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Number Systems 
See section 12.1 in Schwarz and Oldham.   

 

The ordinary numbers that we use every day are written in base (or radix) 10, 
or decimal, because each digit represents a multiple of a power of 10.  The 
decimal number 3211, for example, can be written: 

3 × 103   +   2 × 102   +   1 × 101   +   1 × 100 

 

But we can also write numbers where each digit represents a multiple of a 
power of 2.  Such numbers are said to be written in base 2, or binary.  For 
example, 101011 can represent: 

1 × 25   +   0 × 24   +   1 × 23   +   0 × 22   +   1 × 21   +   1 × 20 

which in base 10 sums up to 43 (i.e., 4 × 101 + 3 × 100).  In fact, we can express 
a number in base 8 (octal), base 16 (hexadecimal), or base anything (as long as 
it’s an integer greater 2).  If the number contains digits to the right of a 
decimal point, remember that those digits represent multiples of negative 
powers.   

 

We may use a subscript to indicate the base of a number: 

1010112   =   4310   =   538   =   2B16 

Note that in base 2 we need 2 digits, namely 0 and 1.  In base 10 we need 10 
digits; in base 16, 16 digits.  In base 16, the first ten digits are the same as in 
base 10, but then the letters A, B, C, D, E, and F are used for the other six.   

 

Examples: 

 

Convert 13710 to octal: 

64 (= 82) 8 (= 81) 1 (=80)  

    

 

Convert 1118 to decimal: 

64 (= 82) 8 (= 81) 1 (=80)  
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Complements 
 

Computers use complements for logical manipulation and subtraction.  There 
are two types of complements, diminished radix complement and radix 
complement.  Although complements are applicable to any base, we’ll only 
need to consider binary (base 2).  Since the radix (base) is 2, the diminished 
radix complement is called the 1’s complement and the radix complement is 
called the 2’s complement.   

 

Diminished Radix Complement 

In general, given a number N in base r with n digits, the (r – 1)’s complement of 
N is (rn – 1) – N.  In binary, this is called the 1’s complement and is very simple 
to calculate.  All we have to do is take the number and change every 1 into a 0 
and every 0 into a 1.  (Why?)   

Example:  

What is the 1’s complement of 1011000?     

 

Radix Complement 

In general, given a number N in base r with n digits, the r’s complement of N is 
rn – N.  Of course this is simply 1 greater than the diminished radix 
complement.  In binary, the radix complement is called the 2’s complement 
and is most easily obtained by adding 1 to the 1’s complement.   

Example: 

What is the 2’s complement of 1101100?   

 

Binary Subtraction using 2’s Complements 

By using 2’s complements, we can subtract by adding.  To perform X – Y: 

1. Find the 2’s complement of Y.   

2. Add the 2’s complement of Y to X.   

3. If there is an end carry, discard it.  Call the result Z.   

4. If X > Y, then the answer is Z.  If X < Y, then the answer is the 2’s 
complement of Z with a minus sign in front.   

Examples: 

What is 1101100 – 1011000?   

What is 0101110 – 1110100?   
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Boolean Algebra 
Basics 
� In Boolean algebra, there are only two values, 0 and 1 (false and true, etc.). 
� We have only three basic operations: AND (·), OR (+), and NOT (¯ or ´).  
� Operator precedence: parentheses first, then NOT, then AND, lastly OR.  

� For convenience, we define XOR (� ), but note that x �  y = xy# + x#y.  

What is 1 + 1? 
This depends on what you mean by the + operator.  We use it to mean two 
different things: binary addition and logical OR.  When used for ordinary 
addition, 1 + 1 = 102 = 210.  When used for Boolean algebra, 1 + 1 = 1 OR 1 = 1.   

Rules 
� Zero and one:  0 + x = x 0 · x = 0 

 1 + x = 1 1 · x = x 
� Idempotent: x + x = x x · x = x 
� Complementarity:  x + x # = 1 x · x # = 0 
� Involution:  (x #) = x 
� Commutative: x + y = y + x x · y = y · x 
� Associative: x + (y + z) = (x + y) + z x · (y · z) = (x · y) · z 
� Distributive: x · (y + z) = x · y + x · z (x + y) · (x + z) = x + y · z 
� Absorption: x + x · y = x, x + x # · y = x + y, and others 

Perfect Induction 
Proof by perfect induction refers to proving a statement by listing all possible 
cases and showing that the statement holds for every case.  Do this by 
constructing a truth table.  Proof by perfect induction is possible in Boolean 
algebra because of the finiteness of input and output states.  Proof by perfect 
induction is as valid as proof by algebraic reduction to basic axioms.   

De Morgan’s Theorem 
Use this to distribute complementation.  Remember to change the operation 
from AND to OR or vice versa.   

x1 + x2 + x3 + … + xn = x#1 · x #2 · x #3 · … · x #n 

x1 · x2 · x3 · … · xn = x#1 + x#2 + x#3 + … + x #n 

Sum of Products and Product of Sums 
Use the 1’s in a truth table to get the sum of products.  Use the 0’s in a truth 
table and then find the complement to get the product of sums.  Generally, the 
sum of products form is more common than the product of sums.   


