MUXes

- A multiplexer is like a switchboard. You specify which input to relay to the output.
- The *n* selection lines determine which of 2^n inputs to relay to the output.
- An enable input allows the entire MUX to be turned on or off.
- ✤ A MUX can be used to implement any Boolean function.
- In a type 0 implementation, for n variables we need n selection lines and 2ⁿ inputs. We simply apply all the variables to the selection lines and tie each input to 0 or 1 according to the desired output value. Type 0 implementations are inefficient and are rarely used.
- ✤ In a type 1 implementation, for n variables we need n-1 selection lines and 2ⁿ⁻¹ inputs. For example, to implement a function of 3 variables, we need a 4 x 1 MUX (it has 4 inputs, 2 selection lines, and of course one output). We apply n-1 variables to the selection lines. Then, each input is 0, 1, x, or x where x is the last variable.
- In a type 2 implementation, for n variables we need n-2 selection lines and 2ⁿ⁻¹ inputs. For example, to implement a function of 4 variables, we need a 4 x 1 MUX. We apply n-2 variables to the selection lines. Then, each input is some simple function of the two remaining variables. External gates other than an inverter may be required for a type 2 implementation.

MUX Example: Worksheet

$F = \overline{B}\overline{D} + BC + ABD$

А	В	C	D	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

		E١	1	
D ₀ D ₁				
D ₁				
D ₃				
D4	1			
D ₅	5			
De	b			OUT
D ₇	,			
D ₈	3	16 >	(1	
Dg)			
D ₁	0			
D ₁				
D ₁	5			
4	4	В	С	D

А	В	С	D	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Α	В	С	D	F
0	0	0	0	1
0	0	0	1	0
0	0	1	1 0	1
0	0	1	1	0
	1	0	0 1 0	0
0 0 0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	0 1 0	1 0
1	0	1	0	1
1	0	1	1	0
1	1	0		0
1	1	0	0 1 0	1
1	1	1	0	1
1	1	1	1	1

	EN	
$\begin{array}{c} D_0 \\ D_1 \\ D_2 \\ D_3 \\ D_4 \\ D_5 \\ D_6 \\ D_7 \end{array}$	8 x 1	OUT
А	В	С

		EN	
$\begin{array}{c} D_0\\ D_1\\ D_2\\ D_3 \end{array}$		4 x 1	OUT
	A		В

Sequential Logic

<u>General</u>

- Sequential circuits have memory. The output state depends not only on the current input states, but also on the state of the circuit itself (the current output state).
- The truth table thus contains the current output state Q as in input. The output is Q_{n+1} , representing the value of the next state of Q.
- Synchronous sequential circuits are controlled by a clock, whose pulses advance the states of each element in synchrony.

Flip-flops

- The types of flip-flops that we will consider are: RS, D, JK, and T.
- The RS flip-flop is the basic type of flip-flop. When both inputs R and S are 0, the flip-flop retains its current state. When S is 1, it sets the flip-flop to 1. When R is 1, it resets the flip-flop to 0. When both are 1, the output is indeterminate.
- In a D flip-flop, the output is simply whatever the input is (at the time of the last clock pulse).
- A JK flip-flop is just like an RS flip-flop, except that when both J and K are 1, the flip-flop changes (toggles) between one state and the other.
- ✤ A T flip-flop toggles the output if the input is 1.
- Know the characteristic table and excitation table for each flip-flop.

Characteristic Tables

Excitation Tables

S 0 1 1	R 0 1 0 1	Q _{n+1} Q _n 0 1 ind.	Q _n 0 1 1	Q _{n+1} 0 1 0 1	S 0 1 0 d	R d 0 1 0
J 0 1 1	K 0 1 0 1	$ \begin{array}{c} Q_{n+1} \\ Q_n \\ 0 \\ 1 \\ Q_n \end{array} $	Q _n 0 1 1	Q _{n+1} 0 1 0 1	J 0 1 d d	K d 1 0
	D 0 1	Q _{n+1} 0 1	Q _n 0 0 1 1	Q _{n+1} 0 1 0 1	D 0 1 0 1	
	T 0 1	$\frac{Q_{n+1}}{Q_n}$	Q _n 0 0 1 1	Q _{n+1} 0 1 0 1	T 0 1 1 0	