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We theoretically explore coherent information transfer between ultraslow light pulses and Bose-Einstein
condensates(BEC’s) and find that storing light pulses in BEC’s allows the coherent condensate dynamics to
process optical information. We consider BEC’s of alkali atoms with aL energy level configuration. In this
configuration, one laser(the coupling field) can cause a pulse of a second pulsed laser(the probe field) to
propagate with little attenuation(electromagnetically induced transparency) at a very slow group velocity
s,10 m/sd and be spatially compressed to lengths smaller than the BEC. These pulses can be fully stopped
and later revived by switching the coupling field off and on. Here we develop a formalism, applicable in both
the weak- and strong-probe regimes, to analyze such experiments and establish several results:(1) We show
that the switching can be performed on time scales much faster than the adiabatic time scale for electromag-
netically induced transparancy even in the strong-probe regime. We also study the behavior of the system
changes when this time scale is faster than the excited state lifetime.(2) Stopped light pulses write their phase
and amplitude information onto spatially dependent atomic wave functions, resulting in coherent two-
component BEC dynamics during long storage times. We investigate examples relevant to87Rb experimental
parameters and see a variety of novel dynamics occur, including interference fringes, gentle breathing excita-
tions, and two-component solitons, depending on the relative scattering lengths of the atomic states used and
the probe to coupling intensity ratio. We find that the dynamics when the levelsuF=1,MF=−1l and uF
=2,MF= +1l are used could be well suited to designing controlled processing of the information input on the
probe.(3) Switching the coupling field on after the dynamics writes the evolved BEC wave functions density
and phase features onto a revived probe pulse, which then propagates out. We establish equations linking the
BEC wave function to the resulting output probe pulses in both the strong- and weak-probe regimes. We then
identify sources of deviations from these equations due to absorption and distortion of the pulses. These
deviations result in imperfect fidelity of the information transfer from the atoms to the light fields and we
calculate this fidelity for Gaussian-shaped features in the BEC wave functions. In the weak-probe case, we find
that the fidelity is affected both by absorption of very-small-length-scale features and absorption of features
occupying regions near the condensate edge. We discuss how to optimize the fidelity using these consider-
ations. In the strong-probe case, we find that when the oscillator strengths for the two transitions are equal the
fidelity is not strongly sensitive to the probe strength, while when they are unequal the fidelity is worse for
stronger probes. Applications to distant communication between BEC’s, squeezed light generation, and quan-
tum information are anticipated.
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I. INTRODUCTION

In discussions of quantum information technology[1], it
has been pointed out that the ability to coherently transfer
information between “flying” and stationary qubits will be
essential. Atomic samples are good candidates for quantum
storage and processing due to their long coherence times and
large, controllable interactions, while photons are the fastest
and most robust way to transfer information. This implies
that methods to transfer information between atoms and pho-
tons will be important to the development of this technology.

Recently the observation of ultraslow light(USL) [2,3],
propagating at group velocities more than seven orders of
magnitude below its vacuum speedsVg,10−7cd, and the
subsequent stopping and storing of light pulses in atomic
media[4,5] has demonstrated a tool to possibly accomplish
this [6]. The technique relies on the concept ofelectromag-
netically induced transparency(EIT) [7] in three-level

L-configuration atoms[see Fig. 1(a)]. A coupling light field
Vc is used to control the propagation of a pulse of probe light
Vp. The probe propagates at a slow group velocity and, as it
is doing so, coherently imprints its amplitude and phase on
the coherence between two stable internal states of the at-
oms, labeledu1l and u2l (which are generally particular hy-
perfine and Zeeman sublevels). Switching the coupling field
off stops the probe pulse and ramps its intensity to zero,
freezing the probe’s coherent(that is, intensityand phase)
information into the atomic media, where it can be stored for
a controllable time. Switching the coupling field back on at a
later time writes the information back onto a revived probe
pulse, which then propagates out of the atom cloud and can
be detected, for example, with a photomultiplier tube(PMT)
[see Fig. 1(b)]. In the original experiment[4], the revived
output pulses were indistinguishable in width and amplitude
from nonstored USL pulses, indicating that the switching
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process preserved the information in the atomic medium
with a high fidelity.

In addition to the ability to store coherent information,
compressing ultraslow probe pulses to lengths shorter than
the atomic cloud puts the atoms in spatially dependent super-
positions ofu1l and u2l, offering novel possibilities to study
two component Bose-Einstein condensates(BEC’s) dynam-
ics [8]. In [9] slow light pulses propagating in BEC’s[10] of
sodium were used to create density defects with length scales
,2 mm, near the BEC healing length, leading to quantum
shock waves and the nucleation of vortices.

Motivated by both observations of coherent optical infor-
mation storage in atom clouds and the interesting dynamics
which slow and stopped light pulses can induce in BEC’s,
the present paper theoretically examines possibilities offered
by stopping light in BEC’s. We first present a novel treatment
of the switching process and establish that switch-off and
switch-on of the coupling field can occur without dissipating
the coherent information, provided the length scale of varia-
tions in the atomic wave functions are sufficiently large. We
find that the switching of the coupling field can be done
arbitrarily fast in the ultraslow group velocity limitVg!c.
This is consistent with previous work[4,11–13], but goes
further as it applies to pulses in both the weak- and strong-
probe regimes[14]. We also present the first explicit calcu-
lation of how the behavior of the system differs when one
switches the coupling field faster than the natural lifetime of
the excited stateG−1 [see Fig. 1(a)] and find that the infor-
mation is successfully transferred even in this regime. Fur-
thermore, we will see that the analysis presented here, being
phrased in terms of the spatial characteristics of the atomic
wave functions, is well suited to addressing the issue of stor-
age for times long compared to the time scale for atomic
dynamics.

Investigation of this very issue of longer storage times
constitutes the central results of the paper. In this regime,
there are important differences between optical information
storage in BEC’s versus atom clouds above the condensation
temperatufre(thermal clouds), which have been used in ex-

periments to date. During the storage time, the light fields are
off and the atomic wave functions evolve due to kinetic en-
ergy, the external trapping potential, and atom-atom interac-
tions. (We label all theseexternal dynamics to distinguish
them from couplings between the internal levels provided by
the light fields.) To successfully regenerate the probe pulse
by then switching on the coupling field, there must be a
nonzero value of theensemble average(over all atoms) of
the coherence betweenu1l and u2l. When revivals were at-
tempted after longer storage times in thermal clouds(several
milliseconds in[4]) the external dynamics had washed out
the phase coherence betweenu1l and u2l (due to the atoms
occupying a distribution of single-particle energy levels) and
no output pulses were observed. In zero-temperature BEC’s
the situation is completely different. There each atom
evolves in an identical manner, described by a nonlinear
Schrödinger equation(Gross-Pitaevskii equation[10]), pre-
serving the ensemble average of the coherence during the
external dynamics. That is, even as the amplitude and phase
of the wave functions representing the BEC evolve, the rela-
tive phase of the two components continues to be well de-
fined at all points in space. Thus, if we switch the coupling
field back on, we expect that the evolved BEC wave func-
tions will be written onto a revived probe field. In this way,
the probe pulses can beprocessedby the BEC dynamics.

We show several examples, relevant to current87Rb
BEC’s, of the interesting two-component dynamics which
can occur during the storage time. This atom possesses inter-
nal states with very small inelastic loss rates[15] and, thus,
long lifetimes[16]. We find that, depending upon the relative
scattering lengths of the internal states involved and the rela-
tive intensity of the probe and coupling fields, one could
observe the formation of interference fringes, gentle breath-
ing motion, or the formation and motion of two-component
(vector) solitons [17]. In particular we find that using the
levels uF=1,MF=−1l and uF=2,MF= +1l in 87Rb could al-
low for long, robust storage of information and controllable
processing. In each case, we observe the amplitude and
phase due to the dynamical evolution is written onto revived
probe pulses. These pulses then propagate out of the BEC as
slow light pulses, at which point they can be detected, leav-
ing behind a BEC purely in its original stateu1l.

For practical applications of this technique to storage and
processing, one must understand in detail how, and with
what fidelity, the information contained in the atomic coher-
ence is transferred and output on the light fields. Thus, the
last part of the paper is devoted to finding the exact relation-
ship between the BEC wave functions before the switch-on
and the observed output probe pulses. We find equations
linking the two in the ideal limit(without absorption or dis-
tortion). Then, using our earlier treatment of the switching
process, we identify several sources of imperfections and
calculate the fidelity of the information transfer for Gaussian-
shaped wave functions of various amplitudes and lengths. In
the weak-probe limit, we find a simple relationship between
the wave function inu2l and the output probe field. We find
that optimizing the fidelity involves balancing considerations
related to, on the one hand, absorption of small length scale
features in the BEC wave functions and, on the other hand,
imperfect writing of wave functions which are too near the

FIG. 1. Schematic of ultraslow light(USL) and stopped experi-
ments.(a) The L energy level structure which we consider has two
stable statesu1l and u2l and an excited stateu3l which decays at a
rateG [which is s2pd 10 MHz for Na ands2pd 6 MHz for 87Rb].
Atoms which spontaneously decay fromu3l are assumed to exit the
levels under consideration.(b) We consider the two light fields to be
copropagatingand input in the +z direction [the long axis of the
Bose-Einstein condensate(BEC)] at zin. The output intensity atzout

can be detected experimentally with a photomultiplier tube(PMT).
The probe field is pulsed with half-widtht0. The coupling beam is
cw but can be switched off quickly to stop the probe pulse while it
is in the BEC. Switching it back on later regenerates the probe light
pulse.
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condensate edge. For stronger probes, we find a more com-
plicated relationship, though we see one can still reconstruct
the amplitude and phase of the wave function inu2l using
only the output probe. In this regime, we find that the fidelity
of the writing and output is nearly independent of the probe
strength when the oscillator strengths for the two transitions
involved (u1l↔ u3l and u2l↔ u3l) are equal. However, un-
equal oscillator strengths lead to additional distortions and
phase shifts, and therefore lower fidelity of information
transfer, for stronger probes.

We first, in Sec. II, introduce a formalism combining
Maxwell-Schrodinger and Gross-Pitaevskii equations[10],
which self-consistently describe both the atomic(internal
and external) dynamics as well as light field propagation. We
have written a code which implements this formalism nu-
merically. Section III presents our novel analysis of the
switching process, whereby the coupling field is rapidly
turned off or on, and extends previous treatments of the fast
switching regime, as described above. Section IV shows ex-
amples of the very rich variety of two-component dynamics
which occur when one stops light pulses in BECs and waits
for much times longer than the characteristic time scale for
atomic dynamics. Section V contains our quantitative analy-
sis of the fidelity with which the BEC wave functions are
transferred onto the probe field. We conclude in Sec. VI and
anticipate how the method studied here could eventually be
applied to transfer of information between distant BEC’s and
the generation of light with squeezed statistics.

II. DESCRIPTION OF ULTRASLOW LIGHT
IN BOSE-EINSTEIN CONDENSATES

We first introduce our formalism to describe the system
and review USL propagation within this formalism. Assume
a Bose-condensed sample of alkali atoms, with each atom in
the BEC containing three internal(electronic) states in aL
configuration[Fig. 1(a)]. The statesu1l andu2l are stable, and
the excited levelu3l radiatively decays atG. In the alkalis
which we consider, these internal levels correspond to par-
ticular hyperfine and Zeeman sublevels for the valence elec-
tron. When the atoms are prepared in a particular Zeeman
sublevel and the proper light polarizations and frequencies
are used[4,9], this three-level analysis is a good description
in practice. All atoms are initially condensed inu1l and the
entire BEC is illuminated with acoupling field, resonant with
the u2l↔ u3l transition and propagating in the +z direction
[see Fig. 1(b)]. A pulse of probe field, with temporal half-
width t0, resonant with theu1l↔ u3l transition, and also
propagating in the +z direction, is then injected into the me-
dium. The presence of the coupling field completely alters
the optical properties of the atoms as seen by the probe.
What would otherwise be an opaque medium(typical optical
densities of BECs are,400) is rendered transparent via EIT
[7], and the light pulse propagates at ultraslow group veloci-
ties s,10 m/sd [2]. As this occurs, all but a tiny fraction of
the probe energy is temporarily put into the coupling field,
leading to a compression of the probe pulse to a length
smaller than the atomic medium itself[2,4,18].

To describe the system theoretically, we represent the
probe and coupling electric fields with their Rabi frequencies

Vpscd=−d13s23d ·Epscd /", whereEpscd are slowly varying enve-
lopes of the electric fields(both of which can be time and
space dependent) andd13s23d are the electric dipole moments
of the transitions. The BEC is described with a two-
component spinor wave functionsc1,c2dT representing the
mean field of the atomic field operator for statesu1l and u2l.
We ignore quantum fluctuations of these quantities, which is
valid when the temperature is substantially below the BEC
transition temperature[19]. The excited levelu3l can be adia-
batically eliminated[20] when the variations of the light
fields’ envelopes are slow compared to the excited state life-
time G−1 (which is 16 ns in sodium). The procedure is out-
lined in the Appendix. The functionsc1,c2 evolve via two
coupled Gross-Pitaevskii(GP) equations [10]. For the
present paper, we will only consider dynamics in thez di-
mension, giving the BEC some cross-sectional areaA in the
transverse dimensions over which all dynamical quantities
are assumed to be homogeneous. This model is sufficient to
demonstrate the essential effects here. We have considered
effects due to the transverse dimensions, but a full explora-
tion of these issue is beyond our present scope. The GP
equations are[9,21]

i"
]c1

]t
= F−

"2

2m

]2

]z2 + V1szd + U11uc1u2 + U12uc2u2Gc1

− i"S uVpu2

2G
c1

Vp
*Vc

2G
c2D ,

i"
]c2

]t
= F−

"2

2m

]2

]z2 + V2szd + U22uc2u2 + U12uc1u2Gc2

− i"S uVcu2

2G
c2 +

VpVc
*

2G
c1D , s1d

where m is the mass of the atoms and we will consider a
harmonic external trapping potentialV1szd= 1

2mvz
2z2. The

potentialV2 can in general differ fromV1. For example, in a
magnetic trap the statesu1l and u2l can have different mag-
netic dipole moments. However, in the examples we consider
the potentials are equal to a good approximation, and so
V2szd=V1szd is assumed in the calculations. Atom-atom in-
teractions are characterized by theUij =4pNc"

2aij /mA,
whereNc is the total number of condensate atoms andaij are
the s-wave scattering lengths for binary collisions between
atoms in internal statesuil and u jl. The last pair of terms in
each equation represent the coupling via the light fields and
give rise to both coherent exchange betweenu1l, u2l as well
as absorption intou3l. In our model, atoms which populate
u3l and then spontaneously emit are assumed to be lost from
the condensate[Fig. 1(a)], which is why the light coupling
terms are non-Hermitian.

The light fields’ propagation can be described by Max-
well’s equations. Assuming slowly varying envelopes in time
and space(compared to optical frequencies and wavelengths,
respectively) and with the polarization densities written in
terms of the BEC wave functions these equations are[9,21]
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sVpuc1u2 + Vcc1

*c2d,
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]z
+

1

c

]
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DVc = −

Ncf23s0
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sVcuc2u2 + Vpc1c2

*d, s2d

where f13, f23 are the dimensionless oscillator strengths of
the transitions ands0 is the resonant cross section(1.65
310−9 cm2 and 2.91310−9 cm2 for the D1 lines of sodium
and 87Rb, respectively). These equations ignore quantum
fluctuations of the light fields, just as the GP equations(1)
ignore quantum fluctuations of the atomic fields. Note that in
the absence of any coherencec1

*c2 these equations predict
absorption of each field with the usual two-level atom reso-
nant absorption coefficient(the atom density times the single
atom cross section).

For much of our analysis, we will solve Eqs.(1) and (2)
self-consistently with a numerical code, described in
[9,21,22]. In [9], this was successfully applied to predict and
analyze the experimental observation of the nucleation of
solitons and vortices via thelight roadblock. When the light
fields are off, the two states do not exchange population am-
plitude and Eqs.(1) reduce to coupled Gross-Pitaevskii equa-
tions for a two-component condensate. By contrast, when
they are on and the probe pulse lengtht0 (and inverse Rabi
frequenciesVp

−1,Vc
−1) are much faster than the time scale for

atomic dynamics(typically ,ms), the internal couplings in-
duced by the light field couplings will dominate the external
dynamics.

For our initial conditions, we considerNc,106 atoms ini-
tially in u1l in the condensed ground state. We determine the
wave function of this statec1

sGdszd numerically by propagat-
ing Eq.(1) in imaginary time[23], though the Thomas-Fermi
approximation[24] provides a good analytic approximation
to c1

sGdszd. In the cases presented in this paper, we choose the
transverse areaA so that the central density and chemical
potentialm=U11uc1

sGds0du2 are in accordance with their values
in a trap with transverse frequenciesvx=vy=3.8vz, as in
previous experiments[9]. In Fig. 2 we consider an example
with Nc=1.23106 sodium atoms(with a11=2.75 nm[25]),
vz=s2pd21 Hz, andA=ps8.3 mmd2. The ground-state den-
sity profile Ncuc1

sGdszdu2 is indicated with the dotted curve in
Fig. 2(b). In this case the chemical potentialm
=s2pd1.2 kHz.

With our initial ground statec1
sGdszd determined, consider

that we initially st=−`d input a constant coupling field with
a Rabi frequencyVc0 and then inject a Gaussian-shaped
probe pulse atzin [see Fig. 1(b)] with a temporal half-width
t0 and a peak Rabi frequencyVp0. We define our times such
that t=0 corresponds to the time the peak of the pulse is
input. The dotted and dashed curves in Fig. 2(a) show, re-
spectively, a constant coupling inputVc0=s2pd8 MHz and a
weaker input probe pulse with peak amplitudeVp0
=s2pd3.5 MHz and widtht0=1.5 ms.

Solving Eqs.(1) and(2) reveals that, when the conditions
necessary for EIT hold, the pulse will compress upon enter-
ing the BEC and propagate with a slow group velocity. As it

does this, it transfers the atoms into superpositions ofu1l and
u2l such that[21]

c2sz,td < −
Vpsz,td
Vcsz,td

c1sz,td, s3d

which is a generalization to BEC’s of the single atomdark
state [26]. Thus, the probe fieldVp imprints its (time- and
space-dependent) phase and intensity pattern in the BEC
wave functions as it propagates. When Eq.(3) is exactly
satisfied, it is easily seen that the two light field coupling
terms in each of Eqs.(1) cancel, meaning thatu1l and u2l are
completely decoupled from the excited stateu3l. However,
time dependence ofVp causes small deviations from Eq.(3)
to occur, giving rise to some light-atom interaction which is,
in fact, the origin of the slow light propagation. If one as-
sumes the weak-probe limitsVp0!Vc0d and disregards
terms of ordersVp0/Vc0d2, the group velocity of the probe
pulse is[18,21]

Vgszd =
Vc0

2

G

A

Ncf13s0uc1
sGdszdu2

s4d

and so is proportional the coupling intensity and inversely
proportional to the atomic densityNcuc1

sGdszdu2/A. The half-
width length of the pulse in the medium isLp=t0Vg, which is
a reduction from its free space value by a factorVg/c, while
its peak amplitude does not change. Thus only a tiny fraction
of the input probe pulse energy is in the probe field while it
is propagating in the BEC. Most of the remaining energy
coherently flows into the coupling field and exits the BEC, as
can be seen in the small hump in the output coupling inten-
sity [thin solid curve in Fig. 2(a)] during the probe input.
This has been dubbed an adiabaton[27]. The magnitude of
the adiabaton is determined by the intensity of the probe
pulse.

In the weak-probe limitc1sz,td never significantly devi-
ates from the ground-state wave functionc1sz,td<c1

sGdszd
and the coupling field is nearly unaffected by the propagation
Vcsz,td<Vc0 [both of these results hold toOsVp0

2 /Vc0
2 d]. In

this case Eq.(3) shows thatc2 follows the probe fieldVp as
the pulse propagates. The arrow in Fig. 2(a) indicates a time
where the probe has been completely input and has not yet
begun to output. During this time, the probe is fully com-
pressed in the BEC and Fig. 2(b) shows the atomic densities
in u1l and u2l at this time. The spatial region with a nonzero
density in u2l corresponds to the region occupied by the
probe pulse[in accordance with Eq.(3)]. Equation(3) ap-
plies to the phases as well as the amplitudes; however, the
phases in this example are homogenous and not plotted.

Once the pulse has propagated through the BEC, it begins
to exit the +z side. The energy coherently flows back from
the coupling to probe field, and we see the output probe
pulse (thick solid curve). Correspondingly, we see a dip in
the coupling output at this time. In the experiments the delay
between the input and output probe pulses seen in Fig. 2(a) is
measured with a PMT[Fig. 1(b)]. This delay and the length
of the atomic cloud are used to calculate the group velocity.
The group velocity at the center of the BEC in the case
plotted isVgs0d=6 m/s.
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Note that the output pulse plotted in Fig. 2(a) at zout is
slightly attenuated. This reduction in transmission is due to
the EIT bandwidth. The degree to which the adiabatic re-
quirementt0@G /Vc0

2 is not satisfied will determine the de-
viation the wave functions from the dark state(3), which
leads to absorption intou3l and subsequent spontaneous
emission. Quantitatively, this reduces the probe transmission
(the time-integrated output energy relative to the input en-
ergy) to [21]

T =

E
−`

`

dtuVpszout,tdu2

E
−`

`

dtuVpszin,tdu2
=

1

Î1 + 4DszoutdS G

r0Vc0
2 D2

, s5d

whereDszd=sNcf13s0/Adezin

z dz8uc1
sGdsz8du2 is the optical den-

sity. In the example in Fig. 2,Dszoutd=390. The peak inten-

sity of the pulse is reduced by a factorT2 while the temporal
width is increased byT−1 [this spreading can be seen in Fig.
2(a)]. The appearance of the large optical densityDszoutd in
Eq. (5) represents the cumulative effect of the pulse seeing a
large number of atoms as it passes through the BEC. To
prevent severe attenuation and spreading, we see we must
uset0.t0

smind;2ÎDszoutdG /Vc0
2 , which is 1.0ms in our ex-

ample.

III. FAST SWITCHING AND STORAGE OF COHERENT
OPTICAL INFORMATION

We now turn our attention to the question of stopping,
storing, and reviving probe pulses. We will show here that
once the probe is contained in the BEC, the coupling field
can be switched off and onfasterthan the EIT adiabatic time
scale without causing absorptions or dissipation of the infor-

FIG. 2. Coherent storage of a light pulse via fast switching. Results of numerical integration of Eqs.(1) and(2) showing both a slow and
stopped light experiment.(a) The dashed curve shows the normalizedinput probe pulse intensityuVpszin ,tdu2/Vp0

2 [a t0=1.5 ms 1/e
half-width, Vp0=s2pd 3.5 MHz pulse], while the dotted curve showsuVcszin ,tdu2/Vc0

2 for a constant input coupling fieldVc0

=s2pd 8.0 MHz. The thick solid curve shows the delayed output probe pulse[at zout; see Fig. 1(b)]. The time that the tail of the input has
vanished and the rise of the output has not begun(marked by the arrow) corresponds to the time the pulse is completely compressed inside
the BEC. In the output coupling intensity(thin solid curve) we see adiabatons. The valuess0=1.65310−9 cm2 and f13=1/2 and f23

=1/3 have been used.(b) The atomic density in the two states,Ncuc1u2/A (solid curve) andNcuc2u2/A (dashed curve), at t=3.7 ms [indicated
by the arrow in(a)]. The dotted curve shows the original densityNcuc1

sGdu2/A before the probe is input. The arrow here and in(c) and (d)
marks the positionzc discussed later in the text.(c) Spatial profiles of the probeuVpu2/Vp0

2 (solid curves) and couplinguVcu2/Vc0
2 (dashed

curves) field intensities at various times while the coupling field input is switched off. The switch-off is an error function profile with a width
ts=0.1 ms, centered attoff =3.7 ms. Successively thinner curves refer tot=3.52, 3.65, 3.68, and 3.75ms. The dotted curve indicates the
original condensate density(arbitrary units). (d) Spatial profiles of the normalized darkuVDu2/Vc0

2 (dashed curves, scale on the left) and
absorbeduVAu2/Vc0

2 (solid curves, scale on right) field intensities, at the same times as in(c). (e) The input and output probe and coupling
intensities, with the same conventions as(a), in a stopped light simulation. In this case, the coupling field is switched off attoff =3.7 ms and
then back on atton=15.3ms.
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mation [4,21]. While we find no requirement on the time
scale for the switching, wewill obtain criteria on the length
scales ofc1, c2 which must be maintained to avoid absorp-
tion events. While previous work[4,12,13] had addressed the
fast switching case in the weak-probe limit, here we obtain
results that are valid even whenVp0,Vc0 [14]. As we will
see, for shorter storage times where the external atomic dy-
namics play no role, these length scale requirements can be
related to the adiabatic requirements on the input probe pulse
width t0. The advantage of the current analysis is that it is
easily applied to analyzing probe revivals after the atomic
dynamics has completely altered the wave functionsc1, c2.
In such a case it is these altered wave functions, rather than
the input pulse widtht0, which is relevant.

A. Analyzing fast switching in the dark and absorbed basis

Consider that we switch the coupling field input off at
some timetoff with a fast time scalets!t0. Figure 2(c) plots
the probe and coupling intensities as a function ofz at vari-
ous times during a switch-off withts=0.1 ms. We see the
probe intensity smoothly ramps down with the coupling field
such that their ratio remains everywhere constant in time.
Remarkably, for reasons we discuss below, the wave func-
tions c1, c2 arecompletely unaffectedby this switching pro-
cess. Motivated by this, we will, in the following, assume
that c1, c2 do not vary in time during this fast-switching
period and later check this assumption.

To understand this behavior, it is useful to go into a dark
and absorbed basis for the light fields, similar to that used in
[28], by defining[21]

SVD

VA
D =

1

c0
S− c2

* c1
*

c1 c2
DSVp

Vc
D , s6d

wherec0=Îuc1u2+ uc2u2. From Eq.(6) one sees that when the
condensate is in the dark state(3), VA=0. Using the notation
ci = uciueifi and transforming the propagation equations(2)
according to Eq.(6), one gets

S ]

]z
+ ialDVD = s− aNA

* + a12
* dVA, s7d

S ]

]z
+ aA − ialDVA = aNAVD, s8d

where

aA ;
Ncs0

2A
sf13uc1u2 + f23uc2u2d,

a12 ;
Ncs0

2A
sf13 − f23dc1c2,

aNA ;
1

c0
2FSuc1u

duc2u
dz

− uc2u
duc1u
dz

D
+ iSdf2

dz
−

df1

dz
Duc1uuc2uG ,

al ;
1

c0
2Suc1u2

df1

dz
+ uc2u2

df2

dz
D , s9d

and we have ignored the vacuum propagation terms,1/c in
Eq. (2). They are unimportant as long as the fastest time
scale in the problem is slow compared to time it takes a
photon travelling at c to cross the condensate(about
100 mm/c,1 ps). Note thataA represents the usual absorp-
tion coefficient weighted according to the atomic density in
each of u1l and u2l. The termsaNA, al arise from spatial
variations in the wave functions, which make the transforma-
tion (6) space dependent. The terma12 represents an addi-
tional effect present when the light-atom coupling coefficient
differs on the two transitionssf13Þ f23d and is discussed in
detail in Sec. V C.

Consider for the moment a case withf13= f23 (implying
a12=0) and assume a region in whichc1, c2 are homog-
enous(soaNA=al =0). Equation(8) shows that theabsorbed
field VA attenuates with a length scaleaA

−1, the same as that
for resonant light in a two-level atomic medium and less than
1 mm at the cloud center for the parameters here. One would
then getVA→0 after propagating several of these lengths.
Conversely Eq.(7) shows that thedark light field VD expe-
riences no interaction with the BEC and propagates without
attenuation or delay.

However, the spatial dependence inc1, c2 gives rise to
aNA, al Þ0 in Eqs.(7) and (8), introducing some coupling
betweenVD and VA, with the degree of coupling governed
by the spatial derivativesdc1/dz, dc2/dz. A simple and rel-
evant example to consider is the case of a weak-ultraslow-
probe pulse input and contained in a BEC, as discussed
above[see Fig. 2(b)]. The wave functionc2 has a homog-
enous phase and an amplitude which follows the pulse shape
according to Eq.(3), meaning thataNA scales as the inverse
of the pulse’s spatial lengthLp

−1.
It is important to note that this coupling is determined by

spatial variations in therelative amplitudec2/c1 and does
not get any contribution from variations in thetotal atomic
densityc0

2. To see this we note that if we can write the wave
functions asc1szd=c1c0szd, c2szd=c2c0szd, wherec1, c2 are
constants independent ofz, thenaNA andal as defined in Eq.
(9) vanish.

When variations in the relative amplitude are present, ex-
amination of Eq.(8) reveals that when the damping is much
stronger than the couplingsuaNAu ,al !aAd, one can ignore
the spatial derivative term in analogy to an adiabatic elimi-
nation procedure. When we do this, Eq.(8) can be approxi-
mated by

VA <
aNA

aA
VD. s10d

Strictly speaking, one can only apply this procedure in the
region whereVA has propagated more than one absorption
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length [that is, for z.zc where zc is defined by
ezin

zc dz8aAsz8d=1]. However,zc is in practice only a short dis-
tance into the BEC[marked with arrows in Figs. 2(b)–2(d)].
When the probe has already been input, as in Fig. 2(b), c2
and thereforeVA [see Eq.(6)] are already trivially zero for
z,zc, so Eq.(10) holds everywhere. We next plug Eq.(10)
into Eq. (7), giving

]VD

]z
= F−

uaNAu2

aA
+

aNAa12
*

aA
− ialGVD. s11d

These last two equations rely only on assumptions about the
spatial derivatives ofc1, c2 andnot on the time scale of the
switch-off ts [though we have assumedts@G−1 in adiabati-
cally eliminatingu3l from our original Eqs.(1) and (2)].

These results allow us to conclude two important things
which hold wheneveruaNAu ,al !aA and the probe has been
completely input. First, the coefficients governing the propa-
gation of VD in Eq. (11) are extremely small. The length
scalesuaNAu−1, a12

−1 are already generally comparable to the
total BEC size and the length scales for changes inVD, given
by Eq.(11), scale as these terms multiplied by the large ratio
aA/aNA. [Theal term in Eq.(11) can lead to additional phase
shifts, which we discuss in Sec. V C.] Therefore the dark
field VD propagates with very little attenuation. As we have
noted(and later justify and discuss in more detail) the wave
functions[and therefore the propagation constant in brackets
in Eq. (11)] are virtually unchanged during the switch-off.
Under this condition, changes initiated inVD at the entering
edgezin quickly propagate across the entire BEC. To apply
this observation to the switch-off, we note when the pulse is
contained soc2=0 at the entering edge, Eq.(6) showsVD
=Vc there. Switching off the coupling field atzin then
amounts to switching offVD at zin and Eq.(11) shows that
this switch-off propagates through the entire BEC with little
attenuation or delay. Second, from Eq.(10) we see that as
VD is reduced to zero,VA is reduced such that the ratio
VA/VD remains constant in time.

A numerical simulation corroborating this behavior is
plotted in Fig. 2(d). The dark field intensityuVDu2 is seen to
switch-off everywhere as the coupling field input is reduced
to zero over ats=0.1 ms time scale, confirming that the
changes in the input propagate across the BEC quickly and
with little attenutation. The ratiouVAu2/ uVDu2 is everywhere
much smaller than unity and constant in time. The only ex-
ception to this is in a small regionz,zc at the cloud en-
trance, whereVA has not yet been fully damped. The plot of
uVAu2 during the switch-off indeed demonstrates how Eq.
(10) is a generally good approximation, but breaks down in
this region. In the case plotted(and any case where the probe
is fully contained) the wave functionc2 is so negligible in
this region thatVA is rather small and unimportant(note the
scale on the right-hand side of the plot).

Translating this back into theVp, Vc basis, we note from
Eq. (6) that keepingVA<0 means that the probe must(at all
z) constantly adjust to the coupling field via

Vp = − Sc2

c1
DVc. s12d

Thus we see thatVp smoothly ramps down withVc even if
Vc is ramped down quickly, as seen in Fig. 2(c).

Using our results for the light fields, we can now see why
the wave functionsc1, c2 do not change during the switch-
ing. Physically, the probe is in fact adjusting to maintain the
dark state(12) and, in doing so, induces some transitions
betweenu1l and u2l. However, only a fractionVg/c,10−7 of
the input energy is in the probe while it is contained in the
medium, and so the probe is completely depleted before any
significant change occurs inc1, c2 [4]. In fact, the energy
content of the probe field right before the switch-off is less
than 1/100th of a free-space photon in the case here. Thus,
Vp is completed depleted after only a fraction of oneu1l
→ u2l transition. Note that Eq.(12) is equivalent to Eq.(3).
However, writing it in this way emphasizes that, during the
switching, the probe is being driven by a reservoir consisting
of the coupling field and atoms and adjusts to establish the
dark state. This is contrast to the situation during the probe
input, when many photons from both fields are being input at
a specific amplitude ratio, forcing theatomic fieldsto adjust
to establish the appropriate dark state. Plugging in our results
for the light fields(10) and(11) into our equations(1) we can
calculate the changes that occur inc1 and c2 during the
switch-off. Doing this, we find relative changes inc1, c2 are
both smaller thants/t0, which can be made arbitrarily small
for fast switchingts!t0. The little change which does occur
is due not to any process associated with the switching itself
but is due to the small amount of propagation during the
switch-off. It is therefore safe to assume(as we saw numeri-
cally) that c1, c2 are constant in time during the switch-off.
One can also show with this analysis that the ratio ofcoher-
entexchange events(from u1l to u2l or vice versa) to absorp-
tive events(transitions tou3l followed by spontaneous emis-
sion) is uVD /VAu implying that the switch-off occurs
primarily via coherent exchanges.

In the original stopped-light experiment[4], the coupling
field was then switched back on toVc0, after some control-
lable storage timetst, at a timeton= toff +tst. In that experi-
ment, revivals were observed for storage timestst too short
for significant external atomic dynamics to occur, so the state
of the atoms was virtually identical atton and toff. Then the
analysis of the switch-on is identical to the switch-off as it is
just the same coherent process in reverse. The probe is then
restored to the same intensity and phase profile as before the
switch-off. An example of such a case is plotted in Fig. 2(e).
The output revived pulse then looks exactly like the normal
USL pulse[compare the output in Figs. 2(a) and 2(e)], as
was the case in the experiment.

We have established the requirementuaNAu!aA is neces-
sary and sufficient for coherent switching to occur. Under
what conditions is this satisfied? When the switch-off occurs
while the probe is compressed, it isalwayssatisfied because
of bandwidth considerations mentioned above[see Eq.(5)].
Specifically, the input pulse must satisfyt0.t0

smind. How-
ever, this leads to a pulse width in the medium of
Lp.2ÎDszoutdaA

−1, implying that uaNAu!aA is satisfied[as
Dszoutd@1]. Therefore, any pulse which can successfully
propagate to the cloud center can be abruptly stopped and
coherently depleted by a rapid switch-off of the coupling
field. Of course, if the switch-on is then done before signifi-
cant atomic dynamics, the same reasoning applies then. In
this case, our requirements on the spatial derivatives are al-
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ready encapsulated by the adiabatic requirements on the
probe pulse. It is when the external atomic dynamics during
the storage significantly changec1 andc2 that the analysis of
the switch-on becomes more complicated. This is the central
purpose of the Secs. IV and V below.

As hinted at above, when the pulse is not yet completely
input, the switching can cause absorptions and dissipation of
the information. In this casec2 is significant in the region
z,zc and soVA is significant for several absorption lengths
into the BEC. Physically, the coupling field sees atoms in a
superposition ofu1l and u2l immediately upon entering the
condensate rather than onlyu1l atoms. Numerical simulations
of this situation confirm this. During both the switch-on and
switch-off, a significant number of atoms are lost from both
condensate components, primarily concentrated in thez,zc
region, and the revived probe pulse is significantly attenuated
relative to the pulse before the storage.

Incidentally, this explains the apparent asymmetry be-
tween the probe and coupling in a stopped-light experiment.
Wheneverbothfields are being input, the temporal variations
in both fields must be slow compared with the EIT adiabatic
time scale, as the atomic fields must adjust their amplitudes
to prevent absorptions. However, when one of the fields is no
longer being input(like a contained probe pulse), the other
field’s input can be quickly varied in time.

B. Switching faster than G−1

When the switching is done quickly compared to the natu-
ral lifetime of u3l sts,G−1d, the assumptions needed for
adiabatic elimination ofc3 are no longer valid. The analysis
of the switching then becomes more complicated but, re-
markably, we find the quality of the storage is not reduced in
this regime.

To see this, we performed numerical simulations of
switching in this regime by solving Eqs.(A1)–(A4) [which
are the analogs of Eqs.(1) and (2) without the adiabatic
elimination of c3] for the same parameters as Fig. 2 but
varying ts from 80 ns to 0.1 ns[29]. An example withts
=2 ns is shown in Fig. 3. We plot the probe and coupling
amplitudes versus time at a point near the center of the BEC
and zoom in on the regions near the switch-on and -off. Note
that while the coupling field smoothly varies to its new value
in each case, the probe field slightly overshoots the value
given by Eq.(12) before returning to it. In all cases with
ts,G−1 the probe amplitudeuVpu experienced damped oscil-
lations before reaching its final value. The frequency of the
oscillations was determined byts

−1 and the damping rate was
G.

During these oscillations, the absorbing fieldVA is in fact
quite significant. However, the maximum value ofuc3u and
the total atomic loss due to spontaneous emissions events
was completely independentof ts over the range we ex-
plored. To understand this, we note that even thoughVA is
larger, the frequency components of the quickly varying cou-
pling field are spread over a range much wider thanG. Thus
a very small fraction of the energy in the fieldVc is near
resonant with the atomic transition and it passes through the
BEC unattenuated. Analyzing the problem in Fourier space

one can see that the increase inVA for smallerts is precisely
offset by this frequency width effect, leading us to the con-
clusion that spontaneous emission loss is independent ofts.

Unlike the case of switching slowly compared withG−1,
the adjustment of the probe is not a coherent process. Rather,
spontaneous emission damps the system until the dark state
(12) is reached. However, because we are in the regimeVg
!c, the amount of energy in the probe is much less than one
photon and thus still has virtually no impact onc1, c2. This
will not necessarily hold whenVg,c and in [13] it was
predicted that there are, in fact, adiabatic requirements forts
in this regime. However, in all cases of interest here this
inequality is well satisfied and there is no restriction onts.

IV. BEC DYNAMICS AND PROCESSING OPTICAL
INFORMATION

We now turn to the question of the atomic dynamics dur-
ing the storage time. These dynamics depend strongly on the
relative scattering lengths of the states used and the probe to
coupling intensity ratio. We will see that the these dynamics
are written onto revived probe pulses by switching the cou-
pling field back on. The length scale requirement on varia-
tions in the relative amplitudec2/c1 derived abovesuaNAu
!aAd plays a central role in the fidelity with which these
dynamics are written. We will demonstrate with several ex-
amples, relevant to current87Rb experimental parameters.

A. Writing from wave functions onto light fields

In [4] the revived pulses were seen to be attenuated for
longer storage times with a time constant of,1 ms. The
relative phase between theu1l and u2l (or coherence), aver-
aged over all the atoms, washed out because the atoms, al-

FIG. 3. Switching faster than the natural linewidth. Solid and
dashed lines show, respectively, the normalized probe and coupling
amplitudes at a point in the center of the BECVpsz=
−12 mm,td /Vp0, Vcsz=−12 mm,td /Vc0 when the switching is
faster than the natural linewidthts=2 ns!G−1 [but otherwise the
same parameters as Fig. 2(e)]. The two insets magnify the regions
near thetoff and ton.
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though at a cold temperature of 0.9mK, were above the
Bose-condensation temperature and so occupied a distribu-
tion of energy levels. By contrast, a zero-temperature two-
component BEC will maintain a well-defined phase(the
phase betweenc1 and c2) at all z, even asc1, c2 evolve.
They evolve according to the two-component coupled GP
equations(1) with the light fields set to zerosVp=Vc=0d,
and the initial conditions are determined by the superposition
created by the input pulse attoff [see Fig. 2(b)]. After such an
evolution, we can then switch the coupling field back on and
the probe will be revived according to Eq.(12) but with the
newwave functionsc1, c2, evaluated atton.

Here we examine a wide variety of different two-
component BEC dynamics which can occur after a pulse has
been stopped. Because of the initial spatial structure ofc1,
c2 created with the USL pulses, we see some novel effects in
the ensuring dynamics.

Upon the switch-on, in many cases the probe will be re-
vived via Eq.(12). We label the spatial profile of the revived
probe byVp

srevdszd;Vpsz,ton+tsd. When we are in the weak-
probe limit (uVpu! uVcu or, stated in terms of the wave func-
tions, uc2u! uc1u) Eq. (12) becomes

Vp
srevdszd = −

c2sz,tond
c1

sGdszd
Vc0, s13d

allowing us to make a correspondence between the revived
probe andc2 if Vc0 and c1

sGdszd are known. The revived
pulse will then propagate out of the BEC to the PMT atzout.
In the absence of any attenuation or distortion during the
propagation out, the spatial features of the revived probe get
translated into temporal features. Thus, if we observe the
output Vp

soutdstd;Vpszout,td, then we would deduce that re-
vived pulse was

Vp
srevdszd = Vp

soutd
„tszoutd − tszd + ton…, s14d

where tszoutd−tszd;sG /Vc0
2 dfDszoutd−Dszdg is the time it

takes the probe pulse to travel from some pointz to zout. Note
that we are relying here on the the fact that we can switch the
coupling field onto its full value ofVc0 with a time scale fast
compared to the pulse delay timestszoutd−tszd. A slow ramp
up would lead to a more complicated relationship between
Vp

srevdszd andVp
soutdstd.

Combining Eqs.(13) and (14) shows how the phase and
amplitude information that was contained inc2 at the time of
the switch-on is transferred to the output probeVp

soutdstd. This
transfer will be imperfect for three reasons. First, when suf-
ficiently small spatial features are inc2, thenaNA is compa-
rable to aA, giving rise to a significantVA. The resulting
absorptions will cause deviations ofVp

srevd from our expecta-
tion (13). Second, we mentioned how spatial features are
translated into temporal features on the output probe. During
the output, fast-time features on the output probe will be
attenuated via the bandwidth effect discussed in Eq.(5), af-
fecting the accuracy of the correspondence(14). Finally,
stronger output probes, which will occur whenuc2u,uc1u at
the time of the switch-on, make both the writing at the

switch-on and the subsequent propagation out more compli-
cated and less reliable. Our following examples will demon-
strate these considerations.

B. Formation and writing of interference fringes

Interesting dynamics occur in when the two internal states
are trapped equallysV2=V1d and the scattering lengthsa12,
a11 are slightly different. We consider a case withNc=1.0
3106 87Rb atoms and chooseu1l= u5S1/2,F=2,MF= +1l,
u2l= u5S1/2,F=1,MF=−1l, and u3l= u5P1/2,F=2,MF=0l.
The two lower statesu1l and u2l are magnetically trapped
with nearly identical magnetic moments, and we consider a
trap with vz=s2pd 21 Hz and assume a tranvserse areaA
=ps5 mmd2. These two states have an anomalously small
inelastic collisional loss rate[15] and so have been success-
fully used to study interacting two-component condensates
for hundreds of milliseconds[16]. The elastic scattering
lengths area11=5.36 nm,a12=1.024a11, anda22=1.057a11
[30].

Figure 4(a) shows the initial wave functionsc1, c2 after
the input and stopping of a probe pulse. We see a Gaussian-
shaped density profile inu2l, reflecting the input probe’s
Gaussian shape. The subsequent dynamics are governed by
Eqs. (1) with Vp=Vc=0. In this case, a weak probesVp0

2

=Vc0
2 /16d was input. As a result,c1sz,td<c1

sGdszd is nearly
constant in time and the evolution ofc2 is governed by es-
sentially linear dynamics, with a potential determined by the
magnetic trapand interactions withu1l atoms:

V2−effszd = V2szd + U12uc1
sGdszdu2 − m. s15d

Figure 4(b) shows this potential in this case. The hill in the
middle has a heightmfsa12−a11d /a11g and arises because at-
oms feel a stronger repulsion from the condensate inu1l
when they are inu2l. Figures 4(c) and 4(d) show the subse-
quent dynamics. One sees that theu2l condensate is pushed
down both sides of the potential hill and spreads. However,
once it reaches the border of the BEC, it sees sharp walls
from the trap potential. Even for the fairly moderate scatter-
ing length difference here, there is sufficient momentum ac-
quired in the descent down the hill to cause a reflection and
formation of interference fringes near the walls. The wave-
length of the fringes is determined by this momentum.

What happens if one switches the coupling field back on
after these dynamics? Figures 4(e) shows the revived probe
pulsesVp

srevdszd upon switch-ons at the times corresponding
to Fig. 4(d). One sees a remarkable transfer of the sharp
density and phase features of theu2l condensate onto the
probe field, according to Eq.(13). Because we are in the
weak-probe regime, the coupling field intensity only very
slightly deviates from its input valueVc0. Figures 4(f) then
shows the output probeVp

soutdstd. The sharp interference
fringes are able to propagate out, though there is some at-
tenuation and washing out of the features. Note that the fea-
tures at more positivez propagate out first, leading to a
mirror-image-like relationship between the spatial, Fig. 4(e),
and temporal, Fig. 4(f), patterns as predicted by Eq.(14).

In this particular example, we successfully output many
small features from thec2 to the output probe field. Here the
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fringes are,3 mm, which is still larger than the absorption
length ,0.5 mm, but not substantially so, leading to some
small amount of dissipation during the switch-on and output.
This gives us a sense of the “information capacity.” The
number of absorption lengths, or optical density, which in
this case isDszoutd<300, ultimately limits the number of
features(for a given desired fidelity) which could be success-
fully written and output. Note also that in thetst=101 ms
case, some of thec2 amplitude occupies the entering region
sz,zcd, leading to additional imperfections in the writing
process in this region.

C. Breathing behavior and long storage

The dynamics in the previous example are quite dramatic,
but are not particularly conducive to preserving or controlla-
bly processing the information in the BEC. For this, it would
be preferable to switch the roles ofu1l andu2l. Such a case is
shown in Fig. 5. Becausea12,a11 in this case, the potential

hill is turned into a trough[see Fig. 5(a)]. The effective po-
tential in the region of theu1l condensate, in the Thomas-
Fermi limit, becomesV2−eff=V1fsa11−a12d /a11g and so is
harmonic, with a much smaller oscillator frequency than the
magnetic trap. The evolution can be easily calculated by de-
composing the wave functionc2 into a basis of the harmonic
oscillator states of this potential. In the example here, there is
significant occupation of the first several oscillator levels,
and so one sees an overall relative phase shift in time(from
the ground-state energy of the zeroth state), a slight dipole
oscillation (from occupation of the first excited state), and
breathing (from the second). After one oscillator period
(310 ms in the case shown), c2 replicates its original value at
the switch-off.

In this case, the dynamics are quite gentle, and so the
spatial scales of the phase and density features are always
quite large compared with the absorption lengthaA

−1. The
fidelity of the writing and output of the information on the
probe field[shown in Figs. 5(d) and 5(e)] is correspondingly
better than in the previous example. Additionally, because

FIG. 4. Formation of interference fringes in87Rb and writing fringes to probe light field.(a) The initial wave functions created by at
=2.0 ms, Vp0=s2pd 2 MHz probe pulse. The coupling field is initially on atVc0=s2pd 8 MHz then switched off attoff =7.5 ms. The cloud
parameters and atomic levels are described in the text. The thick solid curve shows the densityNcuc2szdu2/A (multiplied by 10 for clarity)
while the thick dashed curve shows the phasef2szd. The thin curve shows the densityNcuc1szdu2/A. The phasef1 is approximately
homogenous and not shown.(b) The effective potentialV2−eff/m, Eq. (15), seen by the condensate inu2l. (c) The resulting evolution of the
densityNcuc2sz,tdu2/A (white represents higher density) as the wave packet is pushed down the both sides of potential hill and interferes with
itself upon reaching the hard wall inV2−eff at the condensate edge. The vertical grey lines show the condensate boundary, and the horizontal
grey lines indicate the times plotted in(d). (d) Plots of the density and phase of the wave functions at the indicated times[with the same
conventions as(a)] at t=55 ms, 101 ms, and 291 ms.(e) Spatial profiles of the probe and coupling field directly after a fast switch-on after
a storage time tst= ton− toff corresponding to the times in(d). The thick [thin] solid curves show the intensities
uVp

srevdszd /Vp0u2 fuVcszd /Vc0u2g and the dashed curve shows the phasefp
srevd (fc is nearly homogenous and not plotted). (f) The time profile

of the probe output intensity(solid curve) and phase(dots) at the outputzout.

Z. DUTTON AND L. V. HAU PHYSICAL REVIEW A 70, 053831(2004)

053831-10



the u2l is trapped near the BEC center, this case avoids prob-
lems associated withc2 occupying the regionz,zc.

Because of both the ease of analyzing the evolution and
the high fidelity of outputting the information, we expect this
case to be well suited to controlled processing of optical
information. For example, if the input pulse created a wave
function c2 corresponding to the ground state of the oscilla-
tor potential, the evolution would result only in a homog-
enous phase shift, proportional to the storage time, allowing
long storage of the information or introduction of control-
lable phase shifts. By choosing the pulse lengths differently
so several oscillator states are occupied, one could achieve
linear processing or pulse reshaping.

Furthermore, note that in this example there is a small but
discernable dip in theu1l density at 51 ms, indicating some
nonlinearity in the evolution ofc2. One can tune this non-
linearity by varying the probe to coupling ratio, leading to
nonlinear processing of the information.

D. Strong-probe case: Two-component solitons

The two-component dynamics are even richer when one
uses strong probe pulses, so nonlinear effects become very
evident in the evolution. In such a case, the qualitative fea-
tures of the dynamics will be strongly effected by whether or
not the relative scattering lengths are in a phase separating
regime a12.Îa11a22 [31,32]. Experiments have confirmed
that theu1l, u2l studied in our previous examples in87Rb are
very slightly in the phase separating regime[16]. Relative
scattering lengths can also be tuned via Feshbach resonances
[33].

Figure 6 shows the evolution of the two components fol-
lowing the input and stopping of a stronger probesVp0

=0.71Vc0d. In this case we chose our levels to beu1l
= u5S1/2,F=1,MF=−1l, u2l= u5S1/2,F=1,MF= +1l, and u3l
= u5P1/2,F=2,MF=0l, which would require an optical trap
[34] in order to trap theu1l andu2l equally. This level scheme
is advantageous in the strong probe case sincef13= f23
which, as we will discuss in more detail in Sec. V C, im-
proves the fidelity of the writing and output processes. We
chose the scattering lengtha12=1.04a11, higher than the ac-
tual background scattering length, to exaggerate the phase
separation dynamics. One sees in Fig. 6(a) and 6(c) that over
a 30-ms time scale, the phase separation causes the density in
u2l to become highly localized and dense. This occurs be-
cause the scattering lengtha12.a11 causesu1l atoms to be
repelled from the region occupied by theu2l atoms, and in
turn the u2l atoms find it favorable to occupy the resulting
“well” in the u1l density. These two processes enhance each
other until they are balanced by the cost of the kinetic energy
associated with the increasingly large spatial derivatives and
we see the formation of two-component(vector) solitons
[17]. In the case here, two solitons form and propagate
around the BEC, even interacting with each other. The alter-
nating grey and white regions along each strip in Fig. 6(a)
indicate that the solitons are undergoing breathing motion on
top of motion of their centers of mass. Figure 6(b) shows that
the total density profilec0

2 varies very little in time. It is the
relative densities of the two components that accounts for
nearly all the dynamics.

We found solitons formed even in only slightly phase
separating regimessa12/Îa11a22ù1.02d. The number of soli-
tons formed, the speed of their formation, and their width
were highly dependent on this ratio as well as the number of
atoms inu2l. The ability of stopped light pulses to create very

FIG. 5. Breathing behavior and long storage. In this case the states chosen foru1l andu2l are reversed, changing the sign of the curvature
in the effective potential(15) in (a). All plots are the plotted with the same conventions as Fig. 4 except we additionally plot thin dotted
curves in(c) showing the phasef1szd and in (d) showing the phasefcszd.
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localized two-component structures seems to be a very effec-
tive method for inducing the formation of vector solitons,
which has hitherto been unobserved in atomic BEC’s. A full
exploration of these dynamics is beyond our scope here.

These nontrivial features can also be written onto probe
pulses as shown in Fig. 7(a). Note that the condition for
coherent revivalsuaNAu!aA doesnot depend on the weak-
probe limit. Therefore, the writing process is still primarily a
coherent process, and Eq.(12) is still well satisfied. How-
ever, we see in Fig. 7(a) that the coupling field is strongly
affected by the writing and is far from homogenous, meaning
the weak probe result(13) cannot be used. Nonetheless, we
see that the qualitative features of both the density and phase
of c2 have still been transferred ontoVp. The writing in the
strong-probe regime will be studied in more detail in Sec. V.

In Fig. 7(b) we plot the resulting output probe pulse in
this case. As in the weak-probe case there is some degrada-
tion in the subsequent propagation due to attenuation of
high-frequency components. In addition, unlike the weak-
probe case, there are nonlinearities in the pulse propagation
itself which causes some additional distortion. Section V C
also addresses this issue. Even so, we again see a very clear
signature of the two solitons in the both the intensity and
phase of the output probe.

We have performed some preliminary simulations in traps
with weaker transverse confinement and which calculate the
evolution in the transverse degrees of freedom. They show
that the solitons can break up into two-component vortex
patterns via the snake instability[9,35].

We chose our parameters to be in the phase separating
regime here. Just as in the weak-probe case, other regimes
will lead instead to much gentler dynamics. For example, it
has been shown[36] that whena12,a11=a22 then there exist
“breathe-together” solutions of the BEC whereby complete
overlap of the wave functionsc1, c2 persists. In this case the
nonlinear atomic interaction can lead to spin squeezing[37].
It would be extremely interesting to investigate a probe-
revival experiment in such a case, to see to what extent the
squeezed statistics are written into probe pulse, producing
squeezed light[38]. This would require taking both the light
propagation and atomic dynamics in our formalism beyond
the mean field. Steps in this direction have been taken in
[6,39], but these analyses are restricted to the weak-probe
case.

V. QUANTITATIVE STUDY OF WRITING AND OUTPUT

The above examples demonstrate that a rich variety of
two component BEC dynamics can occur, depending on the
relative interaction strengths and densities of the states in-
volved. They also show that remarkably complicated spatial
features in both the density and phase can be written into
temporal features of a probe light pulse and output. The pur-
pose of this section is to quantify the fidelity with which
wave functions can be written onto the probe field.

To do this we consider an example of a two-component
BEC with a Gaussian-shaped feature inc2, with parameters
characterizing length scales and amplitudes of density and
phase variations. Note that these Gaussian pulse shapes are
relevant to cases in which one might perform controlled
processing—e.g., Fig. 5. Switching on a coupling field then
generates and outputs a probe pulse with these density and
phase features. We will calculate this output, varying the
parameters over a wide range. In each case, we will compare
the output to what one expect from an “ideal” output(with-
out dissipation or distortion) and calculate an error which
characterizes how much they differ. Using the analysis of the
switching process in Sec. III and the USL propagation in
Sec. II we also obtain analytic estimates of this error.

In the weak-probe case, we find a simple relationship be-
tweenc2sz,tond and the outputVp

soutdstd. We find that to op-

FIG. 6. Strong probe case: formation of vector solitons. Dynam-
ics resulting from using a relatively strong-probe inputVp0=s2pd
5.7 MHz, Vc0=s2pd 8 MHz. In this case we haveNc=0.53106

87Rb atoms in avz=s2pd 21-Hz trap and usef13= f23=1/12 and
a11=a22=5.36 nm corresponding to the systemu1l= u5S1/2,F
=1,MF=−1l, u2l= u5S1/2,F=1,MF= +1l, and u3l= u5P1/2,F
=2,MF=0l. We artificially seta12=1.04a11 to exaggerate the phase
separation dynamics.(a) Evolution of density inu2l Ncuc2sz,tdu2/A
shows the development and interaction of two vector solitons. The
dotted lines indicate the times plotted in(c). (b) The total density
Ncfuc1sz,tdu2+ uc2sz,tdu2g /A=Ncc0

2/A remains almost constant in
time. (c) The densitiesNcuc1sz,tdu2/A and Ncuc2sz,tdu2/A (now on
the samescale) are plotted as thin and thick solid curves, respec-
tively, at the times indicated. The phasesf1 andf2 are plotted as
dotted and dashed curves, respectively.

FIG. 7. Writing solitons onto probe field.(a) Writing of vector
solitons onto probe and coupling fields directly after a switch-on
after a storage time oftst=110 ms and(b) probe output. The plots
use the same conventions as Figs. 5(d) and 5(e).
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timize the fidelity in this case one should choose the Gauss-
ian pulse length between two important length scales. The
shorter length scale is determined by EIT bandwidth consid-
erations, which primarily contribute error during the output.
On the other hand, for large pulses comparable to the total
condensate size, the error during the writing process domi-
nates due toc2 partially occupying the condensate entering
edge regionsz,zcd.

In the strong-probe case, we find that the relationship be-
tweenc2sz,tond andVp

soutdstd is more complicated; however,
when f13= f23, one can still make an accurate correspon-
dence. We find that the fidelity in this case depends only
weakly on the probe strength. Conversely, whenf13Þ f23,
even a small nonlinearity causes additional phase shifts and
distortions, making this correspondence much more difficult,
leading to higher errors for stronger probes. For this reason,
a system that uses, for example,u1l= uF=1,MF=−1l, u2l
= uF=1,MF= +1l (as in Fig. 7) would be preferable when
one is interested in applications where there are comparable
densities in the two states.

By considering the switch-on and output processes, start-
ing with an arbitrary initial two-component BEC, we empha-
size that this method of outputting the atomic field informa-
tion onto light fields works regardless of how the BEC state
was generated. One could prepare a BEC in a coherent su-
perposition ofu1l and u2l by any available method including,
but not limited to, inputting a slow light pulse.

A. Deriving c2 from the written and output probe field

Assume we have a two-component BEC with wave func-
tions c1, c2 (and again definec0;Îuc1u2+ uc2u2). For now
we assumef13= f23 [so a12=0; see Eq.(9)], as we treat the
f13Þ f23 case in Sec. V C. Upon a rapid switch-on of a cou-
pling field with amplitudeVc0, inverting Eq.(6) shows that
the pattern written onto the probe field will be

Vp
srevd = −

c2

c0
VD +

c1
*

c0
VA. s16d

In the ideal limit, where the spatial variations of the wave
function are sufficiently small,aNA→0 and the second term
vanishes. Furthermore, Eq.(11) shows in this case that the
dark field intensity is constantuVDu=Vc0. So in the ideal
limit we have, for the amplitude,

uVp
srev-idealdu =

uc2u
c0

Vc0. s17d

In practice this will be a good approximation as long as the
inequality uaNAuuc1u!aAuc2u is satisfied. The extent to which
the second term in Eq.(16) cannot be neglected will deter-
mine the error between the idealVp

srev-ideald and actualVp
srevd

output. Note that in all the cases studied in Sec. IV,c0sz,td
was nearly constant in time, being always well approximated
by the original ground statec1

sGdszd. Thusc0 can be consid-
ered a known function ofz.

Turning now to the phase, the simple relationshipf2
−f1=fp−fc+p is always satisfied in the dark state[see Eq.
(12)]. If fc was just a constant, then the probe phase would

simply reflect the relative phase of the two wave functions
fp=f2−f1+p (choosing our phase conventions sofc=0).
This is indeed the case in the weak-probe limit, as then the
coupling field phasefc is unaffected by the atomic fields
upon the switch-on. However, this is not necessarily so in the
strong-probe regime. To calculate the true phase shift, we
calculate phase ofVD from Eq. (11). In the ideal limit,
fDszd=ezin

z dz8alsz8d [choosing our phase conventions such
that f1szind=0]. Definingf21;f2−f1 and using the defini-
tion of al, Eqs.(9) and (17), we find the relationship

f21szd = fp
srev-idealdszd + p − fp

snld,

fp
snld =E

zin

z

dz8
dfp

srev-ideald

dz8

uVp
srev-idealdsz8du2

Vc0
2 − uVp

srev-idealdsz8du2
. s18d

The equation is written in this way(the atomic phase in
terms of the probe phase and intensity) because our purpose
is to derive the phase patternf21 based on the observed
probe field, rather than vice versa. The nonlinear correction
fp

snld is fact the phase imprinted on the coupling fieldfc
during the switch-on.

However, in an experiment, we do not have direct access
to the revived probeVp

srevdszd. Rather, we observe the tempo-
ral outputVp

soutdstd. In practice, the intensity of this quantity
can be measured with a PMT, while the phase pattern could
be measured by beating it with a reference probe field which
did not propagate though the BEC. In the ideal limit(the
absence of attenuation or distortion) the relationship(14)
will link the observed output to the revived probe fieldVp

srevd.
Thus we define the “ideal” output via

Vp
srev-idealdszd ; Vp

sout-ideald
„tszoutd − tszd + ton…. s19d

In practice, additional absorption events and distortion can
occur during the output. If variations of the relative ampli-
tudec2/c1 have some characteristic scaleLc, then time fea-
tures with a scalet,Lc /Vg will be introduced into the probe
Vp. Using our result for the bandwidth-induced attenuation,
Eq. (5) yields an estimate for transmission energy(that is, the
energy of the actual output pulseVp

soutd relative to an unat-
tenuated output ofVp

srevd):

T =
1

Î1 + b
,

b ;
Dszoutd − Dszpd

fLcaAszpdg2 . s20d

For this simple estimate we evaluateaA andD at the location
of the center of the pulsezp, though one could also construct
more sophisticated estimates by integrating over the spatial
distribution of the pulse. Just as in our discussion below Eq.
(5), the temporal width is increased by a factorT−1 and the
peak intensity reduced byT2 during the propagation out.

We now apply these findings to a Gaussian pulse, withc2
assumed to be of the form
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c2szd = c0szdA2 expS−
z2

2L2
2DexpFi

Af2

2
erfS z

Lf2

DG .

s21d

Note thatc2 has a density feature of amplitudeA2
2 and length

L2 and a phase feature of amplitudeAf2
and lengthLf2

. For
c1szd we choose the amplitude, so the total density matches
the ground state for the trapc0

2= uc1
sGdu2 and in the phase we

put in a shift with some amplitudeAf1
and lengthLf1

. An
example is shown in Fig. 8(a). These parameters will be
varied throughout this section to learn how they effect the
writing and output. We choose avz=s2pd 20 Hz trap fA
=ps5 mmd2g with Nc=2.03106 87Rb atoms. We usef13

= f23=1/12, corresponding to the systemu1l= u5S1/2,F
=1,MF=−1l, u2l= u5S1/2,F=1,MF= +1l, and u3l= u5P1/2,F
=2,MF=0l in 87Rb.

In the example of Fig. 8(a), A2=0.5 is not particularly
small, so the weak-probe limit can not be assumed. Figure
8(b) shows the spatial profiles of the dark fieldVD and cou-
pling field Vc immediately following a fast switch-onsts

=0.1 msd. We see that very little attenuation ofVD occurs
across the BEC, asaNA,OsA2L2, iA2Af2

Lf2
, iA2Af1

Lf1
d is

quite small compared withaA. Translating this back into the
Vc, Vp basis, Eq.(6) predicts thatVc acquires a dip in in-
tensity with a height proportional to the densityuc2u2. This
behavior is indeed seen in the figure.

The phase differencef21 is plotted as the dot-dashed
curve in Fig. 8(b). One sees that in the region wheref21 is
inhomogeneous, a small phase shift, equal tofp

snld, Eq. (18),
is introduced in the coupling field(dotted curve). Again this
shift only arises in the strong-probe regime. The phase shift
in the dark fieldfD is plotted as the dashed curve.

Figure 8(c) then compares written probe field to our ideal
limit predictions(17) and (18) in this example. The numeri-
cally calculated intensityuVp

srevdu2 (solid curve) is almost in-
distinguishable from our predictionuVp

srev-idealdu2, Eq. (17)
(dashed curve). The phase written onto the probe fieldfp

srevd

is also very close to the ideal limit prediction(18). One sees
that including the nonlinear correctionfp

snld to the simpler
estimatef21+p (dot-dashed curve) is important in making
the comparison good.

Figure 8(d) then shows intensity(thick solid curve) and
phase(thin solid) of the output pulseVp

soutdstd. For compari-
son the dashed and dotted curves show, respectively, the out-
put expected from an unattenuated and undistorted transmis-
sion of the revived pulseVp

srevdszd via Eq. (19). One sees a
very good agreement in the phase pattern, while there is a
visible reduction in the intensity, due to bandwidth consider-
ations. The dot-dashed curve shows our estimate with the
estimated reduction in intensityT2 [see Eq.(20)] using a
characteristic length scaleLc calculated from a quadrature
sum of contributions from the amplitude and phase features
in Eq. (21) (the expression is given in the caption).

We have thus calculated a method by which the output
probe pulse can be solely used to calculate the relative den-
sity and phase of the wave functions which generated it and
demonstrated the method with a generic example. Further-
more, we have identified the leading-order terms which will
cause errors in these predictions. In particular we have seen
in our example in Fig. 8(d) that including the expected band-
width attenuation accounts for most of the deviation between
our ideal predictions and the actual output pulse.

B. Quantifying and estimating the fidelity

We now quantify the deviations from our predictions
(17)–(19) for our example(21), varying the length and am-
plitude parameters over a wide range. These results can be
directly applied to pulses which are approximately Gaussian
(as in Fig. 5). The results here should also provide a good
guide to the expected fidelity in more complicated cases as
long as the length scale and amplitude of features can be
reasonably estimated.

To quantify the deviation from our ideal case prediction
(17) and (18) we define the write error

Ew ;
E

zin

zout

dz8uVp
srevd − uVp

srev-idealdueisf21+fp
snld+pdu2

E
zin

zout

dz8uVp
srevdu2

. s22d

We plot this quantity in a series of cases with differentL2 in
Fig. 9(a) (circles) in a case with amplitudeA2=0.5 and no

FIG. 8. Writing and outputting atomic field information onto the
probe fields.(a) A test case with a density feature of lengthL2

=10 mm of amplitudeA2=0.5 and phase features ofAf2
=−0.2p,

Lf2
=5 mm [see Eq.(21)] andAf1

=0.5p, Lf1
=5 mm. The conven-

tions for the curves are the same as Fig. 6(c). (b) Upon switch-on of
the coupling field withVc0=s2pd 8 MHz, we show the dark inten-
sity uVDszd /Vc0u2 (thick solid curve) and coupling intensity
uVcszd /Vc0u2 (thin solid). The dotted, dashed, and dot-dashed curves
show, respectively, the phase profilesfc, fD and f21. (c)The nor-
malized probe intensity profileuVp

srevdu2/Vc0
2 (solid curve) is indis-

tinguishable from the expected profileuVp
srev-idealdu2/Vc0

2 (thick
dashed) [see Eq.(17)]. The thin solid curve showsfp

srevd and the
dot-dashed curve showsf21+p, while the thin dashed curve shows
the expected probe phase profile with the nonlinear correction
fp

srev-ideald=f21+fp
snld+p, Eq. (18). For reference, the dotted curve

shows the total densityc0
2 profile. (d)The temporal pattern of the

output probe intensityuVp
soutdu2/Vc0

2 (thick solid curve) and phase
fp

soutd (thin solid), versus an estimate based on perfect propagation
of the revived pulseVp

srevd according to Eq.(14) (dashed and dotted
curves). The dot-dashed curve shows the ideal output attenuated by
T2 [see Eq.(20) and the discussion afterward] using the estimate
Lc=sL2

−2+Af2
Lf2

−2+Af1
Lf1

−2d−1/2.
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phase profiles. This is compared with a calculated prediction
for Ew (solid curve) based on Eq.(16) where we calculateVA

with Eq.(10) and calculate the small attenuation ofVD with
Eq. (11). These errors grow asL2 becomes comparable to
aA

−1=0.2 mm, according to the discussion in Sec. III A. We
see the agreement between the analytic and numerical esti-
mates is quite good for small to moderateL2, confirming that
this is the leading source of error. However , whenL2 be-
comes comparable to the total BEC size(the Thomas-Fermi
radius isRz=44 mm here), we begin to see additional errors
becausec2 becomes nonzero at the BEC edge. Thus, we see
that for a given BEC length and density, one must choose
aA

−1!L2!Rz to minimize the write errorEw. Because this
edge effect depends on the density structure near the BEC
edge, it is difficult to estimate analytically, but it is related to
the fraction of the pulse in or near the regionz,zc. For
pulses near the BEC center, this will depend onL2/Rz,
whereas for pulses far off center, it will also depend on the
location of the center of the pulse.

We also plot a series of cases keepingL2=10 mm and
A2=0.1 but varying the length scaleLf2

of a phase profile of
amplitudeAf2

=0.75p. One sees similar but slightly smaller
errorsEw in this case.

We define the error accumulated asVp
srevd propagates out

using Eq.(14):

Eout ;
E

zin

zout

dz8uVp
srevdsz8d − Vp

soutdftszoutd − tsz8dgu2

E
zin

zout

dz8uVp
srevdsz8du2

.

s23d

In Fig. 9(b) we plot this quantity for the cases corresponding
to Fig. 9(a). For comparison, for the series with no phase
shift, we calculated an estimate based on the expected attenu-
ation T2 and spreadingT−1 of a Gaussian pulse, due band-
width considerations[see Eq.(20) and subsequent discus-
sion], choosing Lc=L2. In the limit of small b this
calculation yieldsEout<s5/16db2. This is plotted as a solid
curve and we see good agreement with the numerical data.

The errorEout is seen to dominateEw for smallL2, due to
the fact that the large optical density effects the former
[Dszoutd=617 in the case plotted]. Thus our analytic estimate
Eout=s5/16db2 is a good estimate of the total error. But for
largerL2 the edge effect inEw becomes important. To mini-
mize the total errorEw+Eout we should chooseL2 so the
error Eout=s5/16db2 is comparable to the edge effect error.
In Fig. 9 the optimal length isL2

soptd<17.5mm and the total
error isEout+Ew<0.0009. The scaling ofL2

soptd with the con-
densate sizeRz is difficult to estimate. Assuming it roughly
increases asL2

soptd~Rz, then Eq. (20) shows bsoptd

~1/Dszoutd, giving us a guide as to the improvement in fi-
delity we can expect by increasing the total optical density of
the condensate.

The insets show the plots of the ideal output ofVp
srevdszd

(solid curves) versus actual outputsVp
soutdstd (dotted curves)

in two of the cases. In one case, with no phase jumps and a
smallL2, we see an overall reduction in amplitude and slight
spreading. In the other, with a largerL2 but a phase shift with
a small length scaleLf2

, we see that the attenuation is local-
ized in the middle of the pulse. This is because it is the
components which contain the sharpest phase profile, near
the middle, which are most severely attenuated. Generally, in
cases with complicated spatial features, one must be aware of
this potential for local attenuation of the sharpest features.
Note, however, that in many cases of interest, such as the
interference fringes(Fig. 4) and solitons(Fig. 6), large phase
shifts occur primarily in regions of low density, meaning
these features often survive during the output propagation.

Our analysis of switching process in Sec. III applies even
with a large amplitudeA2, as was seen in theA2=0.5 case in
Fig. 8. In Fig. 10(a) we plot the results of a series of simu-
lations withA2 varying all the way up toA=0.9 and see only
a very small impact onEw for A2ø0.8. Most of our results
for the propagation of USL pulses—e.g., Eqs.(4) and (5)—
rely on the weak-probe limit. Surprisingly though Fig. 10(b)
shows that the output errorEout is independent ofA2 through
A2=0.9.

C. Effect of unequal oscillator strengths

The lack of distortion in the strong-probe cases discussed
so far in this section is a result of us choosing a system with

FIG. 9. Writing and outputting atomic field information onto
light fields.(a) Circles show the write errorEw, Eq. (22), versus the
length L2 for BEC’s with no phase jumpssAf2

=Af1
=0d and with

A2=0.5 [see Eq.(21)]. The solid curve shows an analytic result
based on the analytic expressions(16), (10), and(11). The squares
show a case holdingL2=10 mm, A2=0.1, and introducing a phase
featureAf2

=0.75p with varying length scaleLf2
. (b) The output

error Eout, Eq. (23), for the same cases as(a). The solid curves
showing the predictions5/16db2 discussed in the text(choosing
Lc=L2) for the case with no phase jumps(circles). The insets show
the output in the cases indicated with arrows, with the same plotting
conventions as Fig. 8(d) (in the lower inset on the rightfp is ho-
mogenous and not plotted); we again usevz=s2pd 20 Hz, A
=ps5 mmd2, Nc=2.03106, and f13= f23=1/12, corresponding to
the systemu1l= u5S1/2,F=1,MF=−1l, u2l= u5S1/2,F=1,MF= +1l,
and u3l= u5P1/2,F=2,MF=0l in 87Rb.
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equal oscillator strengthsf13= f23. The importance of the
relative size of the oscillator strengths can be understood by
considering the adiabatons[the changes in the output cou-
pling intensity seen in Figs. 2(a) and 2(e)]. The adiabatons
arise because of the coherent flow of photons between the
two light fields and their amplitude is determined by the
requirement that the sum of the number of photons in both
fields is constant upon such an exchange. In a case where
Vp,Vc one must take into account that it is the total field
strengthuVu2= uVpu2+ uVcu2, rather than simply the input cou-
pling strengthVc0

2 which enters the numerator in our equa-
tion for the group velocityVgszd, Eq. (4). However, the ex-
pressions for the Rabi frequencies involve the oscillator
strengths of the relevant transitions. Thus, preserving the to-
tal number ofphotonsat each point in space will result in a
homogenousuVu2=Vc0

2 if and only if f13= f23. During the
time that the probe is completely contained in the BEC,uVu2
will differ from Vc0

2 in the vicinity of the pulse according to

uVsz,tdu2 = Vc0
2 + uVpsz,tdu2S1 −

f23

f13
D . s24d

This leads to a nonlinear distortion, whereby the center of the
pulse (where the probe intensity is greatest) tends to move
faster or slower than the front and back edges, depending on
the sign of term in parentheses. This behavior is quite clearly
seen in Fig. 11, where we compare a delayed weak-probe

regular USL output pulse to cases with strong probesVp0
=Vc0 and vary f23=1/3,1/2,2/3 (f13=1/2 in all cases).
Each time we chose the coupling intensity so that that the
Rabi frequency isVc0=s2pd 8 MHz. One sees that when
f13= f23 there is no asymmetrical distortion, though we get a
slight spreading and a shorter delay time. However, in the
other two cases, there is asymmetry in the output pulses,
consistent with the picture that the center of the pulse will
travel slower or faster than the edges according to Eqs.(24)
and (4) (with Vc0

2 replaced byuVu2 in the numerator). The
result is a breakdown of our estimate(19). As this is a propa-
gation effect, the absolute magnitude of this effect should
roughly be linear with optical density and the relative distor-
tion will go as the optical density divided by the pulse
length. This is the primary reason it would be advantageous
to use the levels we chose in our simulation in Fig. 7 if there
is a strong probe.

We just outlined the reason that the equal oscillator
strengths can be important in reducing distortion during
propagation and thusEout. It turns out that the writing pro-
cess is also more robust whenf13= f23. The reason is the
presence of the additional terma12, Eq. (9). This term is
quite small in the weak-probe limit, but in the strong-probe
case leads to an additional phase shift, not accounted for in
Eq. (18), which depends in detail on the pulse amplitude and
structure.

Figures 12(a)–12(d) shows a case, similar to Fig. 8, but
with f13=1/12, f23=1/4 (as in the cases in Figs. 4 and 5),
and with a fairly small nonlinearityA2=0.25. One sees in
Fig. 12(b) that there is a dip inVD in the region of the probe
due to thea12 term. Figure 12(c) shows the written probe
pulse. There is a small but discernable difference between
the predictedfp

srev-ideald, Eq.(18), and actualfp
srevd phase. Fig-

ure 12(d) then shows the asymmetric distortion which devel-

FIG. 10. Writing and outputting atomic field information onto
light fields. (a) The write errorEw, Eq. (22), versusA2 for the case
L2=10 mm, Lf1

=Lf2
=5 mm, Af1

=0.5p, and Af2
=0.2p. (b) The

output errorEout, Eq. (23), in the same cases. The solid line shows
the estimates5/16db2 [see Eq. (20)] using Lc=sL2

−2+Af2
Lf2

−2

+Af1
Lf1

−2d−1/2. The condensate parameters are the same as in Fig. 9.

FIG. 11. USL with a strong probe. The dotted curve shows a
strong probe pulse amplitude with peak valueVp0=Vc0

=s2pd 8 MHz input into a sodium cloud with an optical density
Dszoutd=407. We use an oscillator strengthf13=1/2 but vary the
coupling oscillator strengthf23. The outputVp

soutd /Vp0 is shown in
the casesf23=1/2 (thick solid curve), f23=2/3 (dot-dashed curve),
and f23=1/3 (dashed curve). For reference, the thin solid curve
shows output for a weak input probeVp0=s2pd 1.4 MHz.

FIG. 12. Writing information with unequal oscillator strengths.
(a)–(d) Plots are for the same parameters as Fig. 8 except with
f12=1/12, f23=1/4 andA2=0.25.(e), (f) Write Ew and outputEout

errors versusA2 for the parametersL2=10 mm, Lf1=Lf2=5 mm,
Af1=0.5p, andAf2=−0.2p.
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ops as the strong probe propagates out. One sees the phase
jump is distorted in addition to the amplitude. Figures 12(e)
and 12(f) demonstrate how these effects lead to substantially
higher errorsEw and Eout as A2 becomes larger. From our
estimate from the previous section we expect an output error
of Eout=0.0147 and we see in Fig. 12(f) that the distortion
effect leads to errors higher than this whenA2ù0.3.

We thus conclude that the fidelity of both the writing and
output is compromised in a system with unequal oscillator
strengths. However, this only comes into effect in cases
where the nonlinearity is important. In weak-probe cases nei-
ther of these effects is important and the fidelity can still be
estimated with the analysis of thef13= f23 case in Secs. V A
and V B.

VI. OUTLOOK

In conclusion, we have established first several new re-
sults regarding the fast switching of the coupling field in
light storage experiments. We found the switching could be
done arbitrarily fast without inducing absorptions as long as
the probe is completely contained in the atomic medium(and
Vg!c which is usually the case in practice). We have also
seen that when the switching is slow compared to the excited
state lifetimes,25 nsd, the probe smoothly follows the tem-
poral switching of the coupling field, while in the other limit
the probe amplitude undergoes oscillations which damp out
with this time scale(see Fig. 3).

Next, we saw that these stopped pulses can induce novel
and rich two-component BEC’s dynamics during the storage
time. Both the relative scattering lengths of the states used
and the probe to coupling intensity ratio have a strong effect
on the qualitative features of the dynamics. In the weak-
probe case, theu2l condensate sees en either an effective
repulsive hill [when a12.a11; see Fig. 4(b)] or harmonic
oscillator potential[whena12,a11; see Fig. 5(a)]. The char-
acteristic time scale for the dynamics is given by the chemi-
cal potential of the BEC[in our cases,s2pd 1 kHz] times
the relative scattering length differenceua12−a11u /a11. In the
latter case, the resulting evolution can be easily calculated by
decomposing the pulse into the various harmonic oscillator
eigenstates. Thus it is possible to choose input pulses which
preserve their density over time or undergo predictable re-
shaping such as dipole sloshing or breathing, allowing con-
trolled storage and linear processing of optical information.
Inputting stronger probes will add nonlinearity to the evolu-
tion, making nonlinear processing possible. Very strong
probes and phase separating scattering lengthsa12

2 .a11a22
lead to the formation and motion of vector solitons, which
have not been observed in BEC’s to date.

We then showed that switching the coupling field on after
the dynamics writes the various density and phase features of
the wave functions onto revived probe pulses. This was seen
qualitatively for various examples(Figs. 4–7). A precise re-
lationship between the wave functions and output pulses was
found Eqs.(17)–(19), meaning that the output probe pulse
can be used as a diagnostic of the relative density and phase
in the BEC wave functions. We have also identified sources
of attenuation and distortion in the writing and output pro-

cesses and quantitative errors were calculated for a wide
range of length and amplitudes of Gaussian pulses(Figs. 9
and 10). As we saw there, the error during the output domi-
nates for shorter pulses and iss5/16db2 [see Eq.(20)]. For
longer pulses effects due to the condensate edge introduce
errors into the writing process. Balancing these two consid-
erations one can optimize the fidelity, which improves with
optical density.

For the strong-probe case, we found that for equal oscil-
lator strengthssf13= f23d, one could still relate the wave func-
tions to the output pulses by taking into account an addi-
tional nonlinear phase shift(18). The fidelity of transfer of
information was virtually independent of the probe strength
Vp0

2 even whenVp0,Vc0 (see Fig. 10). For unequal oscilla-
tor strengthssf13Þ f23d we found that strong probes lead to
additional features in the phase pattern during the writing
process and in distortion during the propagation during the
output, leading to much higher errors(see Fig. 12).

Looking towards future work, we note that it is trivial to
extend the analysis here to cases where there are two or more
spatially distinct BEC’s present. As long as they are optically
connected, information contained in the form of excitations
of one BEC could be output with this method and then input
to another nearby BEC, leading to a network. In the near
future, there is the exciting possibility of extending these
results beyond the mean field to learn how using this method
of writing onto light pulses could be used as a diagnostic of
quantum evolution in BEC’s. A particular example of interest
would be to investigate the spin squeezing due to atom-atom
interactions in a two-component system and the subsequent
writing of the squeezed statistics onto the output probe
pulses. Furthermore, we expect that performing revival ex-
periments after long times could be used as a sensitive probe
of decoherence in BEC dynamics, similar to the proposal in
[40]. Last, there is the prospect of inputting two or more
pulses in a BEC and using controllable nonlinear processing
from atom-atom interactions to the design of multiple-bit
gates, such as conditional phase gates. We anticipate that the
results presented here can be applied to these problems as
well as to applications in quantum information storage,
which require the ability to transfer coherent information be-
tween light and atom fields.

APPENDIX: ADIABATIC ELIMINATION OF c3

AND FASTER SWITCHING

We arrived at Eqs.(1) and (2) by first considering a sys-
tem of equations with all three levels considered and then
adiabatically eliminating the wave function foru3l. For com-
pleteness we write the original equations here.

The three coupled GP equations are

i"
]c1

]t
= F−

"2

2m

]2

]z2 + V1szd + U11uc1u2 + U12uc2u2Gc1

+
1

2
"Vp

*c3, sA1d
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i"
]c2

]t
= F−

"2

2m

]2

]z2 + V2szd + U22uc2u2 + U12uc1u2Gc2

+
1

2
"Vc

*c3, sA2d

i"
]c3

]t
=

1

2
Vp"c1 +

1

2
Vc"c2 − i

G

2
c3. sA3d

Note we have ignored the external dynamics ofc3 altogether
as it will be negligible compared withG, Vp, Vc (on the
order of three orders of magnitude slower). Maxwell’s equa-
tions read

S ]

]z
+

1

c

]

]t
DVp = − i

f13s0

A

G

2
Ncc3c1

* ,

S ]

]z
+

1

c

]

]t
DVc = − i

f23s0

A

G

2
Ncc3c2

* . sA4d

In adiabatically eliminatingc3, we assume that all quantities
vary slowly compared to the excited-state lifetimeG−1

(,16 ns in sodium). This allows us to setdc3/dt→0 in Eq.
(A3) and arrive at

c3 < −
i

G
sVpc1 + Vcc2d. sA5d

Plugging this into Eqs.(A1), (A2), and(A4) yields Eqs.(1)
and (2).
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