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The elastic buckling of shell structures such as spherical shells subject to external pressure and cylindrical 

shells loaded in axial compression is highly sensitive to imperfections and often catastrophic. Recent stud- 

ies of spherical shells have provided accurate quantitative results for the relation between the buckling 

pressure and the amplitude and shape of geometric imperfections and, additionally, quantitative results 

for the energy barrier that must be overcome to buckle the shell by extraneous loadings or disturbances 

when it is loaded to pressures below the buckling pressure. Results for the simultaneous interaction of 

imperfections and energy barriers for spherical shells under external pressure will be presented. Numer- 

ical studies for probing forces illustrate their use in determining the buckling energy barrier, and new 

experimental results on energy barriers obtained by others by probing spherical shells will be discussed 

and compared with predictions. It will be argued that while imperfections determine the buckling load 

of a shell, the energy barrier at loads below the buckling load supplies important additional information 

about the relative safety or precariousness of the shell to additional disturbances. Results for the energy 

barrier for perfect and imperfect spherical shells under external pressure provide important insights into 

the shell’s robustness, or lack thereof, at pressures below the buckling pressure. In particular, the energy 

barrier trends provide critical insights into the low knockdown factor usually employed in establishing 

the design load of unstiffened spherical and cylindrical shells. These design loads are shown to correlate 

with conventional predictions provided that imperfection amplitudes scale as the shell radius. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

While shell buckling is not as active a research area as in

as in the middle decades of the last century it seems to re-

ain true that “everyone loves a buckling problem” ( Budiansky &

utchinson, 1979 ). George J. Simitses, to whom this paper is dedi-

ated, certainly projected this attitude in his text book on buckling

 Simitses & Hodges, 2006 ). This paper attempts to provide a uni-

ed view of two aspects of shell buckling: the enduring issue of

mperfection-sensitivity and the more recently identified concept

f the energy barrier to buckling. We first review recent theoreti-

al and experimental results for the effect of dimple imperfections

n the elastic buckling of spherical shells under external pressure.

hen, the focus turns to the energy barrier that must be overcome

y extraneous disturbances to trigger buckling of perfect and im-

erfect spherical shells loaded below their buckling pressure. Con-

omitantly, we explore some of the issues related to the employ-

ent of probing forces as an experimental technique to determine
∗ Corresponding author. 

E-mail addresses: hutchinson@husm.harvard.edu , jhutchin@fas.harvard.edu (J.W. 

utchinson). 
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he magnitude of the energy barrier of a loaded shell ( Thompson

 Sieber, 2016; Hutchinson & Thompson, 2017b; Virot et al., 2017;

arthelot et al., 2017 ). The present paper determines the energy

arrier for perfect and imperfect shells revealing that at applied

ressures below about 20% of classical buckling pressure of the

erfect shell the energy barrier becomes large. The conclusion to

e drawn is that the shell should be able to withstand fairly large

xtraneous loads or disturbances when loaded at these low pres-

ures. Conversely, when the shell is loaded to within 20% or 30% of

ts buckling load the energy barrier is relatively small and the shell

as much less robustness to disturbances. In short, the qualitative

essage of this paper is that imperfections determine the buckling

ressure of the shell while the energy barrier provides a measure

f the shell’s resistance to buckling triggered by unexpected loads

r disturbances at loads below buckling. 

The paper is organized with an initial focus on imperfection-

ensitivity followed by a presentation of theoretical and exper-

mental results on energy barriers and their potential ‘shock-

ensitivity’. Results on the imperfection-sensitivity of spherical

hells subject to external pressure are presented in Sections 2 and

 . As a brief digression, Section 3 also focuses on the well-known

ASA buckling knockdown factor, which is used for both spherical

https://doi.org/10.1016/j.ijsolstr.2018.01.030
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shells under external pressure and cylindrical shells under axial

compression. The radius to thickness dependence of this factor is

examined in relation to the size-dependence of the corresponding

“worse-case” imperfection amplitude. Results for energy barriers

to buckling for perfect and imperfect spherical shells are presented

and discussed in Section 4 , with application to probing forces to

trigger the buckling in Section 5 . Section 5 includes some compar-

isons with new experimental probing measurements of the energy

barrier. Section 6 compares the energy barrier for spherical shells

with that obtained for cylindrical shells under axial compression

by Horak et al., (2006) . Section 7 presents further discussion and

conclusions. 

1.1. Brief historical background to the present paper 

This paper derives from new insights into shell buckling that

have emerged recently in the literature of nonlinear dynamical sys-

tems, substantially driven by the work of Giles Hunt and his col-

leagues at Bath and Bristol Universities. This research made great

strides in the qualitative understanding of the localization of post-

buckling patterns associated with the Maxwell load, the energy

buckling load of Friedrichs (1941) (see Tsien, 1942 ), particularly for

the axially compressed cylindrical shell. These insights were exten-

sively reviewed by Thompson (2015) , and here we would particu-

larly single out the papers by Lord et al., (1997), Hunt et al., (20 0 0),

Hunt et al., (2003) and Horak et al., (2006) . 

The last of these papers (which we review in Section 6 ) was

particularly pivotal and influential, leading fairly directly to our

present work. In it, Horak and his co-workers used a novel math-

ematical technique to locate and quantify the lowest energy bar-

rier against buckling for a cylindrical shell under axial com-

pression. Drawing on this work, Thompson and van der Heij-

den (2014) used their background in the torsional buckling of elas-

tic rods to demonstrate how in shell-like post-buckling a lowered

energy barrier can generate a severe ‘shock-sensitivity’ above the

Maxwell load. Meanwhile, Thompson (2015) in his review had pro-

posed the controlled experimental probing of shells to explore, in

a non-destructive way, the severity of the shock sensitivity. This

was shown to be feasible by Thompson and Sieber (2016) using

a simplified dynamical model of a cylindrical shell, and a histori-

cal statical model of a spherical shell. Possible problems with the

technique were fully discussed, and it was shown that a bifurca-

tion under the primary probing could be stabilized by the addition

of a second rigidly controlled probe, tuned to provide zero force. 

A second important source of data and stimulus came

from highly accurate analyses of the post-buckling of the

complete spherical shell under uniform external pressure by

Hutchinson (2016) . This triggered two follow-up studies of the

sphere. In the first, Hutchinson and Thompson (2017a) determined

energy barriers under dead, rigid and semi-rigid loading, cou-

pled with a study of symmetry-breaking bifurcations. This work

established that axisymmetric dimple buckles are stable against

non-axisymmetric bifurcation until deep into the post-buckling

range. These bifurcations also allowed a significant comparison

with large amplitude experimental dimples with, for example,

pentagonal forms. In the second study, Hutchinson and Thomp-

son (2017b) studied the response of a pre-pressurized sphere to

a point probe and its determination of energy barriers against pre-

mature collapse; again, some bifurcations from the basic axisym-

metric form were observed and quantified. 

We might finally note that energy barriers against the prema-

ture buckling of compressed shell structures, spheres and cylin-

ders, have never featured strongly in the main stream of the shell-

buckling literature. Some of the work that has been done is dif-

ficult to access, but we would refer the interested reader to the

excellent account given by Evkin and Lykhachova (2017) and to
ome further discussion relevant to cylindrical shell buckling in

ection 6 . 

. Imperfection-sensitivity of thin elastic spherical shells under

xternal pressure 

Recent results for the effect of dimple imperfections on the

uckling of elastic spherical shells drawn from Hutchinson (2016),

ee et al., (2016a), Hutchinson and Thompson (2017b) and the ear-

ier work of Starlinger et al., (1988) will be presented briefly in

his section to set the stage for the discussion of the distinct roles

f imperfections and energy barriers. Attention is focused on the

uckling under uniform external pressure of isotropic elastic spher-

cal shells with radius R , thickness t , Young’s modulus E and Pois-

on’s ratio ν . Points on the middle surface of the undeformed shell

re located by Euler angles with θ as the meridional angle mea-

ured from the equator and ω as the circumferential angle. Atten-

ion is initially limited to buckling behavior that is symmetric with

espect to the equator, but for thin shells the localized nature of

he axisymmetric dimple buckles that form at the poles is such

he results are also accurate for the case of a single dimple at one

ole or for hemispherical shells clamped at their equator. Initial

eometric imperfections in the middle surface are assumed in the

orm of a slight stress-free, axisymmetric dimple focused at each

ole with inward normal displacement in the form 

 I (θ ) = δe −(β/ βI ) 
2 

(2.1)

here β = π /2 − θ is measured from the pole and δ is the imper-

ection amplitude. The angular radius of the dimple scales accord-

ng to 

I = 

B √ √ 

(1 − ν2 R/t 

(2.2)

here for the critical imperfections B is of order unity. 

The shell is subject to a net external pressure p . The classical

esults for the elastic buckling pressure of the perfect shell ( δ = 0)

nd the associated decrease in volume are 

p C = 

2 E t 2 √ 

3(1 − ν2 ) R 

2 
and �V C = 

4 π(1 − ν) R 

2 t √ 

3(1 − ν2 ) 
(2.3)

Fig. 1 displays the reduction of the buckling pressure due

o the dimple imperfection, with w pole as the inward normal

isplacement at the pole. These results have been computed

ith B = 1.5 which gives near-critical reductions of the buckling

ressure over the range of imperfection amplitude plotted—see

utchinson (2016) and Lee et al., (2016a) for computational de-

ails and further discussion of the B -dependence. Fig. 1 a and b are

lotted over precisely the same range, in the first plot as pressure

ersus pole deflection and in the second as pressure versus vol-

me change. Due to the localized nature of the dimple buckle at

he pole, the major component of the volume change as the pres-

ure drops is the uniform expansion of the shell outside the buck-

ed area. A detailed analysis in Section 4 of Hutchinson (2016) us-

ng a shell theory with exact bending and stretching measures re-

eals that at larger deflections the pressure continues to decreases

onotonically until the point where the opposite poles make con-

act. The moderate rotation shell theory used for the calculations

nderlying the results in this paper is accurate for pole deflections

s large as 0.2 R . Fig. 1 c reveals both the extreme imperfection-

ensitivity of spherical shell buckling subject to external pressure

nd the fact that the buckling pressure, i.e., the maximum pres-

ure p max the shell can support, plateaus to a level roughly 20%

f p C when the imperfection amplitude exceeds about one shell

hickness. 
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Fig. 1. (a) Pressure versus inward pole deflection for the perfect spherical shell and for three levels of imperfection. (b) Pressure versus volume chance for the same cases in 

(a) and plotted over the same range of buckling deflection. (c) Buckling pressure (maximum pressure) versus imperfection amplitude for three values of R / t . The results in (a) 

and (b) have been computed with R / t = 200 and ν = 0.3. The results in (a), but not in (b), are essentially independent of R / t similar to those for the imperfection-sensitivity 

curves in (c). The results have been computed for a full sphere deforming symmetrically with respect to its equator, but results for a hemispherical shell clamped at the 

equator or for a full shell are almost identical. 
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1 The formula (15) in Hutchinson (2010) for P 2 giving the bifurcation stress for 

both spherical shells under external pressure and cylindrical shells under axial com- 

pression is correct, but there is a misprint in the expression for b 1 given just 

prior to (15). The correct expression is b 1 = 

1 
2 
( 1 

4 
+ γ 2 ) −2 [ −( 1 

4 
+ βγ 2 ) + 

c ̄ξγ 2 

1 −σ̄1 
] We 

also note that there is a misprint in Eq. (2.4) of Hutchinson & Thompson (2017a) ; 

the correct expression is �w/ �w pole = g( ̃ s , ξ ) . 
The imperfection-sensitivity is essentially independent of R / t

f R / t > 50 assuming the imperfection radius scales according to

 2.2 ). The onset of the plateau of the buckling load in Fig. 1 c is as-

ociated with an imperfection level that nearly flattens the shell at

he pole, i.e., a curvature κ of the unloaded shell at the pole such

hat 

= 

(
1 

R 

− 1 

R 

2 

d 2 w I 

d 2 θ

)
∼= 

0 ⇒ 

δ

t 
∼= 

B 

2 

√ 

1 − ν2 
(2.4) 

Most spherical shell buckling tests and applications have load-

ng conditions that lie between the two limits of prescribed pres-

ure (referred to by some as dead pressure) and prescribed vol-

me change (also referred to as rigid loading). Many laboratory

ests make use of water inside the shell and induce a net exter-

al pressure by reducing the volume of water within the shell.

ecause water can be regarded as nearly incompressible under

hese circumstances, such tests are inevitably much closer to pre-

cribed volume change than prescribed pressure. The two limiting

ases differ markedly in their advanced post-buckling responses—

he shell snaps to a stable dimple buckle under prescribed volume

hange but fully collapses under prescribed pressure with the two

oles making contact (within the idealizations of the modelling).

hese differences will be discussed further in Section 4 . The de-

endence of the maximum pressure of an imperfect shell plotted

n Fig. 1 c applies to both prescribed pressure and prescribed vol-

me change with the understanding that under prescribed volume

hange the pressure is a function of the prescribed volume change.

ecause the maximum pressure is attained at very small pole de-

ections (c.f., Fig. 1 a), to a very good approximation, p / p C ∼= 

�V / �V C 

t the maximum pressure, as will be seen in Section 4 . Conse-

uently, there is only a very small difference between the pressure

t instability between the two limiting loading cases. Imperfection-

ensitivity results such as those in Fig. 1 c are applicable whether

he loading is prescribed pressure or volume change. 

. Imperfection–sensitivity trends for thin cylindrical and 

pherical shells 

We briefly review some of the imperfection-sensitivity trends

or cylindrical shells under axial compression and spherical shells

nder external pressure in light of the recent set of experiments

arried out on spherical shells having controlled dimple imper-

ections ( Lee et al., 2016a ) and the availablity of accurate buck-

ing predictions for these shells. One should not loose sight of
he fact that these two shell/loading combinations are the most

mperfection-sensitive and are thus not necessarily typical of other

hells and loadings. 

Fig. 2 a collects in one plot three imperfection-sensitivity curves

hich reveal that the trends for these two shell/loading combina-

ions are remarkably similar even though the imperfection shapes

re quite different. One of the curves is Koiter’s (1963) special

uckling analysis for the effect of sinusoidal axisymmetric imper-

ections on the axial compression of cylindrical shells. Another

urve, for spherical shells under external pressure, shows the effect

f sinusoidal axisymmetric imperfections located near the equator

f the shell, so-called belt-line imperfections ( Hutchinson, 1967 ).

he third, uppermost curve is for axisymmetric dimple imperfec-

ions in the form of ( 2.1 ) and ( 2.2 ). For the axisymmetric sinusoidal

mperfections, buckling occurs as a non-axisymmetric bifurcation

rom the axisymmetic state. For each of these two cases, the nor-

al displacement associated with the imperfection is given by 

 I = δ cos (ζ x/R ) with ζ = 

(
12(1 − ν2 ) 

)1 / 4 √ 

R/t (3.1) 

here x is the middle surface coordinate aligned with the varia-

ion of the imperfection. Following Koiter’s analysis of the cylin-

rical shell, the two cases, one for the cylinder and the other for

he sphere, can be treated in a single analysis, and it is the out-

ome of this combined analysis in Hutchinson (2010) which has

een used to plot the two lower curves in Fig. 2 a. 1 Recent analysis

n Hutchinson (2016) for complete spherical shells has confirmed

he accuracy of the results in Fig. 2 a for the sphere with the belt-

ine sinusoidal imperfections. For each imperfection amplitude, δ/ t ,

he upper curve for the dimple imperfection in Fig. 2 a is the lower

nvelope of the maximum pressure computed over all B in ( 2.2 )

iven accurately by the fitting formula ( Lee et al., 2016a ): 

p buck 

p C 
= 0 . 68 + 

0 . 25 

0 . 28 + 1 . 05 

√ 

1 − ν2 δ/t 
(3.2)

For thin shells buckling elastically, each of the normalized

urves in Fig. 2 a is independent of R / t and ν . For the spherical

hell, the belt-line sinusoidal imperfection gives a somewhat larger
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Fig. 2. Buckling stress or pressure as a function of normalized imperfection amplitude for cylindrical shells under axial compression and spherical shells under external 

pressure. For thin elastic shells, the numerical predictions are independent of R / t and ν . (a) Koiter’s (1963) buckling stress for cylindrical shells with axisymmetric sinusoidal 

imperfections, buckling pressure of spherical shells with axisymmetic sinusoidal belt-line imperfections ( Hutchinson 1967 , 2010), and the lower envelop (3.2) of the buckling 

pressure for spherical shells with axisymmetric dimple imperfections ( Lee et al., 2016a ). (b) Experimentally measured buckling pressure for spherical shells with precisely 

manufactured axisymmetric dimple imperfections ( R / t = 108, ν = 1/2) subject to external pressure compared to the lower envelop of theoretical buckling pressures from a) 

( Lee et al., 2016a ). 

Fig. 3. Buckling of cylindrical shells under axial compression. (a) Experimental buckling data for thin cylindrical shells under axial compression collected in 1960 and 

plotted as the average compressive stress at buckling divided by the classical buckling stress for the perfect shell versus the radius to thickness ratio. The NASA knockdown 

factor used in design codes for assigning the buckling load assuming ‘worse case’ imperfections is shown. This factor is also frequently used for design of spherical shells 

under external pressure. (b) The ‘worse case’ imperfection amplitude corresponding to the NASA knockdown factor as a function of R / t . Koiter’s result for axisymmetric 

imperfections in Fig. 2 a is used to compute the curve for the cylinder. While ( 3.2 ) for the dimple imperfection is used to determine the curve for the sphere. 
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reduction in the buckling pressure than the dimple imperfection,

especially in the range of small amplitudes. However, the differ-

ence between the two curves is not large and, moreover, the dim-

ple imperfection is almost certainly the more realistic of the two

imperfections shapes under most circumstances. 

Fig. 2 b compares the experimental results for the buckling pres-

sure of hemispherical shells clamped at their equator having dim-

ple imperfections in the form ( 2.1 ) at their pole from Lee et al.,

(2016a) with the lower envelope of the buckling predictions for

the dimple imperfections. The shells are made from an elastomeric

material with geometric dimple imperfections at the pole manu-

factured having well defined amplitude δ and polar angle β I . The

data in Fig. 2 b for the tested shells have R / t = 108, ν = 1/2 and a

range of β I . By the standards of most shell buckling comparisons,

the agreement between test and theory seen in Fig. 2 b is remark-

ably good confirming the strong link between buckling pressure

and imperfection. The tests reveal the trend to plateau-like behav-

ior for imperfection amplitudes larger than about one shell thick-

ness. 

It is well known that a dependence on R / t of the imperfection-

sensitivity trends exists in the experimental data for cylindrical

and spherical shell buckling. The dependence is most clearly ev-

ident in the collected experimental data presented in Fig. 3 a for

s  
ylindrical shells under axial compression ( Seide et al., 1960 ). At

rst glance, this dependence would appear to be at odds with the

act that the trends as plotted in Figs. 1 and 2 are independent

f R / t when the imperfection amplitude is normalized by the shell

hickness. However, the R / t trend of the experimental data can be

xplained by taking into account a dependence of the imperfection

mplitude on the size of the shell. To illustate this point, consider

he NASA knockdown curve plotted in Fig. 3 a for the ‘worse case’

mperfection at any R / t , 

σbuck 

σC 

= 1 − 0 . 901 

(
1 − e −

√ 

R/t / 16 
)
, (3.3)

nd ask what imperfection amplitude gives rise to this reduced

uckling stress. The result obtained using Koiter’s curve in Fig. 2 a

or the cylindrical shell with axisymmetric imperfections is shown

n Fig. 3 b. The Poisson ratio associated with the many experimental

oints in Fig. 3 a is not known, but in any case the factor 
√ 

1 − ν2 

ill be near unity. Because the normalised imperfection, δ/ t , is al-

ost linear in R / t in Fig. 3 b, it follows that the worse case imper-

ection amplitude for the cylindrical shell under axial compression

cales with shell radius according to δ∼= 

R /1200. 

Even though the experimental data for buckling of spherical

hells under external pressure is not nearly as extensive as that for
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Fig. 4. Pressure versus volume change in the pre-buckling and post-buckling states 

for a full, perfect sphere shell that buckles symmetrically with respect to the 

equator and has R / t = 200 and ν = 0.3. Loading conditions for prescribed pressure 

( p / p C = 1/3) and prescribed volume change ( �V / �V C = 1/3) are noted. The lower 

limit of volume change, �V L , for which post-buckling solutions exist is also noted. 

Under prescribed pressure the single equilibrium buckled state A p is unstable. For 

prescribed volume change, with �V > �V L there is one unstable equilibrium buck- 

led state A V and one stable state B V . The grey area sumarizes energy barrier differ- 

ences as described later. 
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ylindrical shells under axial compression, the NASA knockdown

actor ( 3.3 ) has been commonly invoked in the design of spheres

s well as cylinders. The same proceedure determining the am-

lidute of the imperfection for spherical shells under external pres-

ure that gives rise to the NASA knockdown ( 3.3 ) is also presented

n Fig. 3 b using the lower envelop estimate ( 3.2 ) for the buckling

ressure due to dimple imperfections. For the spherical shell, the

worse case” dimple-shaped imperfection amplitude has an even

loser to linear dependence on the shell radius with δ∼= 

R /800. The

imple shape of the ‘worst case’ imperfection for the spherical

hell is almost certainly more realistic than the axisymmetric sinu-

oidal shapes for the other two imperfections. To our knowledge,

ccurate results for isolated dimple-shaped imperfections are not

et available for cylindrical shells under axial compression to use

s a more representative worst case imperfection. 

The fact that the worse case imperfection amplitude scales with

he radius of the shell rather than its thickness makes sense, at

east for some of the many processes used to manufacture shells.

 wide range of imperfections can be deliberately manufactured

nto a shell, as demonstrated for the spherical shells of Lee et al.,

2016a) . The ‘perfect’ shells manufactured by these authors with-

ut deliberately introduced imperfections buckled in the range 0.7

 p buck / p C < 0.8 modestly above the NASA knockdown factor for

 / t = 108 which is about 0.6. On the other hand, the most imper-

ect shells of Lee et al. in Fig. 2 b lie far below the knockdown factor

or R / t = 108. Shells with relatively low radius to thickness, i.e., R / t

100, will clearly buckle at a pressure as low as 20% of the classi-

al pressure if their dimple imperfection amplitudes are larger than

bout one thickness. 

One has to conclude that the various manufacturing processes

or cylindrical shells representative of those collected in Fig. 3 a

ith R / t ≈ 100 give rise to imperfection amplitudes consider-

bly smaller than those deliberately manufactured into the spher-

cal shells of Lee et al., (2016a) . The very thin ( R / t ∼= 

20 0 0) spher-

cal shells manufactured and buckled under external pressure by

erke and Carlson (1968) provide another illustration of the range

f perfection, or imperfection, possible for some manufacturing

rocesses. The Berke-Carlson shells were formed by electro-plating

ickel onto very accurate spherical substrates. Following the plat-

ng, some of the shells were electro-polished on the outer surface

hile still on the substrate yielding a highly polished, smooth sur-

ace. Several of these shells buckled at about 85% of the classical

uckling pressure which is remarkable for such thin shells and far

bove the expectation for spherical shells with R / t ∼= 

20 0 0. When

he electro-polishing step was not employed, the shells buckled at

ressures as low, or even slightly lower, than given by the knock-

own factor ( 3.3 ). 

. Energy barrier to buckling for spherical shells subject to 

xternal pressure 

With the background in hand from Sections 2 and 3 on the

ole of initial imperfections in determining the buckling pressure

f spherical shells, we now ask a different question: For any shell,

erfect or imperfect, loaded to a pressure below its buckling pres-

ure, how robust is that shell to additional loads or disturbances

hat the shell might experience? In other words, are rather small

isturbances likely to buckle the shell or will it be able to with-

tand substantial unespected disturbances? To gain insight into

his question we examine the energy barrier to buckling at the

ressure in question. 

To begin, consider a loading system which prescribes the pres-

ure p (also called pressure-control or dead loading); the other

imiting case when the internal volume of the shell is prescribed

volume-control or rigid loading) will be discussed later. For any

rescribed p below the maximum pressure p max there are two
quilibrium states as illustrated in Figs. 1 a and 4 , the stable pre-

uckling state O and the unstable buckled state A p . State A p is a

addle point of the energy landscape of the shell/loading system.

f an extraneous loading or distrubance drives the system over this

addle point, the shell will undergo dynamic snap buckling. The

nergy barrier between states O and A p , is the difference between

he free energy of the shell/loading system in the two states. For

rescribed p , the free energy is the strain energy in the shell plus

he potential energy of the pressure loading. 

The complete solution for dimple buckling of perfect spheri-

al shells deforming symmetrically with respect to their equators

iven in Hutchinson and Thompson (2017a) allows us to provide

xplicit results for the free energy and the energy barriers of inter-

st for the perfect shell. The solution for buckled state, ξ > 0, is

pecified by 

p 

p C 
= f (ξ ) with ξ = 

√ 

1 − ν2 �w pole 

t 
(2.5) 

�V 

�V C 

= f (ξ ) + C 
t 

R 

h (ξ ) with C = 

√ 

3 

(1 − ν) 
√ 

1 − ν2 
(2.6)

U 

p C �V C 

= 

1 

2 

f (ξ ) 2 + C 
t 

R 

q (ξ ) (2.7)

Here, �V is the volume decrease of the shell, U is the elastic

nergy in the shell, and the inward buckling displacement at the

ole is �w pole = w pole − w 0 where w 0 is the uniform inward nor-

al displacement in the unbuckled state at pressure p . This solu-

ion fully captures the dependence on R / t and ν and is accurate

or shells with R / t ≥ 50 as long as ξ ≤ 0.2 R / t , as further discussed

n Hutchinson and Thompson (2017a) where the functions f, h and

 were first tabluated. For the readers convenience, Table 1 is in-

luded below. 

For the perfect shell under prescribed pressure, the difference

etween the free energy in state A p and that in the unbuckled state

 is readily computed using the solution ( 2.5 )–( 2.7 ). The dimen-

ionless form of the energy barrier per dimple, W , for the perfect

pherical shell deforming symmetrically with respect to the equa-

or is given by 

W 

1 p C �C Ct/R 

= q (ξ ) − p 

p C 
h (ξ ) (2.8)
2 
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Table 1 

Function values charactering dimple buckling of a perfect spherical shell deter- 

mined in Hutchinson and Thompson (2017a) with ξ as the normalized pole deflec- 

tion defined in ( 2.5 ). Cubic splines provide an accurate interpolation of the values 

listed. 

ξ f ( ξ ) h ( ξ ) q ( ξ ) 

0 1.0 0 0 0 0.0 0 0 0 0.0 0 0 0 

1 0.6280 0.1867 0.1405 

2 0.4130 0.6782 0.3840 

3 0.3127 1.515 0.6795 

4 0.2592 2.747 1.027 

5 0.2260 4.417 1.429 

6 0.2031 6.557 1.886 

7 0.1858 9.186 2.395 

8 0.1722 12.32 2.956 

9 0.1612 15.97 3.563 

10 0.1517 20.14 4.214 

15 0.1209 48.92 8.058 

20 0.1034 90.70 12.70 

25 0.0918 145.0 17.97 

30 0.0834 211.8 23.80 

35 0.0770 290.8 30.12 

40 0.0719 382.3 36.92 

45 0.0677 486.4 44.17 

50 0.0641 603.0 51.84 

55 0.0611 731.9 59.91 

60 0.0584 873.2 68.34 

Fig. 5. The dimensionless energy barrier per dimple between the pre-buckling state 

O and the post-buckling state A p for prescribed pressure p is plotted on the hori- 

zontal axis with the normalized pressure plotted on the vertical axis. Shown for 

the perfect shell and five levels of imperfection as measured by δ/ t . The curve for 

the perfect shell is computed using ( 2.8 ). Those for the imperfect shells have been 

computed with R / t = 200, ν = 0.3 and B = 1.5, but these results are essentially inde- 

pendent of R / t . 
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with ξ determined from p / p C = f ( ξ ). The total energy barrier for

the full shell buckling symmetrically about the equator is defined

as 2 W and, thus, the barrier ‘per dimple’ is W . The energy barrier

(easily identified as an area in the pressure-volume graph) is plot-

ted as the upper curve in Fig. 5 . A different normalization of W has

been used in ( 2.8 ) than that employed in Hutchinson and Thomp-

son 2017a,b . The earlier normalization is related to that in ( 2.8 ) by

√ 

1 − ν2 W R 

2 πDt 
= 8 

√ 

3 

W 

1 
2 

p C �C Ct/R 

(2.9)

The advantage of normalization in ( 2.8 ) is the transparent in-

sight it provides into the magnitude of the energy barrier: 1 
2 p C �C 

is the total elastic energy stored in the perfect shell at p C , while

the factor C t / R scales with t / R due to the fact that the dimple

buckle width scales with 

√ 

tR and thus decreases relative to the

size of the shell for thinner and thinner shells. The new normaliza-
ion also has the nice feature that the dimensionless energy barrier

s of order unity or less in the range of interest. 

Evkin and Lykhachova (2017) , building on the earlier work

f Evkin et al., (2016) , have also presented results for the en-

rgy barrier for dimple buckling of perfect spherical shells un-

er prescribed pressure in good agreement with the upper curve

n Fig. 5 . The dimensionless energy barrier in their paper is

enoted by �̄ and is equal to dimensionless barrier in ( 2.8 )

imes the factor 4 / 
√ 

3(1 − ν2 ) . The work presented in Evkin and

ykhachova (2017) includes both finite element computations and

symptotic analytical formulas for the energy barrier. As is being

rgued in this paper, these authors asert that the trend for the en-

rgy barrier with p / p C provides a rationale for the design pressure

f roughly 20% of p C employed in many codes for thin spherical

hells under external pressure. These authors also present an illus-

ration of the insensitivity of dimple buckling to its location on the

hell by showing that a dimple in state A p that forms between the

ole and equator is identical to an axisymmetric dimple formed at

he pole. Of course, identical behavior must be expected given the

ighly localized nature of dimple buckling, but it is reassuring to

ee this emerge directly from one numerical analysis that is ax-

symmetric and the other that is not. 

Computation of the energy barrier with p prescribed for five

evels of imperfection are also shown in Fig. 5 providing compari-

on with the energy barrier for the perfect shell. These results, as

ell as the previously unpublished results in Section 5 , have been

omputed using the numerical method detailed in Hutchinson and

hompson (2017b) and Hutchinson (2016) . Two features of the bar-

ier plots in Fig. 5 stand out. (1) For perfect or near perfect shells

he energy barrier at pressures in a substantial range below the

aximum below p max remains very low. (2) For lower pressures

round p / p C = 0.2 the energy barrier becomes large and, moreover,

s only weakly dependent on the imperfection amplitude. It seems

easonable to assert that shells with small imperfections will not

e robust against buckling if loaded anywhere near the buckling

ressure while, conversely, shells loaded at pressures at about 20%

f p C will be quite robust and nearly independent of p max as long

s p max is not itself as low as 20% of p C . 

As already noted, there are significants differences between

he post-buckling behavior in the two limiting loading cases, pre-

cribed pressure and prescribed volume change. Under prescribed

ressure the buckled shell snaps dynamically to a collasped state

ith the two poles making contact ( Hutchinson, 2016 ). By con-

rast, under prescribed volume change the shell snaps to a sta-

le dimpled state ( Hutchinson & Thompson, 2017a,b ). In the lat-

er case, the net pressure acting on the shell decreases abruptly

s the shell buckles thereby giving rise to a stable dimple buckle.

his difference is brought out in Fig. 4 where the pre-buckling and

ost-buckling behavior is plotted in the form of pressure versus

hange in volume for the perfect spherical shell. For the unbuck-

ed shell, p / p C = �V / �V C in state O for both loading cases. As al-

eady discussed, under prescribed pressure there is only one equi-

ibrium buckled state, A p , and it is unstable. Under prescribed vol-

me change with �V > �V L , there are two equilibrium states, A V ,

hich is unstable, and, B V , which is stable. When the shell buckles

nder prescribed volume change it snaps to state B V . 

Under prescribed volume change the free energy of the system

s simply the elastic energy in the shell, and the energy barrier to

uckling is the difference between the free energy in states A V and

 . For the perfect shell, the energy barrier per dimple, W , can again

e computed using ( 2.5 )–( 2.7 ) with the result 

W 

1 
2 

p C �C Ct/R 

= q (ξ ) − �V 

�V C 

h (ξ ) + 

1 

2 

C 
t 

R 

h (ξ ) 2 (2.10)

here ξ ≡ ξA is given in terms of �V / �V C by ( 2.6 ) as now de-

cribed. For any C t / R there is a lower limit of �V / �V , denoted
C 
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Fig. 6. The R / t -dependence of three quantities for perfect spherical shells subject to 

prescribed volume change: The upper curve is the prescribed volume change asso- 

ciated with the Maxwell equal energy criterion and the lower curve is the associ- 

ated pressure in the stable post-bucking equilibrium state. The middle curve is the 

lower limit of prescribed volume change for which post-buckling equilibrium states 

exist. These curves apply for shells deforming symmetrically about the equator with 

equal dimple buckles at the top and bottom poles. 
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y �V L / �V C and plotted in Fig. 6 , for which positive values of ξ
atisfying ( 2.6 ) exist. For prescribed �V > �V L , two values of ξ
atisfying ( 2.6 ) exist, one associated with state A V , denoted by ξA ,

nd the other associated with B V , denoted by ξ B . The energy bar-

ier for prescribed �V / �V C computed from ( 2.10 ) with ξ ≡ ξA is

lotted for several values of C t / R in Fig. 7 a, in each case over the

elevant range �V L < �V < �V C . The limit for very thin shells,

 t / R → 0, coincides with the result for prescribed pressure with

 / p C → �V / �V C , as can be seen directly from ( 2.8 ), ( 2.10 ) and ( 2.6 ).

The difference between the energy in the stable dimple state B V 
nd that in state O is denoted by W B and is determined by ( 2.10 )

ith ξ = ξ B . Again, this energy difference is easily identified as an

rea in the pressure-volume graph; it is plotted in Fig. 7 b. Another
ig. 7. (a) Dimensionless energy barrier per dimple for the perfect shell for prescribed

plotted in Fig. 6 ) depends on C R / t . (b) The difference in the energy per dimple for p

uckling state O . The value of �V / �V C associated with the Maxwell state M at which the

or shells deforming symmetrically about the equator with equal dimple buckles at the to
spect of prescribed volume change brought out in Fig. 7 b is the

xistence of stable equilibrium buckled states B V with energy equal

o that in the unbuckled state O , i.e., W B = 0. These are the Maxwell

qual energy states. The prescribed volume change, �V M 

, and as-

ociated pressure in the buckled state, p M 

, for the Maxwell states

re plotted as a function of R / C t in Fig. 6 . For �V < �V M 

the en-

rgy in the unbuckled state is less than that in state B V , while for

V > �V M 

, the energy in the unbuckled state is greater than that

n B V . Elastic systems with these characteristics display hysteritic

ehavior when loading histories are imposed causing the shell to

ndergo cycles snapping back and forth between buckled and un-

uckled states. Such equal energy states do not exist under pre-

cribed pressure, assuming one excludes the collapsed states of the

hell. 

An important conclusion to be drawn from these results is

hat there is relatively little difference between the buckling en-

rgy barrier under prescribed volume change from that under pre-

cribed pressure, other than the existence of the lower limit of

rescribed volume change for which buckling can occur. Indeed,

he difference sim ply coresponds to the small grey-shaded area in

ig. 4 . The small difference is also clearly evident when one com-

ares the barrier curves in Fig. 7 a with that in Fig. 5 for the perfect

hell. Anologous to the conclusion noted earlier regarding buckling

mperfection-sensitivity, the energy barrier for spherical shells un-

er external pressure is only weakly dependent on the compliance

f the system applying the pressure. These conclusions stem from

he fact that both the imperfection-sensitivity and the energy bar-

ier are established in the range of relatively small buckling deflec-

ions. By contrast, the advanced post-buckling behavior is vastly

ifferent for the two cases with prescribed pressure producing col-

apse and prescribed volume change giving rise to a stable, finite-

ized dimple. Finally it is worth noting that, due to the localized

ature of the dimple buckle and its relatively small size, the results

resented in the figures in this section can also be applied to a

lamped hemispherical shell with a single dimple at the pole or to

 full spherical shell with only one dimple buckle. For thin shells,

lamping at the equator has almost no influence on the dimple

uckle as long as it is well away from the equator, as has been

stablished here by numerical calculation of the two cases. Thus,
 change of volume �V / �V C for various values of C t / R . The lower limit �V L / �V C 
rescribed volume change between the stable post-buckling state B V and the pre- 

 energy in states O and B V are equal is marked (see also Fig. 6 ). These curves apply 

p and bottom poles. 
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Fig. 8. Perfect spherical shell loaded under prescribed pressure p and then subject to equal and oppositely-directed pole probe forces P . For pressures in the right hand plot 

having p / p C > 0.14, the probe force becomes zero at the intersection with the pole deflection axis ξ . The deformations in this plot are axisymmetric. The zero crossing is 

the unstable post-buckled equilibrium state A p . The work done by the probing force to reach A p (the area under the curve) is equal to the energy barrier W . The shell has 

R / t = 200 and ν = 0.3 but the curves are essentially independent of R / t . (from Hutchinson & Thompson (2017b) . 

Fig. 9. For various levels of imperfection, the dimensionless additional pole deflection �ξproduced by the probing force at attainment of the unstable state A p in (a) and 

the maximum probing force P max in (b). The associated energy barrier curves are presented in Fig. 5 . These results have been computed for shells with R / t = 200. ν = 0.3 and 

B = 1.5 but they are essentially independent of R / t . 
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all the results can be applied directly to the hemisphere with �V

and �V C being half the values for the full shell. For full spherical

shells with one dimple buckle, the solution ( 2.5 )–( 2.6 ) continues to

hold if C is replaced by C /2, with a similar substitution in Fig. 6 . 

5. Probing the shell’s energy barrier and its shock-sensitivity 

5.1. Numerical predictions 

An example which illustrates the role of the energy barrier is

the effect of applying inward radially-directed probing forces P to

the poles of a spherical shell loaded to pressure p as analyzed by

Hutchinson and Thompson (2017b) and shown for a perfect spheri-

cal shell in Fig. 8 . In this figure, for shells pre-loaded to p / p C > 0.14

with p subsequently held fixed (prescribed pressure), the probe

force increases to a maximum, P max , and then declines to zero. The

solution at P = 0 with ξ > 0 is the unstable post-buckling equilib-

rium point of the perfect shell at state A p given by p / p C = f ( ξ ); this

unstable state can be stabilized by a suitably controlled probe as
iscussed thoroughly by Thompson and Sieber (2016) . Moreover,

he work done by the probe force through the pole deflection is

recisely the energy barrier W given by ( 2.8 ). The probing behavior

or prescribed pressure satisfying p / p C > 0.14 is axisymmetric over

he entire range shown in Fig. 8 . If p / p C < 0.14, the probing behav-

or is more complicated with non-axisymmetric bifurcation occur-

ng prior to attainment of P = 0 ( Hutchinson & Thompson, 2017b ). 

Fig. 9 presents results for shells with identical dimple imper-

ections at each pole, loaded under prescribed pressure, and then

ubject to equal and opposite probing forces at the poles at the

enters of the dimple imperfections. The additional dimensionless

ole deflection, �ξ = ξA p − ξO , due to the probe force at the point

here P = 0 at state A p is plotted in Fig. 9 a, and the maximum

alue attained by the probe force is presented in Fig. 9 b. As in the

ase of the perfect shell, the state at P = 0 is the same unstable

ost-buckled equilibrium state A p identified for the shell subject

o pressure alone. Thus, it follows that the work done by the prob-

ng force must necessarily equal the energy barrier W presented

n Fig. 5 , as has indeed been verified. Like the energy barrier it-
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Fig. 10. Experimental measurement of the energy barrier by probing hemispher- 

ical shells clamped at the equator that are subject to prescribed pressure p 

( Marthelot et al., 2017 ). One shell is nearly perfect and the second shell has a man- 

ufactured dimple imperfection at the pole with amplitude δ/ t = 0.62 and B = 1.92. 

Further details are discussed in the text. The theoretical curves are computed with 

R / t = 120 and ν = 1/2. 
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elf, the additional pole deflection of the probe required to trigger

uckling is small (less than a shell thickness) for shells with small

mperfections loaded to pressures within about 25% of the buckling

ressure. However, the pole deflection becomes relatively large and

early independent of the imperfection when p / p C is around 0.2. 

.2. Experimental results from probing the energy barrier 

Systematic experimental results on probing loaded shell struc-

ures to trigger buckling have only recently been carried out. A

tudy probing axially loaded cylindrical shells has been carried

ut by Virot et al., (2017) with a few of their preliminary results

reviously reported by Hutchinson and Thompson (2017b) . An ex-

ensive experimental study of the technique of probing spheri-

al shells subject to external pressure has been performed by

arthelot et al., (2017) . Here we present the measured energy bar-

ier for two of the spherical shells probe tested by these authors. 

The shells are elastomeric hemispheres clamped at their equa-

ors. The process of manufacturing the shells is described in

ee et al., 2016b with details of how a precise dimple imperfec-

ion at the pole can be introduced described in Lee et al., (2016a) .

he ‘perfect’ shells, manufactured with no deliberately introduced

mperfection, buckle in the range of 0.7 p C to 0.8 p C . A systematic

uckling imperfection-sensitivity study under pressure alone was

resented in Lee et al., (2016a) . The two shells for which experi-

ental data is presented in Fig. 10 have R / t = 120 and ν = 1/2. One

hell is ‘perfect’ in the sense described above which buckled un-

er pressure alone at 0.74 p C with a dimple buckle occurring well

way from the pole. The other shell was manufactured to be im-

erfect with a dimple shape at the pole approximated by ( 2.1 ) with

/ t = 0.62 and β I = 10.8 o ( B = 1.92). The experimental loading sys-

em was designed to apply prescribed pressure while the probe

as applied under conditions of prescribed displacement. The ex-

erimentally measured energy barrier (e.g., the work done by the

robe to reach the unstable equilibrium state A p ) at various levels

f prescribed pressure is presented in Fig. 10 for each of the two

hells. Good agreement with numerical predictions computed for

hese shells is evident. The predictions in Fig. 10 have been com-

uted for both clamped hemispheres and full spherical shells sub-
ect to symmetry conditions at the equator with no discernable dif-

erence between the two sets of results. An imperfection amplitude

/ t = 0.16 produces a buckling load under pressure alone of 0.74 p C 
orresponding to that of the ‘perfect’ shell and a theoretical curve

or this imperfection is also shown. 

The insensitivity to conditions at the equator emphasizes the

ighly localized nature of dimple buckling for the spherical shell.

urther evidence of the localized nature of buckling is the fact

hat under pressure alone the ‘perfect’ shell undergoes dimple

uckling well away from the pole, no doubt associated with

ome small unidentified imperfection at that location. Neverthe-

ess, Marthelot et al., (2017) report that for each of the five data

oints in Fig. 10 for the ‘perfect’ shell the probe triggers a dimple

uckle at the pole not at that other location. The unidentified im-

erfection is probably too far from the pole to interact with the

robe. 

.3. Probing at locations remote from a dimple imperfection 

For spherical shells under external pressure the energy barrier

or a shell with a dominant imperfection is only relevant if the

robe or other disturbance is applied sufficiently near the imper-

ection so as to trigger buckling at the imperfection. By analyzing

 simple example in this section, we will illustrate that a full shell

ith a single dimple imperfection will behave as if it were a per-

ect shell at applied pressures below the buckling pressure when

robed well away from the imperfection. Because our present nu-

erical method is limited to axisymmetric deformations we con-

ider a full spherical shell with a single dimple imperfection at the

pper pole and otherwise perfect. This shell is then probed with

qual and opposite forces at the poles, and the work exerted by the

robe system to buckle the shell is computed. One case (shell B)

as equal and opposite concentrated forces at the poles, while the

ther case (shell C) has a concentrated probing force at the lower

ole and a broadly distributed normal pressure with an equal and

pposite resultant force at the upper pole. The pressure at the up-

er pole for shell C is distributed in proportion to e −(β/ βp ) 
2 

with

p = 3 β I such that the additional pressure resisting the probe at

he upper pole is very small compared to the applied uniform

ressure p . Results for the energy barrier perfect shell (shell A) are

lso included for comparison. 

The shells in Fig. 11 have R / t = 100 and ν = 0.3. The upper pole

mperfection of shells B and C have δ/ t = 0.5 and B = 1.5. Under

niform pressure alone, shells B and C undergo dimple buckling

t the upper pole at a buckling pressure p / p = 0.39. The curve for

he dimensionless energy barrier for shell B in Fig. 11 is essen-

ially identical to that presented for the energy barrier per dimple

n Fig. 5 for a shell with similar dimple imperfections at each pole

nd undergoing symmetric buckling about the equator. The dimen-

ionless energy barrier of the perfect shell A in Fig. 11 is also es-

entially identical to that for the perfect shell in Fig. 5 for the en-

rgy per dimple. For shell A, W is taken to be the barrier at the up-

er pole. As noted earlier, if the perfect shell buckles symmetrically

espect to the equator with a buckle at each pole, as in the compu-

ations for Fig. 5 , the total energy barrier is 2 W . However, if a very

mall imperfection triggers buckling first at the upper pole then

hat buckle localizes and grows while a buckle at the lower pole

ill not form; the energy barrier of the full perfect shell is then W

ot 2 W . This is the relevant barrier for the present comparison. At

rescribed pressures below the buckling pressure, i.e., p / p < 0.39,

robing of shell C causes buckling at the lower pole even though

he imperfection is at the upper pole. As seen in Fig. 11 , the work

xerted by the probing system for shell C is essentially identical to

he energy barrier per dimple for the perfect shell. This behavior

s not unexpected because of the localized nature of the buckling

nd because the probing system only increases the pressure at the
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Fig. 11. Energy barrier determined by probing three full spherical shells with 

R / t = 100 and ν = 0.3. Shell A is a perfect shell probed by equal and opposite forces 

at the poles. For this case W is the barrier per pole—see further discussion the test. 

Shells B and C have identical dimple imperfections ( δ/ t = 0.5 and B = 1.5) at the up- 

per pole with no imperfection at the lower pole. The buckling pressure for shells 

B and C subject to pressure alone is indicated by the horizontal line at p / p C = 0.39. 

Shell B is probed by equal and opposite forces at the poles, and it buckles at the 

upper pole with the energy barrier shown. Shell C is probed by a concentrated force 

at the lower pole and is opposed by a broadly distributed pressure centered at the 

top pole which has equal and opposite force resisting the probe force at the lower 

pole (see text for details). At pressures below p / p C = 0.39, shell C buckles at the 

lower pole with an energy barrier identical to that of the perfect shell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Comparison between the energy barrier W to buckling of cylindrical shells 

under axial compression ( Horak et al., 2006 ) and spherical shells under external 

pressure. The normalization of energy barrier plotted on the horizontal axis is the 

same as that in ( 2.8 ) and in Figs. 5 and 7 with R as the radius of the sphere or 

cylinder, respectively, and t as the shell thickness. The curve for cylindrical shells 

was plotted by using ( 6.1 ) and reading values of V ( λ) from Fig. (4.3) in Horak et al., 

(2006) . 
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upper pole very slightly. Once the applied pressure p attains the

buckling pressure, p / p = 0.39, the energy barrier vanishes and shell

C undergoes snap buckling at the upper pole. 

An abrupt transition occurs between buckling at the lower pole

triggered by the probe and buckling at the upper pole produced

by the uniform applied pressure. We have not attempted to re-

solve this transition more finely that the plot in Fig. 11 reveals,

where the largest pressure for which buckling at the lower pole

was computed is p / p C = 0.37. While the example in this section is

relatively simple, it highlights two lessons concerning probing and

energy barriers which are likely to be broadly relevant for shells.

The first lesson is the more positive of the two. When the probe

or disturbance is not directed sufficiently near the worst imper-

fection, the energy barrier for buckling is greater than the barrier

associated with buckling at the imperfection. The second lesson is

that if one’s aim is to use a probing technique to experimentally

measure the energy barrier by extrapolating to the buckling limit

using data at loads below the buckling limit, then one has to be

sure to probe sufficiently near the most dilatory imperfection if

one expects to measure the lowest energy barrier. Each of these

lessons stems from the localized nature of shell buckling for this

type of shell/loading system. 

6. Energy barrier for cylindrical shells under axial compression 

Significant effort s are currently underway in Europe, the United

States and in China to revise the design criteria for cylindrical

shells under axial compression to break away from use of the

NASA knockdown factor ( 3.3 ), which is regarded by many as being

too conservative for well-constructed shells. The new approaches

still make use of experimental verification but also employ a more

heavy reliance on computational buckling work, incorporating re-

alistic imperfections ( Haynie et al., 2012; Krasovsky et al., 2011 ;

Wagner et al., 2017 ; Wang et al., 2013 ). Several avenues are being
ursued, including the use of lateral probing forces or displace-

ents as surrogate imperfections and attempts to identify and

ompute a meaningful lower bound to the buckling load. Some of

hese ideas derive from early buckling research carried out in the

ormer Soviet Union (e.g., Mossakovskiy et al., 1975; Evkin et al.,

978 ). A number of aspects underlying these new approaches are

till in a state of flux and new design criteria for shell buckling are

ot yet in place. Suffice it to say that the outstanding research is-

ues needed to advance the new criteria center, at least in part, on

mperfection-sensitivity and the role of probing. 

The cylindrical shell energy barrier problem is more challeng-

ng than the spherical shell problem because the former is inher-

ntly two-dimensional while the latter is axisymmetric for dimple

uckling and thus one-dimensional. A ground-breaking analysis of

he energy barrier for perfect, elastic cylindrical shells under ax-

al compression has been carried out by Horak et al., (2006) . For

erfect cylindrical shells of radius R and thickness t loaded to an

verage compressive axial stress σ̄ less than the classical buckling

tress, i.e., σ̄ / σC < 1 with σC = Et/ ( 
√ 

3(1 − ν2 ) R ) , these authors

omputed the energy difference W between the energy in the un-

uckled state and that at the lowest saddle point, or ‘mountain

ass’ as the authors call it. This lowest mountain pass was shown

y a mathematical search routine to be associated with a dimple-

ike buckle (localized both axially and circumferentially) having a

haracteristic width and height of order 
√ 

Rt . The central result of

orak et al., (2006) can be expressed as 

√ 

3 

(
1 − ν2 

)3 / 2 
RW 

4 πE t 4 
= 

1 

96 π
V (λ) (6.1)

here, in their notation, λ = 2 ̄σ/ σC and V ( λ) is plotted in their Fig.

.3. The normalization of W in ( 6.1 ) is identical to that introduced

n ( 2.8 ) and used in Figs. 5 and 7 but expressed here directly in

erms of the shell and material parameters which hold for both

hells. As in the case of the results in the present study of spher-

cal shells there is no additional dependence on R / t or ν for thin

hells. The energy barrier ( 6.1 ) for the cylindrical shell subject to

rescribed average axial compression is compared to the barrier

or the spherical shell subject to prescribed pressure in Fig. 12 . 
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The similarity of the energy barrier for the two shell/loading

ystems seen in Fig. 12 is gratifying but not entirely unex-

ected given the long standing experience based on experimental

ata for these two systems that their buckling behavior is simi-

arly imperfection-sensitive and catastrophic. Moreover, the NASA

nockdown factor ( 3.2 ) which was developed based on experi-

ental data for cylindrical shells is often applied to spherical

hells, notwithstanding that the experimental data set for spherical

hells is not as large. A further complication for cylindrical shells

ersus spherical shells is the various choices of boundary condi-

ions which can be assumed for the cylindrical shell. Horak et al.,

2006) invoke boundary conditions in their analysis which might

e described as being among the least stiff of conditions represen-

ative of tests used to generate experimental data or for structural

pplications. For example, for the limit of prescribed displacement,

eferred to as the constrained case by the authors, a uniform axial

isplacement at the ends of the cylinder is not imposed, as would

e the most realistic assumption for modeling most test situations.

nstead, the authors impose the average axial displacement of the

nds allowing the axial displacement to become non-uniform at

he ends in the buckled shell. This end condition flexibility might

ontribute to some relaxation of the in-plane compression experi-

nced by the dimple buckle and might even allow the shell ends

o tilt relative to one another. For the other limit, the average axial

tress (the axial load) is prescribed which is work conjugate to the

verage axial displacement. For both these limiting cases, the au-

hors assume the shell is free to slide circumferentially at the ends.

ome influence of these boundary conditions on the energy bar-

ier plotted in Fig. 12 is expected, including the possibility that the

mposition of the average axial displacement rather than uniform

xial displacement may explain the fact that the energy barrier for

he cylindrical shell is somewhat larger than that of the spherical

hell. 

Another interesting observation related to the work of

orak et al., (2006) is their tentative conclusion, based on their

umerical results, that there appears to be no difference between

he energy barriers under prescribed axial load and prescribed

verage end shortening. Recall that the present results for the

erfect spherical shell under the two limiting conditions of pre-

cribed pressure and prescribed volume change (c.f., Eqs. (2.8) and

 2.10 ) and Figs. 5 and 7 ) have a small difference which van-

shes as R / t → ∞ . We expect similar behavior for the cylindrical

hell: a small difference due to the fact that under prescribed

nd-shortening the average axial load diminishes as buckling oc-

urs. The analog to spherical shell buckling carries over to the ad-

anced post-buckling behavior. Under prescribed axial load, buck-

ing should lead to complete collapse of the cylinder, while under

rescribed end shortening the shell is expected to snap to a sta-

le state with one or more dimples. It is also reasonable to expect

hat the effect of geometric imperfections on the energy barrier for

he cylindrical shell will be similar to that found here for spherical

hells. 

In summary, as the remarks above on the buckling energy bar-

ier for the cylindrical shell under axial compression suggest, there

re open questions related to the boundary conditions that need

urther resolution. The experimental boundary conditions of most

ecent laboratory tests are probably represented most closely as

eing clamped ends with prescribed uniform end-displacement,

nd it is important that this limiting set of boundary conditions is

roperly modeled in the energy barrier and probing simulations. A

ecent analysis of the dimple buckle state at the mountain pass by

reilos and Schneider (2017) also invokes a set of boundary condi-

ions that is difficult to relate to conditions relevant to either lab-

ratory tests or to applications. For both the determination of en-

rgy barriers and probing responses, it is equally important that

ttention be addressed to boundary conditions that are relevant
o applications such as launch vehicles for which fully clamped

nds with prescribed uniform end-shortening is almost certainly

n unrealistically stiff set of conditions. It is possible that the sta-

le isolated dimples induced by probing that are observed in some

f the experiments employing the maximally stiff boundary con-

itions may be unstable, or even non-existent, for other boundary

onditions, as illustrated in the case for the spherical shell for the

wo limits of prescribed pressure and prescribed volume change. 

. Concluding remarks 

Based on the numerical results for dimple buckling and asso-

iated energy barriers of spherical shells subject to external pres-

ure, we have argued that for this system imperfections determine

he reduction of the buckling pressure below the classical buckling

ressure while the energy barrier determines the robustness, or

ack thereof, of the shell to unanticipated disturbances at pressure

oads below the buckling pressure. For perfect shells, or shells with

elatively small imperfections, the energy barrier is very small in

 substantial pressure range below the buckling pressure. The bar-

ier increases to much larger values for p / p C around 0.2. The energy

arrier trends in Fig. 5 have several implications. For example, even

f one could manufacture near-perfect spherical shells, one would

e reluctant to load them at pressures close to the buckling pres-

ure unless one were absolutely certain that the shell would not

xperience unexpected disturbances. Conversely, even for spheri-

al shells with modestly large imperfections, e.g., δ/ t ∼= 

0.5 in Fig. 5 ,

ne could still be confident that a shell loaded to p / p C ∼= 

0.2 would

ave substantial resistance to disturbances. Taken together these

wo implications add to the rationale for the buckling knock-down

actor of ≈ 0.2 widely adopted in the design of thin spherical

hells under external pressure. Evkin and Lykhachova (2017) make

 similar argument based on their energy barrier results for perfect

pherical shells. 

An important finding is that the energy barrier to buckling of

he spherical shell under external pressure has only a weak de-

endence on the compliance of the loading system applying the

ressure. The difference between the energy barriers in the lim-

ting cases of prescribed pressure and prescribed volume change

s quite small. In this regard, the energy barrier is similar to the

uckling pressure itself. The earlier calculations of Horak et al.,

2006) for cylindrical shells under axial compression, although 

omewhat more tentative on the issue, come to the same conclu-

ion. 

Probing a loaded shell at the right location can be implemented

s an experimental technique to measure the energy barrier ( Virot

t al., 2017; Marthelot et al., 2017 ). Moreover, in principle, it may

e possible to develop an experimental protocol to nondestruc-

ively measure the buckling load of the shell by carefully probing

t a sequence of load levels and then extrapolating to the point of

uckling. The example discussed in Section 5 cautions that devel-

ping such a protocol is not likely to be straightforward and it will

lmost certainly depend critically on probing a shell near its most

ulnerable location. 

To our knowledge, there are no results available for buckling

nergy barriers for shell problems other than those discussed in

his paper. Stiffening generally reduces the imperfection-sensitivity

f shells in the sense that for common methods of manufacture

he reduction of the buckling load relative to that of the perfect

hell is often less than that for unstiffened shells. It would be in-

eresting to know if there is a corresponding increase in the en-

rgy barrier for stiffened shells at loads not far below the buck-

ing load. Insight to this question can be obtained in a simple,

traightforward manner for the bending stiffness enhancement as-

ociated with isotropic sandwich shells. For either the spherical

r cylindrical shell we will compare a monocoque shell with ra-
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dius R , thickness t , Young’s modulus E and Poisson’s ratio ν with

an isotropic sandwich shell of the same radius, same areal mass

and whose material has the same Young’s modulus and Pois-

son’s ratio. To keep things as simple as possible, we will assume

that the fraction of the material in the core of the sandwich can

be neglected such that each face sheet has thickness t /2. With

c as the distance between the inner surfaces of the two face

sheets, it is straightforward to show (assuming Kirchhoff-Euler-

Bernoulli kinematics apply) that the sandwich has the same bend-

ing and stretching stiffness as a monocoque shell with an effective

modulus E e f f = E/ 

√ 

1 + 3(c/t) + 3 (c/t) 2 and an effective thickness

 e f f = t 
√ 

1 + 3(c/t) + 3 (c/t) 2 . (Note that the limit with c → 0 are

those of the monocoque shell.) It follows, that all the results de-

rived for the monocoque shell in this paper apply to the isotropic

sandwich shell if E is replaced by E eff and t is replaced by t eff. In

particular, using the dimensionless expression for the energy bar-

rier introduced in ( 2.8 ) and ( 6.1 ) and plotted in Figs. 10 and 12 ,

one finds the following comparison between the energy barrier for

sandwich and monocoque shells of the same mass at the same lev-

els of p / p C (or of σ̄ / σC ) 

W sandwich 

W monocoque 
= 

(
1 + 3 

(
c 

t 

)
+ 3 

(
c 

t 

)2 
)3 / 2 

(7.1)

The effect of the bending stiffening enhancement achieved via

sandwich construction on increasing the energy barrier is po-

tentially very large. In addition, there is an accompanying in-

crease in the buckling pressure p C or load of the perfect shell,

and the relevant normalization of the imperfection amplitude in

the imperfection-sensitivity plots becomes δ/ t eff in place of δ/ t . Of

course, a sandwich shell of the same mass as a monocoque shell

will be more susceptible to plastic yielding at the same level of

p / p C and, in addition, sandwich construction is likely to bring into

play local buckling modes not present in a monocoque shell. These

additional factors must be taken into account in any design involv-

ing stiffening. Nevertheless, the dramatic increase of the energy

barrier implied by ( 7.1 ) sheds further light on the role of stiffen-

ing. 
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