ES 128: Homework 2

Solutions
Problem 1
Show that the weak form of
du
—(AE—)+2x:0 on1<x<3,
dx
du
o(1) = ( dxjm =0.1,
u(3) =0.001
is given by
3d—wAE@dx ~0.1(wA),_, + [ 2xwdx vw with w(3)=o0.
1 dx dx 1
Solution

We multiply the governing equation and the natural boundary condition over the

domain [1, 3] by an arbitrary weight function:

f[ (;X(AEg;lj+2xﬂdx:o vw(x),

(wA[E%—o 1Dx1 =0 Yw(1).

We integrate (1.1) by parts as

i am e e ~(ws]

Substituting (1.3) into (1.1) gives

dx dx

I {dw AE@}dx .

-[ [—AE }dx+.[ 2wxdx+(wAEZuj

X

- (wAE @j
e dx

xX=1

With w(3) =0 and o(1) = 0.1, we obtain

J‘ {d_wAE du}dx = [*2wxdx - 0.1(wA]  Vw(x) with w(3)=o0.
dx dx 1 -

=0 Yw(x).

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)



Problem 2
Consider the (steel) bar in Figure 1. The bar has
a uniform thickness t=1cm, Young’s modulus
E=200 x10° Pa, and weight density
p =7x10° kg /m?. In addition to its self-weight,
the bar is subjected to a point load P=100N at
its midpoint.
(a) Model the bar with two finite elements.
(b) Write down expressions for the element
stiffness matrices and element body force
vectors.
(c) Assemble the structural stiffness matrix
K and global load vector F.
(d) Solve for the global displacement vector
d.
(e) Evaluate the stresses in each element.
(f) Determine the reaction force at the
support.

Solution
(a) Using two elements, each of 0.3m in length, we
obtain the finite element model in Figure 1a. In this

model, x” =0, x" =0.3, x® =0.3, x* =0.6,
and A(x)=0.0012-0.001x .

(b) For element 1, N® = 0i[0.3 -x x],

1 : .
B® =—[-1 1], the element stiffness matrix is
0.3

K® = J':'BB“)TAEB(“dx

200x10° (o3 1 -1
= —j (0.0012 - 0.001x) b
0 -1 1

0.09
o0l 07 o7
07 07 |

the element body force vector is
f(l) — J‘:S N(l)TpAdx +(N(1)T P1

Xx=0.3

_ 7x10° jo.s (0.3-x)(0.0012-0.001x) sl ©
B 0.3 x(0.0012 — 0.001x) 100
1 0 O

1.1 ..
={ 55 } , and the scatter matrix is L = {
01 0

101.05
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For element 2, N® =L [0.6-x x-0.3], B® =L [-1 1], the element
0.

0.3
stiffness matrix is

0. 9 0. 1 -1
K® = I °B@T AEB® dx = 229219 (*%(5 0012 - 0.001x)[ }dx
0.3 0.09 o3 -1 1
0.5 -—O.
= 10{ 5 5}, the element body force vector
-0.5 0.5

0.3

7x10% o6 (0.6 —x)(0.0012 —0.001x) 0.84
X = j dx = , and
03 0.3 (x —0.3)(0.0012 —0.001x) 0.735

o 01 0
the scatter matrix is L® = { } )
0 0 1

(c) The global stiffness matrix is
, 0.7 -—-0.7 o
K=Y LKL =LV"K®YLY + L' K®L® =10°| —0.7 1.2 -0.5].

e=1

0O -0.5 0.5

The global load vector is

. 1.155
f=> L =LY 1 Lf® = 1101.89 |

0.735
(d) Note that only the reaction force at node 1 is not zero, thus

r, +1.155
f+r=| 101.89
0.735

The resulting global system of equations is
07 -07 O 0 r, +1.155

10°|-0.7 1.2 -0.5||u, |=| 101.89

0 -05 05 ||lu, 0.735
Solving the above equation,
u, =1.46607x10-7(m), u, = 1.48077x10-" (m), and r, =-103.78(N).
(e) The stress field in element 1 is given by
@ (x) = EBYdY =200x10° xi[— 1 1]{ © ) }

0.3 1.46607 x1077

The stress field in element 2 is given by

=9.7738 x10* (Pa).

1.46607x1077
1.48077x1077
(f) The reaction force at the support Node 1 is -103.78N.

@ (x) = EB®d® =200x10° x i[— 1 1]{ } =980 (Pa).
0.3



Problem 3

Consider the mesh shown in Figure 2. The model consists of two linear
displacement constant strain elements. The cross-sectional area is A=1, Young’s
modulus is E; both are constant. A body force b(x)=cx is applied.

(a) Solve and plot u(x) and &(x) for
the FEM solution.

(b) Compare (by plotting) the finite
element solution against the exact
solution for the equation

Figure 2 EY - po) - —x.

dx?
(c) Solve the above problem using a single quadratic displacement element.
(d) Compare the accuracy of stress and displacement at the right end with that
of two linear displacement elements.
(e) Check whether the equilibrium equation and traction boundary condition
are satisfied for the two meshes.

Solution
(a) Using two linear displacement constant strain elements, each of [ in length,
we obtain the finite element model with x® =0, xV =1, x® =1, and x¥ =2l.

1 1

1 1 : .
For element 1, N© 27[1 ~-x x|, B :7[—1 1], the element stiffness matrix is

1 -1 2
K® = EA , the element body force vector is f® = le(l)Tcxdx _jc"/6 ,
I -1 1 0 cl*/3

.. 1 O O
and the scatter matrix is L® = { } i
010

For element 2, N® = %[21 -x x-1],B® = %[— 1 1], the element stiffness matrix

1 -1
is K@= %{ L } , the element body force vector

2cl® /3

5cl* /6
The global stiffness matrix is

. ! . 01 0
isf® = J'IQ N7 exdx :{ }, and the scatter matrix is L® = { } )
0 0 1

1 -1 O
K= ZzlLeTK"L" = LYTKYLY + LHTKPL® = % -1 2 -1,
! o -1 1

The global load vector is



, 0.1667
f=> LI = LYY + L f® = cl*| 1.0

0.8333
The resulting global system of equations is

1 -1 o0f||o0 r, +0.1667cl?
EA )
—l-1 2 -1||u,|= cl
l .
O -1 1 ||lu 0.8333cl

3
Solving the above equation,

u —18333£ u —26666£ and r =-2c¢l?
2 M M, 3 . M, 1 .

When 0<x <1
0

1*x

—NOQW =11 - cl® |=1.83335 2,

u(x) l[ x x) ) gagacl’ 3331
EA
du cl?

and ¢(x)=—=1.8 .

e(x) I 3331
When [ < x <2l

1.8333 e
. — 3 2
u(x)=N®q®@ :%[2l—x x—l] Z‘% =%+0.833321Ax,
2.6666——
EA
du cl?

and =—=0.8 .

&(x) dx 333 A
(b). The governing equation is
EAYY - poy=—ex,

dx
where A=1. The boundary condition is u(0)=0, and o(20) =0.
Solving this linear ODE, we obtain the exact solution u(x) = _LEAxg +c,x+c,.

. . 2cl?
Since u(o)=o0, ¢, =0. Since o(2l)=0, c, = A . Thus
u(x)=- € 3 +2d X.
6EA EA
() = ex” 2cl
2FEA EA

The comparisons between the approximation results and the exact solutions are
shown in Figures 2a (displacement), and 2b (strain).
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(c) Using a single quadratic displacement element with x

=0, x! =1, and

x{" =21, the element shape functions are
wo e lex?)  @-Dee-2D) _ (x-Dx—2D

1 (xl(l) _ x;l) Xxfl) _ xél)) (=D (=2D NE >
N® — (x -x;" )(x - xé”) _x(x-2l) x(x-2l)

2 - (xu) _ Xx(l) —x“)) )

2 1 2 3

NO© — (x—x for—x”) _x(x-D _x(x-1)

3 (xél) _xil) Xxél) _xgl)) NE NE .
The corresponding B-matrix is
B0 _ dN? _x-3l/2

1 dx l2 b
B0 _ dNY _2x-2l

2 dx _ 12 ’
o - N _x-l/2

3 dx l2
The element stiffness matrix is

[x-3l/2]
? 3
KO :jle“)TEAB(”dx :EArl 2x;22l x—1321/2 2x;22l x_li/ﬂdx
x-1/2
L




[x—gl/zf [x—gl/zj[zx—zlj (x—gl/zj(x—l/zj_
? ? -7 ? ?
2 (x=3l/2) 2x -2l ox—2lY ox—2l\x-1/2
-m| (R (2 (B e
[x—gl/zj(x—l/zj (2x—2lj(x—l/2j x-1/2
? ? -7 ? ?

;/6 -4/3 1/6
:ETA -4/3 8/3 -4/3|

1/6 -4/3 7/6

o)
The element body force vectoris f® = .[:IN(”Tcxdx = 4cl* /3.
2cl® /3
The resulting global system of equations is
6 - 1/6 0 r
A 7/ 4/3 1/ ;
e -4/3 8/3 -4/3||u, |=|4cl”/3]|.
1/6 -4/3 7/6 ||u,| |2cl*/3
Solving the above equation, we obtain
3 3
u, = 1.8333%, u, = 2.6666%, and r, =-2cl”.
. 0
-D(x-20) x(x-20) x(x-=1 cl?

ul(x) = N®qw :|:(x 1.8 iy

() ol e o | 9333

cl®
2.6666——
_0.5cl X* +2.3333 cl? N
EA ' EA™
()= L x 423333
EA ' EA’

(d) At the right end with x=21, for both of two linear displacement elements and a
single quadratic displacement element, the displacements are same to the exact

3
result (u, = 2.6666% ). As for the stress and strain, with two linear

cf and o(2l) =0.8333 Ci .

displacement elements, we obtain £(21) = 0.8333



With a single quadratic displacement element, ¢(21) = 0.3333 ;ZZA

,and

l2
D) =0.3333°
o(2l) = 03333~

. It is found that the approximation result of the stress and
strain with a single quadratic displacement element is closer to the exact result
(c=0and €¢=0).

(e). For both of two linear displacement elements and a single quadratic

displacement element, the reaction forces acting on node 1 are r,=-2cl*, which

I
satisfy the equilibrium equation (r, + r cxdx = 0 ). However, as shown in (d), the
(o]

stress boundary conditions are not satisfied for the two meshes.



