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We explore the effect of precisely defined geometric imperfections
on the buckling load of spherical shells under external pressure
loading, using finite-element analysis that was previously vali-
dated through precision experiments. Our numerical simulations
focus on the limit of large amplitude defects and reveal a lower
bound that depends solely on the shell radius to thickness ratio
and the angular width of the defect. It is shown that, in the large
amplitude limit, the buckling load depends on an single geometric
parameter, even for shells of moderate radius to thickness ratio.
Moreover, numerical results on the knockdown factor are fitted to
an empirical, albeit general, functional form that may be used as
a robust design guideline for the critical buckling conditions of
pressurized spherical shells. [DOI: 10.1115/1.4035665]

1 Introduction

Since the beginning of the 20th century, it has been observed
that experimental studies on the buckling of thin shells can result
in maximum loads as low as 20% of the classical theoretical pre-
dictions [1]. The ratio between the experimentally observed and
theoretically predicted values of the critical buckling pressure is
known as the knockdown factor. Early efforts to come to terms
with this discrepancy between experiments and shell theory
focused on the post-buckling behavior of imperfect shells [2,3]
and their extreme sensitivity to initial imperfections [4].

Following extensive studies involving a variety of shell structures,
loading conditions, and imperfections [5–9], it became well estab-
lished that the primary cause for this knockdown factor is the pres-
ence of geometric imperfections [10]. Nonetheless, despite
significant theoretical and computational efforts in understanding
imperfection sensitivity, practical designs of curved shells have
traditionally made use of empirical knockdown factors [11,12]. In
contrast to this approach, efforts currently underway by NASA
and others in the aerospace industry aim at developing determinis-
tic design guidelines based on manufacturing-specific imperfec-
tion distribution [13–15].

Leveraging a novel rapid prototyping technique to fabricate elas-
tomeric spherical shells with nearly uniform thickness [16], we have
recently investigated [17] the critical buckling conditions of spheri-
cal shells containing precisely engineered geometric imperfections.
By means of experiments, simulations, and theory, our results
showed that the experimental buckling pressures can be accurately
predicted, as long as the exact geometry of the imperfection is
appropriately included in the theoretical construct [17,18]. More-
over, for large imperfections, we found that a critical buckling pres-
sure can become independent of the amplitude of the defect, such
that the knockdown factor exhibits a robust plateau. Note that an
earlier study [19] had provided numerical evidence for the existence
of this plateau, but a systematic characterization had not been done
until our more recent investigation [17]. These findings provide fur-
ther evidence that replacing the current empirical knockdown guide-
lines [12] by a deterministic framework may be within reach.

In this technical brief, we augment our previous analysis [17] to
provide a quantitative characterization of the lower bounds of the
critical buckling pressure of large-amplitude, dimple-like geomet-
ric defects, which we show depend on a combination of shell
radius to thickness ratio and angular width of the defect. Whereas
previously we focused on a combination of experiments, reduced
shell theory and simulations, here, we focus on gaining further
insight from the previously validated finite-element analysis.

2 Methodology: Finite-Element Analysis

The simulations were performed using the commercial finite
element modeling package ABAQUS/STANDARD. The shells are hemi-
spheres clamped at the equator. We use axisymmetry to reduce the
computational cost, since it has been shown that nonaxisymmetric
bifurcations only take place far into the post-buckling regime [18].
The material was treated as an incompressible neo-Hookean solid,
with reduced hybrid axisymmetric elements CAX4RH. The load-
ing was modeled as live pressure on the outer surface of the struc-
ture. Given the unstable post-buckling behavior of the shells, the
simulations used the Riks method [20], which simultaneously sol-
ves for loads and displacements, measuring the progress of the
simulation with the arc-length of the load–displacement curve.

The buckling pressure was defined as the maximum pressure,
pmax, attained during the analysis, and the knockdown factor is
defined as jd¼ pmax/pc. Here, pc is the classic theoretical buckling
load for a spherical shell under uniform external pressure,
obtained from a linear buckling analysis [21]

pc ¼
2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1� �2ð Þ

p g�2 (1)

where E is the Young’s modulus, � is the Poisson’s ratio, and
g¼R/t is the dimensionless radius of the shell, of radius R and
thickness t. The radius and thickness of our shells have been var-
ied systematically to explore the range 50< g< 1000. The mesh
density was varied with g to keep a regular aspect ratio for the ele-
ments, while maintaining a sufficiently fine mesh through the
thickness. The discretization in the radial direction involved
between 6 and 20 elements, and between 1000 and 5000 in the
angular direction.

The initial geometric imperfections were directly introduced in
the mesh as a normal displacement of the middle surface, with the
profile of a Gaussian dimple
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wI ¼ �de�ðb=b0Þ2 (2)

where b is the angular measure from the pole, and d and b0 are
parameters that control the depth and angular width of the defect,
respectively. The rest of the mesh is then defined assuming the
constant thickness t perpendicular to the middle surface. For the
remainder of this article, we normalize the amplitude of the defect
by the thickness of the shell, �d ¼ d=t.

Finally, following the work of Koga and Hoff [22], we intro-
duce the geometric parameter:

k ¼ f12ð1� �2Þg1=4 g1=2 b0 (3)

which combines the radius to thickness ratio of the shell, g, and
the angular width of the imperfection, b0, in a single parameter. It
should be noted that this parameter is often used in the literature
to describe the geometry of shallow spherical shells, in which
case it is defined using the edge-angle of the complete shell
[23–26]. Our previous results [17] indicated that k is an appropri-
ate and effective single geometric parameter to characterize how
the defect dictates the imperfection sensitivity of our imperfect
shells.

3 Results

We start our investigation by further substantiating the appro-
priateness of using the parameter k defined in Eq. (3) to character-
ize the effect of dimple-like defects. In Fig. 1(a), we plot a
contour map of the knockdown factor jd, for a constant normal-
ized defect amplitude �d ¼ 1 and different values of the dimen-
sionless radius, g, and the angular width of the defect, b0. The
data show contour lines of constant jd align with lines of constant
k (solid, dashed, and dashed–dotted red lines). In particular,
k¼ 2.625 is the critical geometric parameter for the chosen defect
amplitude, �d ¼ 1: it describes the combination of g and b0 for
which a defect of the same amplitude as the shell thickness results
in the largest reduction of critical buckling load. A departure
between our numerical results and a description that depends only
on k is only observed when k> 10, for which the influence of the
defect on the buckling pressure is too small to be captured accu-
rately by our simulations.

In order to further investigate how the knockdown factor
depends on the value of the radius to thickness ratio, in Fig. 1(b),
we plot jd versus g, for different values of k and �d. Each curve is
normalized by the value corresponding to the closest case to the
thin shell limit considered in this study (g¼ 1000). As expected,
the results show a clear convergence as g increases. Even for
R/t¼ 100, the deviations between curves with different values of
k and �d are at most 5%. It is important to note that the chosen
combinations of �d and k correspond to values of the knockdown
factor spanning the range 0.2< jd< 0.7, further emphasizing the
generality of the results.

As it was also shown in our previous study [17], for a given
choice of k, jd decreases as the amplitude of the defect �d
increases. Importantly, past a critical defect amplitude, �dplateau, the
curve reaches a plateau; once the defects are sufficiently large, the
buckling pressure of the shell does not depend on the magnitude
of the defects. In the inset of Fig. 2, we plot a typical example of
such behavior, for g¼ 100 and k¼ 2.5. We now turn to study the
knockdown factor in the plateau regime, hjdiplateau, which in this
case is defined as the value of the curve in which
jdjd=ddj � 0:025. Using different values for this threshold (e.g.,
0.005, 0.01, or 0.05), it has a negligible effect on the results.

In Fig. 2(a) we plot hjdiplateau as a function of the geometric
parameter k, for different values of g. As it was the case in Fig.
1(b), the deviations as a function of g are small, especially for
k> 2. The values of hjdiplateau decay as k increases, which corre-
sponds physically to either shells of decreasing g, or increasing
defect width. It should be pointed out that for g� 100 it was not
possible to scan the whole range 0.35< k< 6, as with the other

shells, since our definition of the deformed geometry, Eq. (2),
resulted in self-contact of the shells for such narrow defects.

The numerical results plotted in Fig. 2(a) have been used to fit
an empirical function of the form

hjdiplateau ¼
1� b

1þ kð Þa þ b (4)

which fulfills the condition of hjdiplateau ¼ 1 for defects of negli-
gible width (in the limit of k! 0) and allows for a constant value
for large values of k. In Fig. 2(a), we superpose the fit (solid line)
to the data, for the specific case of g¼ 1000. The corresponding
values of the fitting parameters (b and a), are shown in Table 1
(along with those for other cases of g). The results are very similar
for different values of the radius to thickness ratio, with a clear
convergence to the thin shell limit once g� 200. In fact, the fitting
parameters �a ¼ �1:2360:01 and �b ¼ 0:03660:003, obtained
using the complete set of data, provide an approximation with at
most 11% of error in the case of g¼ 50, and less than 5% for all
other values of g.

In order to provide a more physical interpretation of our data,
in Fig. 2(b) we plot the same values of hjdiplateau shown in
Fig. 2(a), but now as a function of the angular width of the defect,
b0. These data can be used to estimate a lower bound for the
knockdown factor of a spherical shell of known g, as a function of
the expected angular width of the defects (i.e., area), and inde-
pendently of their amplitude (i.e., depth). The results show that
the knockdown factor decreases sharply with the angular width of

Fig. 1 (a) Contour plot of the knockdown factor, jd, for differ-
ent values of the normalized radius, g, and defect angle, b0. The
solid, dashed, and dashed-dotted lines correspond to instances
of constant geometric parameter k (see legend). (b) Knockdown
factor, jd, versus normalized radius, g, normalized by jd

(g 5 1000), for different values of k and �d.
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the defect, specially for very thin shells (g� 400), for which
hjdiplateau < 0:2 for defects as small as b0> 5 deg.

4 Discussion and Conclusions

We have made use of a previously validated finite-element
analysis [17] to study the buckling of hemispherical shells, and
extended our previous numerical exploration to focus on the limit
of large-amplitude defects. Note that a recent study [18] found

that the critical buckling conditions for hemispherical shells were
indistinguishable from the full spherical case, such that our
results, here, can be regarded as representative of spherical shells.
First, we provided significant evidence that the geometric parame-
ter k provides a compact quantitative description of the effect of
geometric imperfections, even in shells of moderate radius to
thickness ratio (e.g., 50< g< 100). Moreover, we presented a
parametric study of the knockdown factor in the plateau regime,
hjdiplateau, reached after the amplitude of the defect reaches a criti-
cal value, �dplateau.

Note that, in some cases (relatively thicker shells, e.g., g< 200,
with large values of the geometric parameter, e.g., k¼ 5) the
defect may be large enough for the spherical geometry of the shell
to be questionable. However, for increasingly thinner shells (e.g.,
g> 200) the plateau behavior described throughout this paper is
still applicable for these shells that are much closer to the ideal
spherical geometry (i.e., small defects). As such, our description
of the plateau does appear to be general and intrinsic to the buck-
ling of spherical shells containing geometric imperfections.

Our results, combined with information regarding the expected
width of the defects in a given spherical shell, can be used to pro-
vide a lower bound for the knockdown factor, independently of
the defect amplitude. This is in contrast with the traditional
approach, in which design is based on the empirical knockdown
factors, obtained from experiments on a wide range of shells. We
hope that this deterministic design guideline will provide further
motivation to the recent resurgence of interest on the buckling of
thin shells. In particular, to further establish the generality of the
present results, it will be important to systematically consider
other shapes of the initial geometric imperfection, including, but
not limited to, nonaxisymmetric defects.
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