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Observation of interaction dynamics in
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Abstract. – We present measurements of finite-temperature atom clouds cooled below the
transition temperature for Bose-Einstein condensation. We study the dynamics of the inter-
face region between the Bose condensed and noncondensed components of the atom clouds,
where the time-dependent density profile is highly sensitive to interactions between the two
components. We observe directly the effects of repulsion from the condensate on the dynamics
of noncondensed atoms. The measurements are compared to calculations based on Hartree-
Fock-Bogoliubov mean-field theory. We infer a value for the spatial second-order correlation
function for noncondensed atoms of g

(2)
0,NC(r = 0) = 1.8± 0.3.

The experimental observation of Bose-Einstein condensates (BEC) in 1995 [1–3] has been
followed by intense studies of condensate properties [4]. In this paper we focus on the dy-
namics of the noncondensed component of a finite-temperature atom cloud cooled below the
transition temperature for Bose-Einstein condensation. We present data and calculations that
clearly reveal the repulsive interaction between the condensate and the noncondensed atoms
in clouds released from a magnetic trap. The interface region between the two components
is particularly sensitive to such interaction effects and we have used near-resonant absorp-
tion imaging to precisely probe this region. To describe the dynamics we have developed a
theoretical model within the mean-field Hartree-Fock-Bogoliubov approximation [5, 6], that
accounts for the interaction between the two components. We speculate that our model could
be used also for studies of collective excitations in finite-temperature clouds, where an inter-
esting discrepancy between theory and experiment remains [7–12]. From our observations we
deduce a value of g

(2)
0,NC(r = 0) = 1.8 ± 0.3 for the second-order spatial correlation function

for noncondensed atoms. This value is larger by a factor of ∼ 2 than the corresponding value
obtained for a condensate [13,14].

The apparatus used to create the atom clouds is similar to the one described in refs. [15,
16]. We cool clouds with several million sodium atoms to temperatures below the critical
c© EDP Sciences
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temperature for BEC and obtain densities above 1014 atoms/cm3. To confine the atoms we
use the 4-Dee trap, which results in a cylindrically symmetric harmonic potential, with an
adjustable aspect ratio. The data presented here are for a trap with oscillator frequencies of
fz = 28.0 ± 0.1Hz along the axis of symmetry and fx = fy = 504 ± 10Hz in the two tightly
confining directions. This leads to an atom cloud with an aspect ratio of 18:1. The clouds
are abruptly released from the trap by turning off the confining magnetic fields in 400µs, well
below the trap’s lowest oscillation period of 2 ms.

At a precisely adjustable time after release, a probe pulse with a duration of 10µs is sent
through the atom cloud. The probe laser is tuned near the 3S, F = 2 → 3P , F = 3 hyperfine
transition within the D2 manifold. Prior to that, the atoms are pumped from their original
state, |3S, F = 1〉, to |3S, F = 2〉 for 10µs by laser beams tuned to the 3S, F = 1 → 3P ,
F = 2 transition (the pump beams are left on during the probe pulse). The transmission profile
of the probe laser is imaged onto a charge-coupled-device (CCD) camera and a second probe
image is taken 65 ms after each main image to normalize out spatial intensity nonuniformities
in the probe. The time delay of 65 ms is chosen to allow time for the atom cloud to diffuse
to imperceptible densities, and is still short enough to ensure that the probe beam remains
stable between images.

The imaging optics used to observe the expanding cloud consist of a pair of main lenses
with a high numerical aperture and a pair of secondary magnifying lenses. The main lenses
are 50 mm in diameter and the first is placed 250 mm away from the atom cloud, providing
diffraction-limited performance at f/5. A CCD camera with a pixel size of 22.5µm square
is placed in the image plane of the lens system. Each pixel corresponds to 3.476 ± 0.005µm
in the object plane, as calibrated using a Ronchi ruling. The system’s resolution has been
verified to be 5µm using a resolution target. The atom cloud is illuminated from below by
the probe laser beam. To keep the images of the released (and falling) clouds focused, the
first lens is mounted on a translation stage which is adjusted according to the flight time.

The rapid turn-off (400µs) of the trapping magnets induces eddy currents in the vacuum
chamber walls and copper gaskets. To avoid zero-crossings of the magnetic field at all times,
and thereby avoid Majorana spin-flips in the atom cloud, we add a positive bias field 300µs
before the turn-off. This allows for accurate modeling of cloud dynamics during the magnetic
field turn-off. By thus increasing the bias field to 100 Gauss over 400µs, we also effectively
turn off the transverse (x, y) confinement more abruptly than would a simple 400µs ramp-
down of the 4-Dee magnets, since the spring constant in the transverse directions is inversely
proportional to the bias field.

To model the expansion of the atom cloud, we use the Hartree-Fock-Bogoliubov (HFB)
mean-field approach [5,6,17]. The dynamics of the condensate are described by the generalized
Gross-Pitaevskii equation

ih̄∂Φ(r, t)
∂t

=
(−h̄2∇2

2m
+ V (r, t) + U0nC(r, t) + 2U0nT(r, t)

)
Φ(r, t) , (1)

where Φ(r, t) is the condensate “wave function” (the nonvanishing expectation value of the
atomic field operator), nC = |Φ|2 is the condensate density, and nT is the density of noncon-
densed atoms. The coupling constant U0 is given by U0 = 4πh̄2a/m, where a is the scattering
length and m the atomic mass (for the scattering length we use a = 27.5 Å [18]). V (r, t) is the
external potential from the magnetic field where we include a detailed model of eddy-current
induced fields caused by trap turn-off.

We model the dynamics of the noncondensed component after trap release by using a
classical Monte Carlo calculation. In the Hartree-Fock approximation, each noncondensed
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atom experiences a time-dependent force due to the magnetic potential V (r, t) and the mean-
field potential from the condensate. This results in the following equation of motion:

dp/dt = −∇ (V (r, t) + 2U0 nC(r, t)) , (2)

where p is the momentum of a noncondensed atom. This model does not include interactions
between noncondensed atoms, which are negligible at the densities used in this experiment [19].

The initial thermodynamic state of the trapped cloud is determined by the measured
number of atoms in the condensate and noncondensed components. The initial condensate
wave function, Φ(r, t = 0), and the six-dimensional phase space density for the noncondensed
atoms, fT(r,p, t = 0) are generated by the HFB mean-field approach of Giorgini et al. [6].
The condensate wave function is obtained by the stationary version of eq. (1) [20],

(−h̄2∇2

2m
+ V (r, 0) + U0nC(r, 0) + 2U0nT(r, 0)

)
Φ(r, 0) = µΦ(r, 0) , (3)

where µ is the chemical potential. The phase space density for the noncondensed atoms is
obtained by using a semiclassical WKB approximation for the excited Bogoliubov modes.
The procedure is iterative and as the initial guess for the condensate wave function, we use
the parabolic shape obtained within the Thomas-Fermi approximation [21] in the absence of
noncondensed atoms (T = 0). We calculate fT(r,p, 0) with this approximation for the con-
densate wave function, and obtain the spatial density nT(r, 0) for use in eq. (3) by integrating
fT(r,p, 0) over momentum coordinates. The refined solution for the condensate wave func-
tion is generated by the split-operator method [22] by evolving eq. (1) in imaginary time and
relaxing the initial parabolic density distribution into the actual distribution nC(r, 0). The
number of atoms determines the normalization of the wave function and thereby the chemical
potential. The process typically converges after three iterations. Constraining the number of
noncondensed atoms in the model to match the observed number determines the temperature.

With these initial conditions the dynamics of the atom cloud after trap turn-off are eval-
uated iteratively. For the Monte Carlo calculation, used to model the time evolution of the
noncondensed atom density nT(r, t), we use several million atoms distributed according to
the initial, semiclassical phase space density. For the first evaluation of nT(r, t) we use eq. (2)
neglecting the presence of the condensate. The result is applied in eq. (1) and the time de-
pendence of the condensate wave function is calculated with the split operator technique.
Subsequently the condensate density nC(r, t) is inserted in eq. (2) and an improved noncon-
densed atom density as a function of time is obtained. The iteration process has typically
converged at this point [23].

We evaluate the transmission profile of the probe laser beam through a model cloud with
an atom density given as a superposition of the calculated condensate and noncondensate
densities. The transmission profile is numerically propagated through the f/5 imaging optics,
which has little effect on the result.

Figure 1 shows a measured, normalized transmission profile of a two-component cloud
imaged 6 ms after trap turn-off with a resonant probe laser pulse. Fitting the tails of the
image to a Bose-Einstein distribution, we measure NT = (1.59 ± 0.05) × 106 noncondensed
atoms (within the quoted error bars, the number of atoms obtained is independent of the
exact model for the noncondensed atom density). The number of atoms in the condensate
is determined to be NC = (0.95 ± 0.03) × 106 by first subtracting the fitted Bose-Einstein
distribution from the two-component image, and then fitting the residue to a Thomas-Fermi
parabolic shape with a smoothed surface [23], where the condensate number is the only free
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Fig. 1 – Normalized CCD image of a two-component cloud, taken after 6 ms of expansion. Black
= 0%, white = 100% transmission.

parameter. The deduced numbers of atoms for the two components imply a temperature of
T = 890 nK, a chemical potential µ = 0.35 kBT , and a critical temperature Tc = 1200 nK [24].

From the normalized transmission we may obtain the column density profile of the atom
cloud. The transmission is T = e−OD, where the optical density OD is the product of the
column density and the absorption cross-section of the probe laser. The OD and column
density corresponding to fig. 1 are shown in fig. 2 along the x-direction. Also shown in
the figure is a solid curve resulting from a calculation where we used the model outlined
above. There is excellent agreement with the data points. We have included a dashed curve
which is obtained by neglecting interactions between the condensate and the noncondensed
atoms. This model severely underestimates the density of the noncondensed component at
the interface region, as is particularly clearly seen in fig. 2(b). The χ2 value, obtained for the
interface region marked in figs. 2(a)-(b), is 1.2 for the model including interactions and 31 for
the interaction-free model. This is a direct observation of the repulsive interaction between
the condensed and noncondensed components.

The error bars included in the figures and used in the χ2 evaluation represent the uncer-
tainty on the difference between the model and the data (for fig. 2, the error bars are approx-
imately the size of the dots indicating the data points). They are calculated starting from the
uncertainty of δNγ =

√
Nγ in the number of photons Nγ per CCD pixel. These photons are

incident on a portion of the cloud with column density Nat/(dxdz), where Nat is the number
of atoms within a column of area (dxdz) corresponding to the area of a CCD pixel at the
position of the cloud. The column density has an associated uncertainty

√
Nat/(dxdz) [25],

which adds to the uncertainty in the number of photons after the cloud. These photons are
converted to photo-electrons with a quantum efficiency p ≈ 0.4, and then digitized with an
analog-to-digital converter (ADC) gain of GADC = 0.42ADC counts per photo-electron, and
a readout noise of 3 ADC counts per pixel. We further include a term proportional to the
number of photons incident on a pixel, to account for the observed noise due to interference
fringes in the probe beam, which are not completely cancelled out by the normalization im-
age. Finally, since we are comparing our data to a Monte Carlo image with a finite number
of model atoms (5 × 106), there is a small term to account for statistical fluctuations in the
Monte Carlo distribution.
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Fig. 2 – (a) Cross-section along the x-axis through the cloud of fig. 1. The data (black points) are
compared to a calculation (solid curve) where interactions between the condensate and noncondensed
component are included through a mean-field potential. For the model used here, we include the
full quantum-mechanical exchange interaction corresponding to eqs. (1) and (2). We also compare
to a model (dashed curve) where we neglect interactions between the condensed and noncondensed
components. Each data point along the cross-sections is the result of an average over 9 pixels in the
z-direction, as indicated by the boxed-in area of fig. 1. NT and NC indicated in the figure are the
number of atoms in the noncondensed and condensed components, respectively. (b) An expanded
view of (a) around the condensate surface.

We repeat the experiments with atom clouds cooled to just above Tc. Figure 3(a) shows a
cross-section through a cloud containing NT = (6.20 ± 0.05) × 106 atoms, imaged after 7 ms
time-of-flight with +5MHz detuned probe light. From measurements of the expansion rate of
the clouds, we obtain a temperature of (1.61± 0.03)µK. The critical temperature calculated
from NT is 1.63µK [24]. As can be seen from the figure, there is good agreement between
the observed optical density and a model (with no free parameters) of a freely expanding
Bose-Einstein cloud with 6.20 × 106 atoms and a chemical potential µ = 0. The χ2 value is
1.1.

We also cool clouds to near absolute zero, where the fraction of noncondensed atoms is
negligible. Pure condensates with (1.5 ± 0.1) × 106 atoms are seen to expand in agreement
with predictions based on eq. (1) with nT(r, t) = 0. Figure 3(b) shows a condensate imaged
after 8 ms time-of-flight with +10MHz detuned probe light. The solid curve is the calculated
profile with no adjustable parameters and the χ2 value is 1.1.

Magnetic fields during trap turn-off are found to have visible effects on condensate ex-
pansion in the axial (z) direction, but have no effect in the transverse x, y directions. The
parameters in our model for eddy currents are fine tuned to account for the observed con-
densate expansion in the z-direction. It is important to note, however, that the effects of the
interaction between condensate and noncondensed atoms are significant only in the transverse
directions where the calculated profiles are insensitive to eddy current fields.
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Fig. 3 – (a) Cross-section through a noncondensed cloud of (6.20 ± 0.05) × 106 atoms. The solid
curve is obtained for a freely expanding cloud with an initial phase space density given as the Bose-
Einstein distribution for 6.20× 106 atoms and a chemical potential µ = 0. (b) Cross-section through
a pure condensate (condensate fraction > 95%) containing (1.5 ± 0.1) × 106 atoms. The solid curve
is obtained from a model where the condensate expansion is given by the Gross-Pitaevskii equation
(eq. (1)) with no noncondensed component.

The dynamics of the condensate wave function are represented by eq. (1) which includes an
additional factor of two in the term 2U0nT(r, t), describing the interaction of noncondensed
atoms with the condensate, as compared to the term U0nC(r, t) for interactions within the
condensate. This is due to quantum-mechanical exchange effects originating from the require-
ment of symmetrization of the wave function for identical particles in different quantum states.
The front factor for the U0nT(r, t) term is related to the factorized part of the second-order
correlation function [14] for noncondensed atoms at small distance, g

(2)
0,NC(r, r + r′), r′ → 0.

We have performed a rigorous derivation of eq. (1), based on a delta-function approximation
for the atomic pair potential. This results in a front factor of (1 + g

(1)
NC(r, r + r′)), r′ → 0,

where g
(1)
NC is the first-order correlation function for noncondensed atoms. The factorized part

of the second-order correlation function is given by [14]

g
(2)
0,NC(r, r + r′) = 1 + |g (1)

NC(r, r + r′)|2 . (4)

Motivated by this, we have compared the data shown in fig. 1 to a sequence of models where
we have varied the value of g

(2)
0,NC(0) and correspondingly replaced eq. (1) by

i h̄ ∂Φ(r, t)
∂t

=
(−h̄2∇2

2m
+ V (r, t) + U0 nC(r, t) +

+
(
1 +

√
g
(2)
0,NC(0)− 1

)
U0 nT(r, t)

)
Φ(r, t) . (5)

For the expansion of the noncondensed component, we similarly replaced the interaction

potential in eq. (2) by (1 +
√

g
(2)
0,NC(0)− 1)U0 nC(r, t). We conclude from our data that

g
(2)
0,NC(0) = 1.8± 0.3. This value represents the enhanced probability for finding two noncon-
densed, identical bosons at small distance as first observed with photons in the Hanbury-Brown
and Twiss experiment [26].
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In conclusion, we have studied the dynamics of finite-temperature atom clouds which
are cooled below the critical temperature for Bose-Einstein condensation and subsequently
released from the magnetic trap where they are initially confined. Our observations reveal
significant effects on the cloud dynamics from the repulsive interaction between the condensate
component and the noncondensed atoms.
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