,j ‖yi − yj‖2 Wij , since then if two points are sim-

ilar, their y’s will be close, whereas if W ≈ 0, no restriction is put on

their y’s. We have:
∑

i,j

‖yi − yj‖2 Wij = 2
∑

i,j,a

(yi)a(yj)a(Diiδij − Wij) = 2Tr(Y ′LY )

(3.19)

In order to ensure that the target space has dimension d′ (minimiz-

ing (3.19) alone has solution Y = 0), we require that Y have rank d.

Any constraint of the form Y ′PY = Z, where P ∈ Sm and m ≥ d′,
will suffice, provided that Z ∈ Sd′ is of full rank. This can be seen

as follows: since the rank of Z is d′ and since the rank of a prod-

uct of matrices is bounded above by the rank of each, we have that

d′ = rank(Z) = rank(Y ′PY ) ≤ min(rank((Y ′), rank(P ), rank(Y )),

and so rank(Y ) ≥ d′; but since Y ∈ Mmd′ and d′ ≤ m, the rank of

Y is at most d′; hence rank(Y ) = d′. However, minimizing Tr(Y ′LY )

subject to the constraint Y ′DY = 1 results in the simple generalized

eigenvalue problem Ly = λDy [Belkin and Niyogi, 2003]. It’s useful

to see how this arises: we wish to minimize Tr(Y ′LY ) subject to the

d′(d′ + 1)/2 constraints Y ′DY = 1. Let a, b = 1, . . . , d and i, j =

1, . . . ,m. Introducing (symmetric) Lagrange multipliers λab leads to the

objective function
∑

i,j,a yiaLijyja−
∑

i,j,a,b λab(yiaDijyjb−δab), with ex-

trema at
∑

j Lkjyjβ =
∑

α,i λαβDkiyiα. We choose5 λαβ ≡ λβδαβ, giving
∑

j Lkjyjα =
∑

i λαDkiyiα. This is a generalized eigenvector problem

with eigenvectors the columns of Y . Hence once again the low dimen-

sional vectors are constructed from the first few components of the

dual eigenvectors, except that in this case, the eigenvectors with lowest

eigenvalues are chosen (omitting the eigenvector e), and in contrast to

5 This same trick was used in the previous Chapter: Lagrange multipliers can be chosen in
any way that results in a solution satisfying the constraints.
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MDS, they are not weighted by the square roots of the eigenvalues.

Thus Laplacian eigenmaps must use some other criterion for deciding

on what d′ should be. Finally, note that the y’s are conjugate with re-

spect to D (as well as L), so we can scale them so that the constraints

Y ′DY = 1 are indeed met, and our drastic simplification of the La-

grange multipliers did no damage; and left-multiplying the eigenvalue

equation by y′
α shows that λα = y′

αLyα, so choosing the smallest eigen-

values indeed gives the lowest values of the objective function, subject

to the constraints.

3.5.2 Spectral Clustering

Although spectral clustering is a clustering method, it is very closely

related to dimension reduction. In fact, since clusters may be viewed

as large scale structural features of the data, any dimension reduc-

tion technique that maintains these structural features will be a good

preprocessing step prior to clustering, to the point where very simple

clustering algorithms (such as K-means) on the preprocessed data can

work well [Shi and Malik, 2000, Meila and Shi, 2000, Ng et al., 2002].

If a graph is partitioned into two disjoint sets by removing a set of arcs,

the cut is defined as the sum of the weights of the removed arcs. Given

the mapping of data to graph defined above, a cut defines a split of the

data into two clusters, and the minimum cut encapsulates the notion of

maximum dissimilarity between two clusters. However finding a mini-

mum cut tends to just lop off outliers, so [Shi and Malik, 2000] define a

normalized cut, which is now a function of all the weights in the graph,

but which penalizes cuts which result in a subgraph g such that the

cut divided by the sum of weights from g to G is large; this solves the

outlier problem. Now suppose we wish to divide the data into two clus-

ters. Define a scalar on each node, zi, i = 1, . . . ,m, such that zi = 1 for

nodes in one cluster and zi = −1 for nodes in the other. The solution

to the normalized mincut problem is given by [Shi and Malik, 2000]

min
y

y′Ly

y′Dy
such that yi ∈ {1,−b} and y′De = 0 (3.20)

where y ≡ (e + z) + b(e − z), and b is a constant that depends on

the partition. This problem is solved by relaxing y to take real val-
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ues: the problem then becomes finding the second smallest eigenvec-

tor of the generalized eigenvalue problem Ly = λDy (the constraint

y′De = 0 is automatically satisfied by the solutions), which is exactly

the same problem found by Laplacian eigenmaps (in fact the objec-

tive function used by Laplacian eigenmaps was proposed as Eq. (10) in

[Shi and Malik, 2000]). The algorithms differ in what they do next. The

clustering is achieved by thresholding the element yi so that the nodes

are split into two disjoint sets. The dimension reduction is achieved by

treating the element yi as the first component of a reduced dimension

representation of the sample xi. There is also an interesting equiva-

lent physical interpretation, where the arcs are springs, the nodes are

masses, and the y are the fundamental modes of the resulting vibrat-

ing system [Shi and Malik, 2000]. [Meila and Shi, 2000] point out that

that matrix P ≡ D−1L is stochastic, which motivates the interpreta-

tion of spectral clustering as the stationary distribution of a Markov

random field: the intuition is that a random walk, once in one of the

mincut clusters, tends to stay in it. The stochastic interpretation also

provides tools to analyse the thresholding used in spectral clustering,

and a method for learning the weights Wij based on training data with

known clusters [Meila and Shi, 2000]. The dimension reduction view

also motivates a different approach to clustering, where instead of sim-

ply clustering by thresholding a single eigenvector, simple clustering

algorithms are applied to the low dimensional representation of the

data [Ng et al., 2002].

3.6 Pulling the Threads Together

At this point the reader is probably struck by how similar the mathe-

matics underlying all of these approaches is. We’ve used essentially the

same Lagrange multiplier trick to enforce constraints three times; all of

the methods in this Chapter (and most in this review) rely heavily on

eigendecompositions. Isomap, LLE, Laplacian eigenmaps, and spectral

clustering all share the property that in their original forms, they do not

provide a direct functional form for the dimension-reducing mapping, so

the extension to new data requires re-training. Landmark Isomap solves

this problem; the other algorithms could also use Nyström to solve
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it (as pointed out by [Bengio et al., 2004]). Isomap is often called a

’global’ dimension reduction algorithm, because it attempts to preserve

all geodesic distances; by contrast, LLE, spectral clustering and Lapla-

cian eigenmaps are local (for example, LLE attempts to preserve local

translations, rotations and scalings of the data). Landmark Isomap is

still global in this sense, but the landmark device brings the computa-

tional cost more in line with the other algorithms. Although they start

from different geometrical considerations, LLE, Laplacian eigenmaps,

spectral clustering and MDS all look quite similar under the hood: the

first three use the dual eigenvectors of a symmetric matrix as their low

dimensional representation, and MDS uses the dual eigenvectors with

components scaled by square roots of eigenvalues. In light of this it’s

perhaps not surprising that relations linking these algorithms can be

found: for example, given certain assumptions on the smoothness of the

eigenfunctions and on the distribution of the data, the eigendecompo-

sition performed by LLE can be shown to coincide with the eigende-

composition of the squared Laplacian [Belkin and Niyogi, 2003]; and

[Ham et al., 2004] show how Laplacian eigenmaps, LLE and Isomap

can be viewed as variants of kernel PCA. [Platt, 2005] links several

flavors of MDS by showing how landmark MDS and two other MDS

algorithms (not described here) are in fact all Nyström algorithms.

Despite the mathematical similarities of LLE, Isomap and Laplacian

Eigenmaps, their different geometrical roots result in different prop-

erties: for example, for data which lies on a manifold of dimension d

embedded in a higher dimensional space, the eigenvalue spectrum of

the LLE and Laplacian Eigenmaps algorithms do not reveal anything

about d, whereas the spectrum for Isomap (and MDS) does.

The connection between MDS and PCA goes further than the

form taken by the ’unexplained residuals’ in Eq. (3.12). If X ∈ Mmd

is the matrix of m (zero-mean) sample vectors, then PCA diago-

nalizes the covariance matrix X ′X, whereas MDS diagonalizes the

kernel matrix XX ′; but XX ′ has the same eigenvalues as X ′X
[Horn and Johnson, 1985], and m − d additional zero eigenvalues (if

m > d). In fact if v is an eigenvector of the kernel matrix so that

XX ′v = λv, then clearly X ′X(X ′v) = λ(X ′v), so X ′v is an eigenvec-
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tor of the covariance matrix, and similarly if u is an eigenvector of the

covariance matrix, then Xu is an eigenvector of the kernel matrix. This

provides one way to view how kernel PCA computes the eigenvectors of

the (possibly infinite dimensional) covariance matrix in feature space

in terms of the eigenvectors of the kernel matrix. There’s a useful lesson

here: given a covariance matrix (Gram matrix) for which you wish to

compute those eigenvectors with nonvanishing eigenvalues, and if the

corresponding Gram matrix (covariance matrix) is both available, and

more easily eigendecomposed (has fewer elements), then compute the

eigenvectors for the latter, and map to the eigenvectors of the former

using the data matrix as above. Along these lines, [Williams, 2001] has

pointed out that kernel PCA can itself be viewed as performing MDS

in feature space. Before kernel PCA is performed, the kernel is centered

(i.e. P eKP e is computed), and for kernels that depend on the data only

through functions of squared distances between points (such as radial

basis function kernels), this centering is equivalent to centering a dis-

tance matrix in feature space. [Williams, 2001] further points out that

for these kernels, classical MDS in feature space is equivalent to a form

of metric MDS in input space. Although ostensibly kernel PCA gives a

function that can be applied to test points, while MDS does not, kernel

PCA does so by using the Nyström approximation (see Section 3.1.3),

and exactly the same can be done with MDS.
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Conclusion

Dimension reduction has benefited from a great deal of work in both

the statistics and machine learning communities. In this review I’ve

limited the scope largely to geometric methods, so I’d like to alert the

reader to three other interesting leads. The first is the method of prin-

cipal curves, where the idea is to find that smooth curve that passes

through the data in such a way that the sum of shortest distances

from each point to the curve is minimized, thus providing a nonlin-

ear, one-dimensional summary of the data [Hastie and Stuetzle, 1989];

the idea has since been extended by applying various regularization

schemes (including kernel-based), and to manifolds of higher dimen-

sion [Schölkopf and Smola, 2002]. Second, the Information Bottleneck

method [Tishby et al., 1999], which aims to distill the information in a

random (predictor) variable X that is needed to describe a (response)

variable Y , using a model variable Z, maximizes the (weighted) dif-

ference in mutual information between Y and Z, and between X and

Z. The use of information theory is intuitively appealing, although the

method requires that the joint density p(X,Y ) be estimated. Finally,

we note that the subject of feature selection, where one wants to select

an optimal subset of features (for example, in order to build smaller,

54
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faster models), is a restricted form of dimension reduction. Along those

lines, [Viola and Jones, 2001] showed that boosted stump models can

be very effective for finding a small set of good features from a large set

of possible features. For more on feature selection, we refer the reader

to [Guyon, 2003].
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définition axiomatique d’une classe d’espace distanciés vectoriellement applica-

ble sur l’espace de hilbert. Annals of Mathematics, 36:724–732, 1935.
[Schölkopf, 2001] B. Schölkopf. The kernel trick for distances. In T.K. Leen, T.G.

Dietterich, and V. Tresp, editors, Advances in Neural Information Processing

Systems 13, pages 301–307. MIT Press, 2001.
[Schölkopf and Smola, 2002] B. Schölkopf and A. Smola. Learning with Kernels.

MIT Press, 2002.
[Schölkopf et al., 1998] B. Schölkopf, A. Smola, and K-R. Muller. Nonlinear compo-

nent analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299–
1319, 1998.



D
R

A
FT

References 61

[Shi and Malik, 2000] J. Shi and J. Malik. Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–
905, 2000.

[Spearman, 1904] C.E. Spearman. ’General intelligence’ objectively determined and
measured. American Journal of Psychology, 5:201–293, 1904.

[Steinwart, 2001] I. Steinwart. On the Influence of the Kernel on the Consistency of
Support Vector Machines. Journal of Machine Learning Research, 37(2):726–
755, 2001

[Stone, 1982] C.J. Stone. Optimal global rates of convergence for nonparametric
regression. Annals of Statistics, 10(4):1040–1053, 1982.

[Tenenbaum, 1998] J.B. Tenenbaum. Mapping a manifold of perceptual observa-
tions. In Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors, Ad-

vances in Neural Information Processing Systems, volume 10. The MIT Press,
1998.

[Tipping and Bishop, 1999A] M.E. Tipping and C.M. Bishop. Probabilistic prin-
cipal component analysis. Journal of the Royal Statistical Society, 61(3):611,
1999A.

[Tipping and Bishop, 1999B] M.E. Tipping and C.M. Bishop. Mixtures of prob-
abilistic principal component analyzers. Neural Computation, 11(2):443–482,
1999B.

[Tishby et al., 1999] N. Tishby, F.C. Pereira and William Bialek. The information
bottleneck method. Proc. of the 37th Annual Allerton Conference on Commu-

nication, Control and Computing, 368-377, 1999.
[Viola and Jones, 2001] P. Viola and M. Jones. Robust real-time object detection.

In Second international workshop on statistical and computational theories of

vision - modeling, learning, computing, and sampling, 2001.
[Wilks, 1962] S. Wilks. Mathematical Statistics. John Wiley, 1962.
[Williams, 2001] C.K.I. Williams. On a Connection between Kernel PCA and Met-

ric Multidimensional Scaling. In T.K. Leen, T.G. Dietterich, and V. Tresp,
editors, Advances in Neural Information Processing Systems 13, pages 675–
681. MIT Press, 2001.

[Williams and Seeger, 2001] C.K.I. Williams and M. Seeger. Using the Nyström
method to speed up kernel machines. In Leen, Dietterich, and Tresp, editors,
Advances in Neural Information Processing Systems 13, pages 682–688. MIT
Press, 2001.


