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Abstract
TheExtended Kalman Filter (EKF) hasbecomea standard
techniqueusedin anumberof nonlinearestimationandma-
chine learningapplications. Theseincludeestimatingthe
stateof a nonlineardynamicsystem,estimatingparame-
ters for nonlinearsystemidentiÞcation(e.g., learningthe
weightsof a neuralnetwork), anddualestimation(e.g., the
ExpectationMaximization(EM) algorithm)wherebothstates
andparametersareestimatedsimultaneously.

This paperpointsout the ßaws in using the EKF, and
introducesan improvement,theUnscented Kalman Filter
(UKF), proposedby JulierandUhlman[5]. A centraland
vital operationperformedin theKalmanFilter is theprop-
agationof a Gaussianrandomvariable(GRV) throughthe
systemdynamics. In the EKF, the statedistribution is ap-
proximatedby a GRV, which is then propagatedanalyti-
cally throughthe Þrst-orderlinearizationof the nonlinear
system.Thiscanintroducelargeerrorsin thetrueposterior
meanandcovarianceof the transformedGRV, which may
leadto sub-optimalperformanceandsometimesdivergence
of the Þlter. The UKF addressesthis problemby usinga
deterministicsamplingapproach.The statedistribution is
againapproximatedby aGRV, but is now representedusing
aminimalsetof carefullychosensamplepoints.Thesesam-
plepointscompletelycapturethetruemeanandcovariance
of the GRV, and when propagatedthroughthe true non-
linear system,capturesthe posteriormeanandcovariance
accuratelyto the3rdorder(Taylorseriesexpansion)for any
nonlinearity. TheEKF, in contrast,only achievesÞrst-order
accuracy. Remarkably, thecomputationalcomplexity of the
UKF is thesameorderasthatof theEKF.

JulierandUhlmandemonstratedthesubstantialperfor-
mancegainsof the UKF in the context of state-estimation
for nonlinearcontrol. Machinelearningproblemswerenot
considered.Weextendtheuseof theUKF to abroaderclass
of nonlinearestimationproblems,includingnonlinearsys-
temidentiÞcation,trainingof neuralnetworks,andduales-
timationproblems.Our preliminaryresultswerepresented
in [13]. In this paper, thealgorithmsarefurtherdeveloped
andillustratedwith anumberof additionalexamples.
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1. Introduction
The EKF hasbeenappliedextensively to the Þeldof non-
linearestimation.Generalapplicationareasmaybedivided
into state-estimation andmachine learning. We furtherdi-
vide machinelearninginto parameter estimation anddual
estimation. The framework for theseareasarebrießy re-
viewednext.

State-estimation

Thebasicframework for theEKF involvesestimationof the
stateof a discrete-timenonlineardynamicsystem,

(1)

(2)

where representtheunobservedstateof thesystemand
is theonly observedsignal.Theprocess noise drives

thedynamicsystem,andtheobservation noiseis givenby
. Note that we arenot assumingadditivity of the noise

sources.Thesystemdynamicmodel and areassumed
known. In state-estimation,theEKF is thestandardmethod
of choiceto achieve a recursive (approximate)maximum-
likelihoodestimationof the state . We will review the
EKF itself in this context in Section2 to helpmotivatethe
UnscentedKalmanFilter (UKF).

Parameter Estimation

Theclassicmachinelearningprobleminvolvesdetermining
a nonlinearmapping

(3)

where is the input, is the output,andthe nonlinear
map is parameterizedby the vector . The nonlinear
map,for example,maybeafeedforwardor recurrentneural
network ( are the weights),with numerousapplications
in regression,classiÞcation,anddynamicmodeling.Learn-
ing correspondsto estimatingtheparameters . Typically,
a training set is provided with samplepairs consistingof
known input anddesiredoutputs, . The error of
the machineis deÞnedas , andthe
goal of learninginvolvessolving for the parameters in
orderto minimizetheexpectedsquarederror.



While a numberof optimizationapproachesexist (e.g.,
gradientdescentusingbackpropagation),the EKF may be
usedto estimatetheparametersby writing anew state-space
representation

(4)

(5)

wherethe parameters correspondto a stationarypro-
cesswith identity statetransitionmatrix, drivenby process
noise (the choiceof variancedeterminestrackingper-
formance).Theoutput correspondsto anonlinearobser-
vationon . TheEKF canthenbeapplieddirectly asan
efÞcientÒsecond-orderÓtechniquefor learningtheparame-
ters.In thelinearcase,therelationshipbetweentheKalman
Filter (KF) andRecursive LeastSquares(RLS) is given in
[3]. The useof the EKF for training neuralnetworks has
beendevelopedby SinghalandWu [9] andPuskoriousand
Feldkamp[8].

Dual Estimation

A specialcaseof machinelearningariseswhentheinput
is unobserved,andrequirescouplingboth state-estimation
andparameterestimation.For thesedual estimation prob-
lems,we againconsidera discrete-timenonlineardynamic
system,

(6)

(7)

whereboththesystemstates andthesetof modelparam-
eters for thedynamicsystemmustbesimultaneouslyesti-
matedfrom only theobservednoisysignal . Approaches
to dual-estimationarediscussedin Section4.2.

In thenext sectionweexplainthebasicassumptionsand
ßawswith theusingtheEKF. In Section3,we introducethe
UnscentedKalmanFilter (UKF) asa methodto amendthe
ßawsin theEKF. Finally, in Section4, wepresentresultsof
usingthe UKF for the differentareasof nonlinearestima-
tion.

2. The EKF and its Flaws
Considerthe basicstate-spaceestimationframework as in
Equations1 and2. Given the noisy observation , a re-
cursive estimationfor canbeexpressedin theform (see
[6]),

prediction of prediction of (8)

Thisrecursionprovidestheoptimalminimummean-squared
error(MMSE) estimatefor assumingtheprior estimate

andcurrentobservation areGaussianRandomVari-
ables(GRV). We neednot assumelinearity of the model.
Theoptimaltermsin this recursionaregivenby

(9)

(10)

(11)

wherethe optimal predictionof is written as , and
correspondsto the expectationof a nonlinearfunction of
therandomvariables and (similar interpretation
for theoptimalprediction ). Theoptimalgain term
is expressedasa functionof posteriorcovariancematrices
(with ). Note thesetermsalsorequiretak-
ing expectationsof a nonlinearfunction of the prior state
estimates.

TheKalmanÞlter calculatesthesequantitiesexactly in
thelinearcase,andcanbeviewedasanefÞcientmethodfor
analyticallypropagatinga GRV throughlinear systemdy-
namics.For nonlinearmodels,however, theEKF approxi-
mates theoptimaltermsas:

(12)

(13)

(14)

wherepredictionsareapproximatedassimply the function
of thepriormean valuefor estimates(noexpectationtaken)1

The covariancearedeterminedby linearizingthe dynamic
equations( ), and
thendeterminingthe posteriorcovariancematricesanalyt-
ically for the linear system. In other words, in the EKF
the statedistribution is approximatedby a GRV which is
then propagatedanalytically throughthe ÒÞrst-orderÓlin-
earizationof thenonlinearsystem.Thereadersarereferred
to [6] for the explicit equations.As such,the EKF canbe
viewedasproviding ÒÞrst-orderÓapproximationsto theop-
timal terms2. Theseapproximations,however, can intro-
ducelargeerrorsin thetrueposteriormeanandcovariance
of thetransformed(Gaussian)randomvariable,which may
leadto sub-optimalperformanceandsometimesdivergence
of theÞlter. It is theseÒßawsÓwhichwill beamendedin the
next sectionusingtheUKF.

3. The Unscented Kalman Filter
The UKF addressesthe approximationissuesof the EKF.
The statedistribution is againrepresentedby a GRV, but
is now speciÞedusing a minimal set of carefully chosen
samplepoints.Thesesamplepointscompletelycapturethe
truemeanandcovarianceof theGRV, andwhenpropagated
throughthe true non-linearsystem,capturesthe posterior
meanandcovarianceaccuratelyto the3rdorder(Taylorse-
ries expansion)for any nonlinearity. To elaborateon this,

1The noise means are denoted by and , and are
usually assumed to equal to zero.

2While “second-order” versions of the EKF exist, their increased im-
plementation and computational complexity tend to prohibit their use.



we startby Þrstexplainingtheunscented transformation.

Theunscentedtransformation(UT) is a methodfor cal-
culatingthestatisticsof arandomvariablewhichundergoes
anonlineartransformation[5]. Considerpropagatinga ran-
domvariable (dimension ) throughanonlinearfunction,

. Assume hasmean andcovariance . To
calculatethestatisticsof , we form a matrix of
sigma vectors (with correspondingweights ), accord-
ing to thefollowing:

(15)

where is a scalingparameter. deter-
minesthespreadof thesigmapointsaround andis usually
set to a small positive value(e.g., 1e-3). is a secondary
scalingparameterwhich is usuallyset to 0, and is used
to incorporateprior knowledgeof thedistribution of (for
Gaussiandistributions, is optimal).
is the th row of thematrixsquareroot. Thesesigmavectors
arepropagatedthroughthenonlinearfunction,

(16)

and the meanand covariancefor are approximatedus-
ing aweightedsamplemeanandcovarianceof theposterior
sigmapoints,

(17)

(18)

NotethatthismethoddifferssubstantiallyfromgeneralÒsam-
plingÓmethods(e.g., Monte-Carlomethodssuchasparticle
Þlters[1]) which requireordersof magnitudemoresample
pointsin anattemptto propagateanaccurate(possiblynon-
Gaussian)distribution of the state. The deceptively sim-
ple approachtaken with the UT resultsin approximations
that areaccurateto the third orderfor Gaussianinputsfor
all nonlinearities.For non-Gaussianinputs,approximations
areaccurateto at leastthesecond-order, with theaccuracy
of third andhigherordermomentsdeterminedby thechoice
of and (See[4] for a detaileddiscussionof theUT). A
simpleexampleis shown in Figure1 for a 2-dimensional
system: the left plot shows the true meanandcovariance
propagationusingMonte-Carlosampling;the centerplots

Actual (sampling) Linearized (EKF) UT

sigma points

true mean

UT mean

    and covariance
weighted sample mean

mean

UT covariance

covariance

true covariance

transformed
sigma points

Figure1: Example of the UT for mean and covariance prop-
agation. a) actual, b) first-order linearization (EKF), c) UT.

show theresultsusinga linearizationapproachaswouldbe
donein the EKF; the right plots show the performanceof
theUT (noteonly 5 sigmapointsarerequired).Thesupe-
rior performanceof theUT is clear.

The Unscented Kalman Filter (UKF) is a straightfor-
wardextensionof theUT to therecursiveestimationin Equa-
tion 8, wherethestateRV is redeÞnedastheconcatenation
of theoriginalstateandnoisevariables: .
TheUT sigmapoint selectionscheme(Equation15) is ap-
plied to thisnew augmentedstateRV to calculatethecorre-
spondingsigmamatrix, . TheUKF equationsaregiven
in Algorithm 3. Note that no explicit calculationof Ja-
cobiansor Hessiansarenecessaryto implementthis algo-
rithm. Furthermore,theoverallnumberof computationsare
thesameorderastheEKF.

4. Applications and Results
The UKF wasoriginally designedfor the state-estimation
problem,andhasbeenappliedin nonlinearcontrolapplica-
tionsrequiringfull-statefeedback[5]. In theseapplications,
thedynamicmodelrepresentsa physicallybasedparamet-
ric model,andis assumedknown. In thissection,weextend
theuseof theUKF to abroaderclassof nonlinearestimation
problems,with resultspresentedbelow.

4.1. UKF State Estimation

In orderto illustratetheUKF for state-estimation,we pro-
videanew applicationexamplecorrespondingtonoisytime-
seriesestimation.

In thisexample,theUKF is usedto estimateanunderly-
ing cleantime-seriescorruptedby additive Gaussianwhite
noise.Thetime-seriesusedis theMackey-Glass-30chaotic



Initialize with:

For ,

Calculate sigma points:

Time update:

Measurement update equations:

where, , ,
=composite scaling parameter, =dimension of augmented state,
=process noise cov., =measurement noise cov., =weights

as calculated in Eqn. 15.
Algorithm 3.1: Unscented Kalman Filter (UKF) equations

series.Thecleantimes-seriesis Þrstmodeledasanonlinear
autoregression

(19)

wherethemodel (parameterizedbyw) wasapproximated
by training a feedforwardneuralnetwork on the cleanse-
quence.The residualerrorafter convergencewastaken to
betheprocessnoisevariance.

Next, whiteGaussiannoisewasaddedto thecleanMackey-
Glassseriesto generatea noisytime-series .
Thecorrespondingstate-spacerepresentationis givenby:

...
...

...
...

...

(20)

In theestimationproblem,thenoisy-timeseries is the
only observed input to either the EKF or UKF algorithms
(both utilize the known neuralnetwork model). Note that
for this state-spaceformulationboththeEKF andUKF are
order complexity. Figure2 shows a sub-segmentof the
estimatesgeneratedby boththeEKF andtheUKF (theorig-
inal noisytime-serieshasa3dBSNR).Thesuperiorperfor-
manceof theUKF is clearlyvisible.
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Figure2: Estimation of Mackey-Glass time-series with the
EKF and UKF using a known model. Bottom graph shows
comparison of estimation errors for complete sequence.

4.2. UKF dual estimation

Recall that the dual estimationproblemconsistsof simul-
taneouslyestimatingthe cleanstate andthe modelpa-



rameters from the noisy data (seeEquation7). As
expressedearlier, a numberof algorithmicapproachesex-
ist for this problem. We presentresultsfor the Dual UKF
andJointUKF. Developmentof a UnscentedSmootherfor
anEM approach[2] waspresentedin [13]. As in theprior
state-estimationexample,we utilize a noisytime-seriesap-
plication modeledwith neuralnetworks for illustration of
theapproaches.

In the thedual extended Kalman filter [11], a separate
state-spacerepresentationisusedfor thesignalandtheweights.
Thestate-spacerepresentationfor thestate is the same
asin Equation20. In thecontext of a time-series,thestate-
spacerepresentationfor theweightsis givenby

(21)

(22)

wherewesettheinnovationscovariance equalto 3.
Two EKFs can now be run simultaneouslyfor signaland
weightestimation.At every time-step,thecurrentestimate
of theweightsis usedin thesignal-Þlter, andthecurrentes-
timateof thesignal-stateis usedin theweight-Þlter. In the
new dual UKF algorithm,bothstate-andweight-estimation
aredonewith theUKF. Notethatthestate-transitionis lin-
earin theweightÞlter, sothenonlinearityis restrictedto the
measurementequation.

In the joint extended Kalman filter [7], the signal-state
andweightvectorsareconcatenatedinto asingle,joint state
vector: . Estimationis donerecursively by writ-
ing thestate-spaceequationsfor thejoint stateas:

(23)

(24)

and running an EKF on the joint state-space4 to produce
simultaneousestimatesof thestates and . Again, our
approachis to usetheUKF insteadof theEKF.

Dual Estimation Experiments

We presentresultson two time-seriesto provide a clearil-
lustrationof the useof the UKF over the EKF. The Þrst
seriesis againtheMackey-Glass-30chaoticserieswith ad-
ditive noise (SNR 3dB). The secondtime series(also
chaotic)comesfrom anautoregressiveneuralnetwork with
randomweightsdrivenby Gaussianprocessnoiseandalso

3 is usually set to a small constant which can be related to the time-
constant for RLS weight decay [3]. For a data length of 1000,
was used.

4The covariance of is again adapted using the RLS-weight-decay
method.

corruptedby additive white Gaussiannoise(SNR 3dB).
A standard6-4-1 MLP with hiddenactivation func-
tionsanda linearoutputlayerwasusedfor all theÞltersin
theMackey-Glassproblem.A 5-3-1MLP wasusedfor the
secondproblem.Theprocessandmeasurementnoisevari-
anceswereassumedto beknown. Note that in contrastto
the state-estimationexamplein the previous section,only
thenoisytime-seriesis observed.A cleanreferenceis never
providedfor training.

Exampletrainingcurvesfor thedifferentdualandjoint
Kalmanbasedestimationmethodsareshown in Figure3. A
Þnalestimatefor theMackey-Glassseriesis alsoshown for
theDualUKF. Thesuperiorperformanceof theUKF based
algorithmsareclear. Theseimprovementshave beenfound
to beconsistentandstatisticallysigniÞcanton a numberof
additionalexperiments.
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dual estimation experiments.



4.3. UKF parameter estimation

As part of the dual UKF algorithm, we implementedthe
UKF for weightestimation.This representsa new param-
eterestimationtechniquethatcanbeappliedto suchprob-
lemsastrainingfeedforwardneuralnetworksfor eitherre-
gressionor classiÞcationproblems.

Recallthatin thiscasewewriteastate-spacerepresenta-
tion for theunknownweightparameters asgivenin Equa-
tion 5. Notethatin this caseboththeUKF andEKF areor-
der ( is thenumberof weights).Theadvantageof the
UKF over theEKF in thiscaseis alsonotasobvious,asthe
state-transitionfunction is linear. However, aspointedout
earlier, the observation is nonlinear. Effectively, the EKF
buildsupanapproximationto theexpectedHessianby tak-
ing outerproductsof thegradient.TheUKF, however, may
provideamoreaccurateestimatethroughdirectapproxima-
tion of theexpectationof theHessian.Noteanotherdistinct
advantageof the UKF occurswheneither the architecture
or error metric is suchthat differentiationwith respectto
theparametersis noteasilyderivedasnecessaryin theEKF.
TheUKF effectively evaluatesboth the JacobianandHes-
sianpreciselythroughits sigmapoint propagation,without
theneedto performany analyticdifferentiation.

We haveperformeda numberof experimentsappliedto
trainingneuralnetworkson standardbenchmarkdata.Fig-
ure4 illustratesthedifferencesin learningcurves(averaged
over 100experimentswith differentinitial weights)for the
Mackay-Robot-Arm datasetandthe Ikeda chaotictime se-
ries. Note the slightly fasterconvergenceand lower Þnal
MSEperformanceof theUKF weighttraining.While these
resultsareclearlyencouraging,furtherstudyis still neces-
sary to fully contrastdifferencesbetweenUKF and EKF
weighttraining.
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Figure4: Comparison of learning curves for the EKF and
UKF training. a) Mackay-Robot-Arm, 2-12-2 MLP, b) Ikeda
time series, 10-7-1 MLP.

5. Conclusions and future work
TheEKF hasbeenwidely acceptedasastandardtool in the
machinelearningcommunity. In this paperwe have pre-
sentedan alternative to the EKF using the unscentedÞl-
ter. The UKF consistentlyachieves a better level of ac-
curacy thanthe EKF at a comparablelevel of complexity.
We have demonstratedthis performancegain in a number
of applicationdomains,includingstate-estimation,duales-
timation, andparameterestimation. Futurework includes
additionalcharacterizationof performancebeneÞts,exten-
sionsto batchlearningandnon-MSEcostfunctions,aswell
asapplicationto otherneuralandnon-neural(e.g., paramet-
ric) architectures.In addition,wearealsoexploringtheuse
of theUKF asa methodto improveParticleFilters[10], as
well asanextensionof theUKF itself thatavoidsthelinear
updateassumptionby usinga directBayesianupdate[12].
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