MUXes

* A multiplexer is like a switchboard. You specify which input to relay to the output.
* The n selection lines determine which of 2^{n} inputs to relay to the output.
* An enable input allows the entire MUX to be turned on or off.
* A MUX can be used to implement any Boolean function.
* In a type 0 implementation, for n variables we need n selection lines and 2^{n} inputs. We simply apply all the variables to the selection lines and tie each input to 0 or 1 according to the desired output value. Type 0 implementations are inefficient and are rarely used.
* In a type 1 implementation, for n variables we need $\mathrm{n}-1$ selection lines and $2^{\mathrm{n}-1}$ inputs. For example, to implement a function of 3 variables, we need a 4×1 MUX (it has 4 inputs, 2 selection lines, and of course one output). We apply $\mathrm{n}-1$ variables to the selection lines. Then, each input is $0,1, \mathrm{x}$, or $\overline{\mathrm{x}}$ where x is the last variable.
* In a type 2 implementation, for n variables we need $\mathrm{n}-2$ selection lines and 2^{n-1} inputs. For example, to implement a function of 4 variables, we need a 4×1 MUX. We apply $\mathrm{n}-2$ variables to the selection lines. Then, each input is some simple function of the two remaining variables. External gates other than an inverter may be required for a type 2 implementation.

MUX Example: Worksheet

$F=\bar{B} \bar{D}+B C+A B D$

A	B	C	D	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

	EN		
D_{0}			
D_{1}			
D_{2}			
D_{3}			
D_{4}			
D_{5}			
D_{6}		OUT	
D_{7}			
D_{8}	16×1		
D_{9}			
D_{10}			
D_{11}			
D_{12}			
D_{13}			
D_{14}			
D_{15}			
A	B	C	

A	B	C	D	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

	EN	
D_{0}		
D_{1}		
D_{2}		OUT
D_{3}		
D_{4}	8×1	
D_{5}		
D_{6}		
D_{7}		
		B

A	B	C	D	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

	EN	
D_{0}		
D_{1}		OUT
D_{2}	4×1	
D_{3}		
	A	
		B

Sequential Logic

General

* Sequential circuits have memory. The output state depends not only on the current input states, but also on the state of the circuit itself (the current output state).
* The truth table thus contains the current output state Q as in input. The output is Q_{n+1}, representing the value of the next state of Q .
* Synchronous sequential circuits are controlled by a clock, whose pulses advance the states of each element in synchrony.

Flip-flops

* The types of flip-flops that we will consider are: RS, D, JK, and T.
* The RS flip-flop is the basic type of flip-flop. When both inputs R and S are 0 , the flip-flop retains its current state. When S is 1 , it sets the flip-flop to 1. When R is 1 , it resets the flip-flop to 0 . When both are 1 , the output is indeterminate.
* In a D flip-flop, the output is simply whatever the input is (at the time of the last clock pulse).
* A JK flip-flop is just like an RS flip-flop, except that when both J and K are 1, the flip-flop changes (toggles) between one state and the other.
* A T flip-flop toggles the output if the input is 1.
* Know the characteristic table and excitation table for each flip-flop.

S	R	Q_{n+1}
0	0	Q_{n}
0	1	0
1	0	1
1	1	ind.

Q_{n}	Q_{n+1}	S	R
0	0	0	d
0	1	1	0
1	0	0	1
1	1	d	0

J	K	Q_{n+1}
0	0	Q_{n}
0	1	0
1	0	1
1	1	Q_{n},

Q_{n}	Q_{n+1}	J	K
0	0	0	d
0	1	1	d
1	0	d	1
1	1	d	0

D	$\mathrm{Q}_{\mathrm{n}+1}$
0	0
1	1

Q_{n}	$\mathrm{Q}_{\mathrm{n}+1}$	D
0	0	0
0	1	1
1	0	0
1	1	1

T	Q_{n+1}
0	Q_{n}
1	Q_{n}

Q_{n}	$\mathrm{Q}_{\mathrm{n}+1}$	T
0	0	0
0	1	1
1	0	1
1	1	0

