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Dynamic buckling is addressed for complete elastic
spherical shells subject to a rapidly applied step in
external pressure. Insights from the perspective of
nonlinear dynamics reveal essential mathematical
features of the buckling phenomena. To capture
the strong buckling imperfection-sensitivity,
initial geometric imperfections in the form of an
axisymmetric dimple at each pole are introduced.
Dynamic buckling under the step pressure is
related to the quasi-static buckling pressure. Both
loadings produce catastrophic collapse of the shell
for conditions in which the pressure is prescribed.
Damping plays an important role in dynamic
buckling because of the time-dependent nonlinear
interaction among modes, particularly the interaction
between the spherically symmetric ‘breathing’ mode
and the buckling mode. In general, there is not a
unique step pressure threshold separating responses
associated with buckling from those that do not
buckle. Instead, there exists a cascade of buckling
thresholds, dependent on the damping and level
of imperfection, separating pressures for which
buckling occurs from those for which it does not
occur. For shells with small and moderately small
imperfections, the dynamic step buckling pressure
can be substantially below the quasi-static buckling
pressure.

1. Introduction
Together with the axially compressed cylindrical shell,
the complete elastic spherical shell under spatially
uniform external pressure is one of the two archetypal
examples of shell buckling. For this reason, it is studied
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extensively as a proving ground for advanced shell-buckling theories, involving the notorious
imperfection-sensitivity. Recently, there has been a renewed interest in this problem, stimulated
by recent developments in shell buckling on several fronts. These include efforts underway
in China, Europe and the USA to update design criteria for shell buckling accounting for
advances in computation and shell manufacturing since the criteria were established in the mid-
1960s. Also, there have been recent advances in experimental and theoretical aspects including
new experiments on spherical shells with precisely manufactured imperfections [1], accurate
formulations and simulations [1,2], and proposals to assess buckling and imperfection-sensitivity
by experimental probing techniques [3] executed in [4,5].

Work on spherical shell buckling so far has concentrated on the static behaviour under the slow
increase in the spatially uniform loading, under both (dead) pressure control and (rigid) volume
control. Particular attention has been given to the imperfection-sensitivity and associated energy
barriers against collapse under operating conditions. Our aim in this paper is to initiate some
high-precision dynamical studies of imperfect spherical shells, following a common historical
pattern by first addressing the problem of step loading. In this, we examine the highly nonlinear
dynamical response of imperfect shells when, at rest under zero load, the shell is subjected to
a rapidly applied dead pressure of magnitude p which then remains constant over the time,
t, which is effectively allowed to tend to infinity. This loading process is then repeated at a
fine set of different p-values, and a record is kept as to which values of p result in a buckling
collapse inferred by the dynamical response undergoing a dramatic increase in magnitude.
The study limits imperfections and deformations to be axisymmetric which nevertheless
captures all the essential nonlinearity of spherical shells buckling under uniform pressure. In
this sense, the spherical shell is ideal for an in-depth investigation of dynamic buckling of
imperfection-sensitive structures. At very large deflections, non-axisymmetric departures from
the axisymmetric response can occur, though in a range far beyond that relevant to the onset of
buckling [6].

In the simplest scenario at a fixed imperfection magnitude, δ, the set of increasing step loads
will exhibit no collapse until some p = pD but guaranteed collapse at p> pD. We can then identify
pD(δ) as the dynamic buckling load at this δ, and its graph can be compared with the static
imperfection sensitivity curve pS(δ). This simple scenario does, however, often break down due to
the dynamical phasing as the energy barrier is approached. Unlike predictions based on simpler
one- and two-degree of freedom (d.f.) nonlinear structural systems [7], collapse is not guaranteed
for p> pD, but instead we observe a sequence of thresholds. Here, recent work on nonlinear
dynamics provides insights into why there is not a unique threshold characterizing dynamic
buckling of the shells under step pressure. We believe the concepts revealed for the spherical
shell will carry over to step loading of other shell structures. Earlier work on dynamic buckling,
some of which is reviewed in [7], has not revealed the complexity of dynamic buckling nor the
insights offered by perspectives of nonlinear dynamics.

In the rest of this Introduction, we list the content of the sections and anticipate some
of the findings. The equations governing the nonlinear behaviour of complete thin, elastic
spherical shells are presented in §2 along with a brief outline of the numerical solution methods.
A summary of relevant quasi-static results for the elastic buckling of spherical shells is presented
in §3, including the effect of imperfections on reducing the buckling pressure and the energy
barrier to buckling for shells subject to subfailure pressures. The paper focuses on prescribed
spatially uniform (dead) pressure loadings where the device applying the pressure is not
influenced by the deformation of the shell. Under quasi-statically increased load, buckling takes
place at the maximum pressure the shell can support and is followed by complete dynamic
collapse. Dimple-shaped geometric imperfections will be considered which are both realistic and
among the most deleterious to buckling. The shape and amplitude of the imperfections will be
scaled such that our results for buckling will be essentially independent of the all-important
shell radius to thickness ratio, R/h, for shells with R/h greater than about 25–50. Under step
loading, the dynamic coupling between spherically symmetric breathing (vibration) mode and
the incipient buckling mode plays a critical role, and thus, in §3, we also present selected results
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on these modes based on linearization about both stable unbuckled states and unstable buckled
states.

Dynamic responses for step-loaded shells are shown in §4. Comparison between the dynamic
and quasi-static buckling pressures is made dependent on the imperfection amplitude. For nearly
perfect shells or those with relatively modest levels of imperfection, the lowest dynamic buckling
pressure falls significantly below the quasi-static buckling pressure but, conversely, falls far above
lower bounds based on energy barrier concepts. For larger imperfections, the step buckling load
is only slightly below the quasi-static buckling pressure. We observe a significant delay between
application of pressure step and occurrence of buckling. Especially at or just above the lowest
threshold for step buckling, buckling occurs only after multiple oscillations of the breathing
mode with a slow transfer of energy from the breathing mode to the buckling mode. For larger
imperfections (δ/h> 0.25), imperfection-sensitivity trends for the step buckling pressure are
similar to those for quasi-static buckling (at slightly lower pressures) and not strongly dependent
on damping.

Because of the time-delay before buckling occurs, damping comes into play in the case of
small imperfections and thus in the determination of the step buckling threshold. Damping in
this paper arises from, and can be controlled by, the time discretization employed in the numerical
simulations. Section 5 is devoted to a discussion of the role of damping on the determination of
the step buckling pressures.

Section 6 examines the cascade of step buckling thresholds from the perspective of work in
nonlinear dynamics. Each threshold pressure corresponds to a response where the pole of the
shell performs one more large oscillation before crossing the buckling threshold. This implies that
the surface forming the buckling threshold in phase space has a complicated geometry folding
around the unbuckled state many times.

2. Notation, governing equations and dimensionless quantities
This paper considers thin spherical shells of radius R and thickness h. The shell material is
isotropic and linearly elastic with Young’s modulus E, Poisson’s ratio ν and uniform density ρ.
Geometric imperfections, wI, in the location of the shell middle surface will be introduced. All
numerical results in this paper are based on the small strain–moderate rotation theory [8,9]
for axisymmetric deformations of the shell. Specifically, we assume that motion is rotationally
symmetric around the North–South pole axis with reflection symmetry about the equator. This
theory, reviewed and employed for the symmetric case in [2], is accurate for thin shells, e.g.
R/h ≥ 50, if the largest deflections which occur at the poles do not exceed about 0.2R, which will
always be true in the range of interest in this paper. This paper is only concerned with whether the
shell buckles or not—no attempt will be made to attain the collapse state. The onset of buckling
can be determined from simulations of deflections within finite multiples of the thickness (4–6h).

(a) Governing equations according to small strain-moderate rotation theory
All displacements can be described as functions of the meridional angle θ ∈ [0, π/2] (θ = 0 at the
equator, θ =π/2 at the North pole, as shown in an inset in figure 4). Rotational symmetry implies
that each middle surface point’s displacement on the shell has a single tangential component
u(θ , t) and an outward normal component w(θ , t) in the radial direction. The middle surface
strains (εθ , εω) and bending strains (Kθ , Kω) in small strain/moderate rotation theory for these
conditions of symmetry are, with ϕ= −W′ + U as the linearized rotation,

εθ = U′ + W + 1
2
ϕ2 − ϕWI

′, εω = −U tan θ + W (2.1)

and

κθ = ϕ′, κω = −ϕ tan θ . (2.2)
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Here, ()′ = ∂()/∂θ , and the dimensionless displacements and bending strains are (W, U) = (w, u)/R
and (κθ , κω) = R(Kθ , Kω). Subscript θ refers to the meridional direction, while ω refers to the
circumferential direction. An initial imperfection in the form of a normal stress-free displacement
of the shell middle surface, wI(θ ), from the perfect spherical shape has dimensionless form
WI = wI/R. The imperfection used in this paper is a set of identical inward dimples at each pole
with shape specified by (at the upper pole with β =π/2 − θ )

wI = −δe−(β/βI)2
with βI = B√√

1 − ν2R/h
, (2.3)

and δ as the imperfection amplitude. The radius βI is a measure of the width of the Gaussian
shaped dimple. These imperfections are realistic with δ/h usually not larger than about unity
[1,2]. The scaling of βI ensures that the relation between the buckling pressure and the amplitude
δ is essentially independent of R/h for thin shells. For a given imperfection amplitude δ, there is
a value of B that produces the minimum buckling pressure. The choice B = 1.5 used throughout
this paper gives nearly the minimum buckling pressure in the range 0 ≤ δ/h ≤ 1 (cf. [1,2]). This
choice also ensures that the imperfection is confined to the pole diminishing to zero at distances
on the order of

√
Rh from the pole.

The underlying assumptions for this theory are small strains, |ε| � 1, and moderate rotation,
ϕ2 � 1. The resultant membrane stresses (Nθ , Nω) and bending moment quantities (Mθ , Mω),
which are work conjugate to the corresponding strains, have dimensionless forms

(nθ , nω) = (Nθ , Nω)
(Eh)

and (mθ , mω) = (Mθ , Mω)R
D

⎫⎪⎪⎬
⎪⎪⎭ , (2.4)

where D = Eh3/[12(1 − ν2)] is the bending stiffness. These dimensionless stresses are related to
the dimensionless strain quantities by

(nθ , nω) = (εθ + νεω, εω + νεθ )
(1 − ν2)

, (mθ , mω) = (κθ + νκω, κω + νκθ ). (2.5)

In terms of dimensional quantities, the principle of virtual work for axisymmetric behaviour is

2πR2
∫π/2

0
{Mθθ δKθθ + MωωδKωω + Nθθ δEθθ + NωωδEωω} cos θdθ

= −2πR2
∫π/2

0
pδw cos θdθ + 2πR2

∫π/2
0

{ frδw + fθ δu} cos θdθ , (2.6)

where a positive pressure p acts inward. The D’Alembert ‘acceleration forces’ are fr = −ρh∂2w/∂2t
and fθ = −ρh∂2u/∂2t. The equilibrium equations generated by this principle, expressed in terms
of the dimensionless quantities, are

− m̄′′
θ − (m̄ω tan θ )′ + α[n̄θ + (n̄θϕ)′ + n̄ω] = −p̄ + f̄r (2.7)

and
− m̄′

θ − m̄ω tan θ − α[n̄′
θ − n̄θϕ + n̄ω tan θ ] = f̄θ . (2.8)

Here, (n̄θ , n̄ω, m̄θ , m̄ω) = cos θ (nθ , nω, mθ , mω), α = 12(1 − ν2)(R/t)2, ( )′ = ∂( )/∂θ and

p̄ = cos θ
pR3

D
, ( f̄r, f̄θ ) = − cos θ

(
∂2W
∂2τ

,
∂2U
∂2τ

)
, (2.9)

with dimensionless time

τ =
√

D
ρhR4 t. (2.10)

For solutions symmetric about the equator of the shell, the boundary conditions at the pole and
at the equator require U = 0, ϕ= 0 and W

′ ′ ′ = 0.
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Figure 1. Buckling behaviour of spherical shells with R/h= 100, ν= 0.3 for various dimple imperfections having B= 1.5.
(a) Pressure versus pole deflection. (b) Pressure versus change in volume with the energy barrier to buckling illustrated for a
prescribed pressure, p/pC = 0.25, for the shell with δ/h= 3/5. (Online version in colour.)

The dimensionless system is defined by the parameters ν, R/h, δ/h and βI. Most of our results
will be essentially independent of R/h because the values of this parameter chosen are large
enough such that the solutions approach the solution limit for large R/h.

(b) Discretization in space
Equations (2.7)–(2.9) form a nonlinear system of partial differential equations in space (angle
θ ∈ [0, π/2]) and dimensionless time τ . For quasi-static equilibrium computations (figures 1
and 2), this system is solved with zero acceleration forces ( f̄r = f̄θ = 0) and varying p̄ as a free
parameter to obtain the curves of equilibria, as shown in figures 1 and 2. The functions ϕ and
W are approximated by continuous piecewise polynomials of degree 5, consisting of 100 pieces.
This piecewise polynomial collocation approximation in the angle θ is supported by embedded
boundary-value solvers for ordinary differential equations (ODEs) such as the collocation toolbox
of COCO [10], which was used for figures 1 and 2, and similar solvers in previous publications on
quasi-static buckling problems [2,11]. The mesh in θ is non-uniform: the length of a subinterval
is approximately 0.1 close to the equator and approximately 10−3 near the pole, equi-distributing
an error estimate.

(c) Discretization in time
For dynamic simulations with a time step size �t, we keep the space (θ ) mesh constant over
time, and use the BDF-2 rule for approximating time derivatives. BDF-2 approximates the time
derivative ẏ(t) of function y(t) at time step tk = k�t by the finite backward difference BDF2(y)(tk),
which depends on the values of y at the current and previous two time steps

ẏ(tk) ≈ BDF2(y)(tk) = 1
�t

[
a0y(tk) + a1y(tk−1) + a2y(tk−2)

]
, (2.11)

where (a0, a1, a2) = (1.5, − 2, 0.5) for k> 1 and (a0, a1, a2) = (1, − 1, 0) for k = 1 (see [12]). We
used the overdot to denote derivative with respect to dimensionless time τ , and dropped the
argument θ in (2.11). For the dynamic simulation, we solve at each time step tk = k�t the nonlinear
system (2.7)–(2.9) the same way as for equilibrium computations to obtain the solutions W(tk) and
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Figure 2. Energy barrier, Ebarrier, for shells loaded to prescribed dead pressure p. The barrier is presented for various levels
of imperfection; these results are essentially independent of R/h for R/h greater than about 50. For these results, R/h= 100,
ν= 0.3 and B= 1.5. (Online version in colour.)

ϕ(tk). We introduce the additional variables (Wτ (tk), Uτ (tk)) approximating the time derivatives
(Ẇ(tk), U̇(tk)).

In the (now non-zero) acceleration forces (see equation (2.9)), we replace the term ∂2W/∂2τ by
BDF2(Wτ )(tk) in f̄r, the term ∂2U/∂2τ by BDF2(Uτ )(tk) in f̄θ (both in (2.9), entering (2.7) and (2.8)),
and add the equations Wτ (tk) = BDF2(W)(tk) and Uτ (tk) = BDF2(U)(tk). This results in a closed
nonlinear system of equations (as many equations as variables) for the variables (W(tk), ϕ(tk),
Wτ (tk), Uτ (tk)) at every time step tk = k�t. This system has the same structure as the problem
solved for equilibrium computations. It can, thus, be solved with the same solver. In fact, in the
limit�t → ∞, this nonlinear system for the dynamic simulation approaches the nonlinear system
for equilibria. For dynamic simulations with a pressure ramp, the variable p̄ is a given function of
time. The discretization introduces an error of order (�t)2.

(d) Energy, work and volume
We conclude this section by listing some fundamental quantities in dimensionless form which
will be employed in the paper. Symmetry about the equator allows the expressions below for the
full shell to be reduced to integration over the upper half of the shell. At any stage of deformation,
the strain energy in the shell, SE, is [2]

SE
2πD

= 1
2

∫π/2
−π/2

{
(κθ 2 + 2νκθκω + κω

2) + 12
(

R
h

)2
(εθ 2 + 2νεθ εω + εω

2)

}
cos θdθ . (2.12)

The linearized expression for the decrease in volume of the shell from its unstressed state, �V, is
sufficiently accurate for this study and is given by

�V
2πR3 = −

∫π/2
−π/2

W cos θdθ . (2.13)
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The kinetic energy of the shell, KE, is

KE
2πD

= 1
2

∫π/2
−π/2

{(
∂W
∂τ

)2
+
(
∂U
∂τ

)2
}

cos θdθ , (2.14)

with the dimensionless time τ defined in (2.10). The cumulative work done by the pressure, Wp,
for a shell that is unstressed at t = 0 is

Wp

2πD
= −

∫ τ
0

dτ
∫π/2
−π/2

p̄
∂W
∂τ

dθ . (2.15)

While the governing equations (2.7)–(2.9) conserve the energy balance Wp = SE + KE, the time
discretization introduces some loss of energy (damping) that increases with �t. In our discussion
of the results, we will always specify the time step �t and discuss the relation between damping
and �t in §5.

Finally, we will present results using a second dimensionless time defined by τ̂ = t/T0, where
T0 is the period of the sinusoidal spherically symmetric vibration mode of the unpressurized shell,
also known as the breathing mode (correspondingly, ω0 = 2π/T0 is the breathing frequency) and
readily derived as

T0 = 2π
ω0

=
√

2(1 − ν)ρ
E

πR. (2.16)

3. Selected results for buckling under uniform pressure relevant to dynamic
buckling

As background for the dynamic buckling, we present a brief overview of results for the buckling
of a spherical shell subject to a quasi-statically applied uniform inward pressure. Figure 1 reminds
the reader of the axisymmetric buckling of a complete spherical shell under spatially uniform
external pressure, presented here based on our formulation in §2 and using the current notation.
In each graph, the vertical axis displays the ratio of the pressure to the classical critical buckling
pressure, pC, of the perfect shell from the linearized analysis. The horizontal axis in figure 1a is
the inward deflection at the pole divided by the shell thickness h, while the horizontal axis in
figure 1b is the volume decrease normalized by the volume decrease in the perfect shell at the
classical buckling pressure, �VC. The results based on moderate rotation theory in figure 1 agree
closely with results computed independently using finite-element modelling in [1]. The classical
values are [1]

pC = 2E(h/R)2√
3(1 − ν2)

and �VC = 4π (1 − ν)R2h√
3(1 − ν2)

. (3.1)

Both graphs display the static equilibrium states of imperfect shells with the imperfections
indicated. The upper curve for the smallest imperfection, δ/h = 1/640, is a close approximation
to the behaviour of the perfect shell. Under the slow quasi-static increase in the controlled (dead)
pressure, the buckling pressures (the maximum pressures) are indicated by small black dots. At
these limit points (called folds or saddle-node bifurcations in dynamics), the imperfect shell in
a noise-free environment will jump dynamically (snap buckle) to a collapsed state outside the
range of this theory.

As the load increases slowly towards these limit points, a shell is in a more and more precarious
meta-stable state protected by a diminishing energy barrier against small disturbances (e.g. noise)
typically present in a physical experiment. The magnitude of this barrier Ebarrier of a given shell
at a prescribed (fixed) pressure p can be identified as the ‘triangular-shaped’ area on the plot
of p(�V) in figure 1b. This area is simply the difference of the energy of the shell/loading system
between the unstable buckled state on the falling segment of the curve (a dynamicist’s saddle) and
the stable unbuckled state on the rising segment (a dynamicist’s node). This area is the difference
in the strain energy of the shell in the two states less the work p�V that would be performed by
the external pressure.
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Energy barriers have been accurately calculated in [6,13] for perfect and imperfect spherical
shells under both (dead) controlled pressure and (rigid) controlled volume loading conditions.
The barrier for prescribed pressure has been recomputed and presented in figure 2 using the
same imperfection amplitudes employed in figure 1. For prescribed pressure, the quasi-static
system energy is ψ = SE − p�V. The results shown in figure 2 for various levels of imperfection
are independent of R/h, to a very good approximation for thin shells with R/h ≥ 50. The energy
barrier vanishes at the buckling pressure and remains very small for pressures or volume changes
somewhat below the buckling value. At pressures well below the buckling value, the energy
barrier increases dramatically and becomes relatively insensitive to the imperfection level. The

energy barrier in figure 2 is normalized by 1
2 pC�VCC h/R where C = √

3/
[
(1 − ν)

√
1 − ν2

]
. Note

that 1
2 pC�VC is the strain energy in the perfect shell at the classical buckling pressure. It follows

from figure 2 that, because of the factor Ch/R, the energy barrier is a very small fraction of the
energy stored in a thin shell (or, equivalently, of the work done on the shell by the pressure).
Moreover, the ratio of the energy barrier to the stored energy decreases for thinner shells directly
in proportion to h/R. This is due to the fact that the deformation in the buckled state is localized
at the pole in the form of a dimple whose size scales with

√
Rh and thus decreases in size relative

to the shell itself as h/R diminishes, as will be discussed more fully later. The implication of this
will be discussed later with regard to dynamic buckling under step loading.

In the limit for very thin shells, h/R → 0, the energy barriers for prescribed pressure and
prescribed volume change are the same. The barrier in the case of prescribed volume change
does depend somewhat on h/R, as discussed in [11].

We conclude this section a few additional results relevant to dynamic buckling. The vibration
frequency of the breathing mode of the perfect shell (δ/h = 0) undergoing small spherically
symmetric oscillations (w′(θ ) = 0, u(θ ) = 0) and subject to no applied pressure introduced earlier
in (2.8) is (equivalent to (2.16))

ω0 =
√

2E
(1 − ν)ρ

1
R

. (3.2)

The buckling mode of the perfect shell associated with the lowest eigenvalue of the classical
buckling problem, pC, is also an important reference mode. The lowest vibration frequency of the
perfect shell vanishes at pC and the associated mode is the classical buckling mode. The normal
deflection of the classical mode can be expressed in terms of a Legendre polynomial—explicit
expressions are given in [2,14].

The spectrum of frequencies of the modes linearized about applied pressures below pC is also
revealing and relevant to the understanding of dynamic buckling. An illustration is presented
in figure 3 which shows a selection of normalized complex frequencies, ω/ω0, and associated
modes for a shell with imperfection amplitude, δ/h = 1/4, and subject to pressure p = 0.512pC.
Note from figure 1 that there are two equilibrium solutions associated with p = 0.512pC, one
the stable unbuckled state (written here as ‘node’) where the pole deflection is approximately
w0 = −0.4h and the other the unstable equilibrium point at the saddle point of the system
energy (written as ‘saddle’) where the pole deflection is approximately w0 = −1.1h. The results
in figure 3 are obtained by linearizing the equations about these two equilibrium solutions. The
time dependence of the linearized solution has the form eωt, where ω is the complex frequency
for the respective mode. Note that with normalization used in figure 3a, the reference breathing
mode for the perfect unpressured shell has ω/ω0 = ±i.

The spectrum of frequencies in the two states at p = 0.512pC are plotted in figure 3a and two of
the most important associated modes shapes for each state are plotted in figure 3b. As the shell has
an imperfection, there is no strictly spherically symmetric motion. However, the mode identified
as the breathing mode in the unbuckled state has frequency ω/ω0 nearly equal to ± i (pair of
black dots in figure 3a identified by A). The associated normal deflection of mode A, plotted in the
upper half of figure 3b, deviates from the uniform normal deflection of the breathing mode of the
perfect shell due to the imperfection. If one tracks this ‘breathing’ mode through the equilibrium
solutions to the buckled state at p = 0.512pC, one finds that the normalized frequencies hardly
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change from ± i (pair of black dots labelled D in the saddle spectrum), and the associated mode
has even more distinct θ -variations associated with the non-uniformity of the buckled state about
which the linearized solution has been obtained. Next, we focus on the lowest vibration frequency
of the unbuckled shell at p = 0.512pC for the mode identified as the ‘buckling’ mode, which, as
seen by the second set of dots labelled C in figure 3a, has ω/ω0 ∼=±0.35i. The normal deflection
of the associated mode plotted in figure 3b is very similar to that of the classical buckling mode.
Tracking this mode to the unstable buckled state at p = 0.512pC leads to the ‘buckling mode’ with
ω/ω0 ∼= ±0.34 in figure 3a (labelled B) corresponding to exponential growth/decay. An important
feature regarding the buckling mode shape is that the undulations have localized to the polar
region in the form of a dimple.

4. Buckling under step loading with spatially uniform pressure
As noted, attention in this paper is limited to the response of spherical shells under pressure
loads that are spatially uniform. In subsequent sections, we will consider dynamic buckling under
time-varying spatially uniform pressure, p(t), in which the shell starts at rest in an unpressured
state. From the stationary starting state, the pressure is ramped up rapidly and then held constant
at its end value, which we also call p (without argument t) in our discussions. We refer to this
loading as step loading. For the limit in which ramping is instantaneous, we use the terminology
‘instantaneous step loading’.

Figure 4 shows the dynamic response of several quantities of interest for a step-loaded
imperfect shell with δ/h = 0.25 such that its quasi-static buckling pressure is pS(δ) = 0.57pC. The
pressure is ramped up rapidly from 0 at t/T0 = 1 to p = 0.512pC at t/T0 = 1.25 (about 10% below
the static buckling pressure) and held at 0.512pC for t/T0> 1.25. The plots in figure 4a show the
time variation of the work done by the pressure, Wp/2πD, the strain energy in the shell, SE/2πD
and the kinetic energy, KE/2πD. In the simulation run for figure 4, the time step size�t is chosen
sufficiently small such that the energy balance, (SE + KE − Wp)/2πD = 0, is satisfied to a high
degree of accuracy (see §5 for a detailed discussion of damping).

The lower plots in figure 4b show the prescribed time variation for the pressure and the
variation of the volume change, �V/�VC, and the pole deflection, w0/h. Note that for seven
cycles, the strain energy, work done by the pressure and the volume change are nearly sinusoidal
with period T0. During these cycles, the kinetic energy has a period T0/2 as is typical for vibratory
systems. Prior to t/T0 ∼= 7, the motion is dominantly a spherical symmetric ‘breathing’ oscillation
with (w′, u) = 0. However, from the beginning, the deflection at the pole responds differently
from most of the shell and, for this example, starting at roughly t/T0 ∼= 7 conditions at the pole
give rise to localized snapping into a dimple buckle. In all cases in this paper, an inward pole
deflection exceeding three or four times the thickness results in buckling of the spherical shell.
Once the pole deflection reaches this magnitude, the shell cannot resist dynamic collapse. The
buckling behaviour is brought out more clearly in figure 5 which displays two representations of
the normal deflection of the shell and one representation of the in-plane displacement as functions
of both position θ and time. By t/T0 = 8, it is evident that the deflection has taken the form
of a dimple localized at the pole surrounded by spatial undulations decaying away from the
pole. The amplitude of the dimple at the pole doubles between t/T0 = 8 and t/T0 = 9. Under the
fixed pressure, the dimple grows unabated leading to complete collapse of the shell. The in-plane
displacement is roughly two orders of magnitude smaller than the normal deflection, which is
typical for spherical shell buckling.

Two aspects of the dynamic process stand out from figures 4 and 5: the significant delay in the
formation of a buckle until about six or seven overall oscillations of the shell in this particular
case, and the localization of the buckle at the pole as it develops. Further insight into the delay
in buckling will emerge when results are presented shortly for the responses of the shell to a full
range of step pressures. The localization helps to explain why the various energy variations of
figure 4 are very large compared to the energy barrier to buckling, and it will be useful at this point
to highlight these energy differences. Note that for the example in figure 4, the cyclic variations in
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the strain energy and kinetic of the shell prior to buckling are SE/2πD ∼= 5 and KE/2πD ∼= 1. At a
pressure p/pC = 0.512, the energy barrier separating the static unbuckled and buckled states for an
imperfect shell with δ/h = 0.25 can be obtained from figure 2 as EBarrier/[ 1

2 pC�VCCh/R] ∼= 0.00436.
The conversion between the two normalization factors in these dimensionless energy ratios is

1
2

pC�VC
Ch
R

= 8
√

3√
1 − ν2

h
R

(2πD). (4.1)

For the shell with R/h = 100 and ν= 0.3, the conversion factor is 8
√

3h/[(1 − ν2)R] = 0.145 and
thus Ebarrier/2πD ∼= 0.000633. The energy barrier is a tiny fraction of the energy variations taking
place in the shell. Apart from one aspect mentioned later related to the level of imperfection,
the barrier has essentially no quantitative relevance to the uniform pressure step loading because
only a small region of the shell near the pole participates in the buckling process. Most of the shell
undergoes breathing motion with (w′, u) ∼= 0 which accounts for nearly all of the energy variations
seen in figure 4. The coupling between the breathing motion and the emerging dimple buckle at
the pole requires seven cycles before buckling occurs.

The dynamic responses at the pole of an imperfect shell with δ/h = 0.1 and subject to various
levels of step loading is shown in figure 6a revealing whether buckling takes place or not. The
companion plot in figure 6b, perhaps the most important figure in this paper, summarizes the
dynamic buckling behaviour under step loading over the range of imperfections from δ/h = 0
to δ/h = 0.6. We systematically ran a sequence of simulations for a range of amplitudes δ (from
h/640 to 0.6h) and a range of rapid uniform pressure ramps from 0 up to a final pressure p. Each
dot in figure 6b corresponds to one simulation: a dot at (δ, p) means that a simulation was run
with pressure increasing from 0 to p between t/T0 = 1 and 1.5 and then held constant up to time
t/T0 = 26. If the pole deflection dropped below − 4h at a time tb/T0 before the end time, we
record the simulation as ‘buckled’, colouring the dot red and indicate the delay (tb − 1.5)/T0
in the contours. Otherwise, the dot is coloured green, indicating that the simulation did not
show buckling. Figure 6a shows time profiles of the pole deflection w0(t) for a sequence of
simulations for a fixed imperfection amplitude δ/h = 0.1. Time profiles in green colour did not
buckle before t/T0 = 26, those in dark red did buckle. The transparent surface shows the static
saddle equilibrium value for the pole deflection (with a small part of the node equilibrium surface
close to the fold value pS = 0.74pC). Blue ellipses indicate where the time profiles cross this saddle
surface. All time profiles that cross the saddle surface wound up buckling.

Figure 6 permits two observations. First, there is not a clear-cut buckling threshold for step
loading. In figure 6a, a ramp up to a final pressure of 0.57pC leads to buckling, while a ramp
up to a somewhat larger final pressure of 0.61pC does not give rise to buckling. Second, for
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imperfections that are not too small (for δ/h ≥ 0.15), the difference between the static buckling
pressure and the lowest step pressure causing buckling is uniformly small (about 0.05pC), while
for small imperfections (e.g. δ/h< 0.15), the difference is significantly larger, with reductions up
to 0.3pC (when δ/h ∼= 0). Especially for shells with small imperfections, the static buckling pressure is not
an accurate estimate of the buckling pressure for a step pressure loading.

This finding is at odds with the dynamic buckling predictions for step loading based on 1 d.f.
models analysed in [15,16]. These authors considered two types of imperfection-sensitive, 1 d.f.
models: one with unstable symmetric bifurcation behaviour (with a cubic nonlinearity) and the
other with asymmetric bifurcation behaviour (with a quadratic nonlinearity). In each case, for
every level of imperfection, it was possible to relate the instantaneous step buckling load, λD
(generalizing pD), to the static buckling load, λS (generalizing pS), and the static buckling load of
the perfect model, λC (generalizing pC). For the symmetric model, this relation is

λD

λS
= 1√

2

(
λC − λD

λC − λS

)3/2
, (4.2)

while for the asymmetric model, it is

λD

λS
= 3

4

(
λC − λD

λC − λS

)2
. (4.3)

The relations between the step buckling load and the static buckling load from the 1 d.f. models
discussed above are in complete agreement with asymptotic results obtained by Thompson [17]
derived from a general (n-d.f.) formulation for discrete elastic systems for which the perfect
system has a unique buckling mode. The analysis is purely quasi-static and asymptotic for
small imperfections, but did compare well with step buckling experiments on structural frames
of the type built by Roorda [18]. For both unstable symmetric and asymmetric bifurcations,
Thompson determined: (i) the relation between the static buckling load λS (the max load) and
the imperfection and (ii) the relation between the ‘astatic load’, λN , and the imperfection. For a
given imperfection, the astatic load is that load λ at which the work done by the fixed λ equals the
strain energy in the unstable buckled state. The asymptotic results for the astatic load coincide
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with asymptotic limits of (4.2) and (4.3) for small imperfections if λN is identified with λD. For
instantaneous step loading of the 1 d.f. models discussed above, it is straightforward to prove
that the astatic load λN must be a lower bound to the dynamic buckling load λD. The fact that
λN = λD for these models is due to the fact that, at the lowest step load for which the model
buckles, the model attains the static unstable buckled state, momentarily coming to rest, such that
the astatic condition is exactly satisfied.

Applied to our spherical shell, the astatic condition is easily visualized as shown in figure 7.
When the two areas, Area 1 and Area 2, on the pressure–volume plot in figure 7 are equal, the
astatic condition for pN is met, i.e. pN�VB = SEB with B denoting the unstable static buckled state.
At pressures below pN, the strain energy in state B exceeds pN�VB, and vice versa. Thus, if an
instantaneous step load occurred to a pressure lower than pN, the loading system would not be
able to provide enough work to reach the saddle point represented by B. Although we have not
proved that the astatic pressure, pN, is a lower bound to the instantaneous step buckling pressure,
it seems likely that this is the case. For pN to qualify as a strict lower bound (even an excessively
conservative one), one would have to establish that there are no other mountain passes associated
with other unidentified saddle equilibria. However, the detailed investigation of the thresholds
later in §6 indicates that escape occurs indeed near the saddle used in computing the energy
barrier presented in figure 2 and discussed further in connection with figure 7.

We have computed the normalized astatic pressure pN/pC as a function of the imperfection
amplitude for the shells considered in figure 1. We find that the astatic pressure is pN/pC ≈ 0.2
with almost no dependence on the imperfection amplitude for imperfections in the range
δ/h ≤ 0.6. Compared with the step buckling pressures in figure 6, the astatic pressure is
unrealistically low and of little predictive value, at least for the damping level associated with
the results in figure 6. Hoff & Bruce [19] made an early use of the astatic load in their study of
the buckling of shallow arches subject to step loading of a pressure distributed along its length.
The shallow arch is like the spherical shell in that it undergoes dramatic changes in deflection
when buckling occurs—so-called snap buckling. It differs in that the entire arch buckles while
the buckling deflections of the sphere are localized near the pole. In the one specific example
Hoff & Bruce considered, they found the dynamic step loading prediction agreed quite well
with the astatic pressure, both giving an estimate of the dynamic buckling pressure that was
about 20% below the static buckling pressure. This result is similar to what one might expect
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based on the 1 d.f. models discussed above and on similar models in the book on dynamic
stability [7].

The relation between the dynamic and static buckling loads for the spherical shell is at odds
with the corresponding relations for the simple 1 d.f. models in equations (4.2) and (4.3) as seen
in figure 8. For the shell, the largest reductions in the dynamic step buckling pressure relative
to the static buckling pressure occur for the shells with the smallest imperfections. By contrast,
the dynamic buckling load of the simple models is only slightly reduced from the static buckling
load when the imperfection is small. For the models, the largest relative reductions occur for the
largest imperfections, while for the spherical shell, the opposite is true.

The main factor at play in the different dynamic buckling behaviours of the simple models
and the spherical shell is associated with the interaction among the different modes activated
in the step-loaded shell. The initial response of the sphere is dominated by the oscillatory
motion of the breathing mode which absorbs most of the work done by the pressure. When
the step pressure is sufficiently large, the nonlinear coupling between the breathing mode and
the incipient dimple causes the dimple to grow and to snap buckle leading to full collapse
of the shell (under the prescribed pressure considered here). The simple 1 d.f. models discussed
earlier do not encompass modal interaction. Dating from the early work of Goodier & McIvor
[20] on the buckling of long cylindrical shells (effectively rings) under dynamic radial pressure,
there has been a large literature on the coupling of breathing and buckling modes, often leading
to a Mathieu equation governing the early stages of the coupling. The ring buckling problem
considered in [20] has this form, but it is not imperfection-sensitive and the nonlinearity is such
that snap buckling does not occur. Instead, in their problem, the nonlinear mode interaction gives
rise to a gradual amplification of the buckling mode.

Tamura & Babcock [21] carried out an early nonlinear mode interaction analysis for
step loading of a finite length, imperfect cylindrical shell under an axial step load. This
structure/loading combination is imperfection-sensitive. The oscillation of the axial compressive
stress (the breathing mode in this case) excited by the step load was treated approximately and
coupled to two interacting buckling modes. The authors analysed only one specific imperfect shell
for which the dynamic buckling load associated with an abrupt increase in the shell deflection was
found to be approximately 60% of the static buckling load. More recently, the dynamic buckling of
conical shells under step-loaded axial compression has been investigated [22]. This problem also
has features in common with the spherical shell problem in that the structure/loading system
is imperfection-sensitive and results in snap buckling once the buckling mode is sufficiently
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amplified. In plots of the ratio of the step buckling load to the static buckling load as a function of
the imperfection level, results [22] show a trend similar to that in figure 8 for the spherical shell. In
particular, they find that conical shells with small imperfections have ratios of dynamic to static
buckling as low as about 0.6 and that this ratio increases for larger imperfections, similar to the
trend in figure 8. The authors of [22] suggest that their numerical results apply to conditions where
damping is negligible, and they do not identify the cascade of buckling thresholds of figure 6. We
will return to these issues in the next section.

The plots of the energy barrier for the spherical shell in figure 2 also shed some light on the
trend for the dynamic buckling pressure for the spherical shell in figure 8. Note that for small
imperfections, the energy barrier remains very small for values of p as low as 60–70% of the static
buckling load, whereas for larger imperfections, the energy barrier remains small for smaller
reductions in p relative to the static buckling load. This is consistent with figure 8: a relatively
perfect shell is more susceptible to buckling at pressures within a given fraction of its static
buckling load than more imperfect shells loaded to the same fraction of their static buckling load.

When snap buckling requires several oscillations of the breathing mode of the shell, as
illustrated in figures 4–6, it is obvious that damping effects will influence the dynamic buckling
load. Damping is present for these results associated with the numerical algorithm used in solving
the dynamic equations. Section 5 which follows discusses some of the issues related to this
algorithm and the role of damping in dynamic buckling.

5. Balance between damping and nonlinear coupling between modes
Even though the small strain–moderate rotation theory does not include any dissipation, some
damping is introduced by the numerical BDF-2 time stepper (2.11) for the simulation. As the
spectrum of equilibria in figure 3 suggests, the introduction of damping is necessary to make
dynamic simulations numerically feasible. Without damping, small disturbances of equilibria will
lead to near quasi-periodic behaviour composed of oscillations with arbitrarily high frequencies,
where the range of frequencies is determined by the resolution of the space discretization. The
importance of damping in regularizing the numerical analysis of dynamic structural systems
features prominently in modern treatments of the subject [12].

In particular, the introduction of damping has a strong effect on the long-time behaviour
of a conservative system such as (2.7)–(2.9). To provide a good estimate of this effect on
buckling thresholds, we recap briefly how much damping a time stepper based on the BDF-2
approximation introduces. We also illustrate this effect in figure 9.

(a) Damping at linear level
The amount of damping a numerical scheme introduces is well understood only for linear
systems. In this case, one may study the behaviour of the time stepper for each linear mode
separately, because the damping depends only on its frequency ω. The damping at frequency
ω is determined by inserting the numerical approximation (in our case, the BDF-2 (2.11)) into the
linear ODE ẏ = iωy.

The solution of ż = iωz (ω> 0) asymptotes to z(t) = exp(λBDFt), where

λBDF = iω + d + i�ω = 1
�t

log
2 + √

1 + 2iω�t

3 − 2iω�t
. (5.1)

Both the numerical growth rate d and frequency shift �ω are negative for time step size �t> 0
(going to zero for �t → 0) such that the time stepper introduces artificial numerical damping
− d(ω, �t) and a slow-down per period −�ω/(2π ) for a mode with frequency ω. The damping
− d(ω, �t) can be approximated over the range of frequencies shown in the spectra in figure 3 (to
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in colour.)

roughly twice the breathing frequency) by expanding the real part of (5.1) in ω= 0

− d(ω,�t) = ω4�3
t

4 + 10ω2�2
t

, (5.2)

an approximate quartic in the frequency ω. Figure 9 shows the effect and the amount of
damping for two different step sizes. The smaller stepsize, �t = 0.022T0, was used for the
single example trajectories shown in figures 4 and 5, the larger stepsize, �t = 0.087T0 (four
times the smaller stepsize) was used for the parameter study in figure 6. Otherwise, all
parameters are identical to figures 3–5. Figure 9a shows that the numerical scheme introduces
frequency-dependent damping, suppressing high-frequency oscillations more strongly, according
to the approximately quartic frequency–damping relationship (5.2). Thus, a single small-
amplitude breathing oscillation around the stable equilibrium gets damped by less than 0.4%
for �t = 0.022T0 but by 13.6% for �t = 0.087T0 (in one unit of time by our scaling).

(b) Damping of shell motion after pressure ramp
Figure 9b(i) shows that the damping factors derived for small-amplitude breathing oscillations
carry over to the motion of the shell after the pressure ramp as in figure 4. The volume oscillations
are dominated by breathing oscillations and the decay rate of these larger scale breathing
oscillations matches the predictions from the linear approximation exp(λbdft) (dotted curves in
figure 9b(i)). The dashed curves show the loss of energy along the trajectory, which is also 16 times
higher for the large stepsize�t = 0.087T0. We also observe an additional loss of energy during the
rapid ramp-up of the pressure in the time period from T0 to 2T0, which is not directly predictable
from linear theory. However, this loss of energy is, consistently, also higher for the larger stepsize.

(c) Conclusion for calibration of damping
Real shells and other numerical discretizations may have damping with frequency dependence
different from the one shown in figure 9a and approximated by expansion (5.2). Figure 9 suggests
that in these cases, damping should be compared at the breathing frequency. In experiments,
the damping of the breathing vibration can be measured by applying small pressure load ramps
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far from buckling pressure. According to figure 9, this linear damping carries over to the motion
with larger amplitude. Damping in structures has many possible sources, including air resistance,
dissipation at joints and boundaries and material damping of various kinds. While the damping
generated by the numerical discretization used in the present study may not represent all the
physical sources of damping, it is clear from figure 9 and equation (5.1) that the damping in
results from figures 4–6 is comparable to damping in other numerical schemes and empirical data
(after calibration at the breathing frequency).

Figure 9b(ii), showing the motion of the pole deflection for both stepsizes (pole deflection of
the saddle is shown for reference), demonstrates that the larger damping for the larger stepsize
causes the shell to avoid buckling (while it does buckle for lower damping at �t = 0.0022T0 as
shown also in figures 4 and 5). We expect this to hold in general—lower damping implies lower
buckling threshold. One argument for this is given in the next section.

6. A cascade of buckling thresholds for non-zero damping
For the nonlinear dynamicist, the study in this paper raises a number of interesting fundamental
questions, and points to their relevance in practical applications. To examine some of the issues,
let us focus on a conservative autonomous system, as is our spherical shell after the pressure
has been step-loaded to a fixed value. Additionally, assume that there is only a single potential
energy saddle and barrier-height VS that is preventing escape to a ‘remote’ region of phase space
(such a single saddle is not rigorously established for our shell buckling). This might be thought
of as a well-understood problem, but this is not the case, especially because our system has many
degrees of freedom: strictly an infinite number, but we will treat the shell for simplicity as if it has
a large number of mechanical degrees of freedom with a phase space of N dimensions (twice the
d.f. number). Within these restrictions, there is a lower bound for both damped and undamped
systems because a trajectory starting with total (kinetic plus potential) energy, E, cannot escape
if E<VS. The question that remains is what happens if E >VS and the situation is remarkably
obscure. Even in the extreme case of no damping and with the elapsed time going to infinity,
there is no guaranteed escape due to a number of complex blocking actions. These are still being
explored in the multi-body problems of astronomy and chemical kinetics.

The systematic parameter study in figure 6 shows that buckling under step loading can occur
in ranges of pressures that are far below the static buckling pressure ps, but also far above lower
bounds given by energy barrier. For some imperfection levels δ, multiple buckling thresholds
are visible. This section investigates the thresholds in more detail, using the dynamic buckling
pressure thresholds for δ= h/4 as an example.

(a) Centre-stable manifold of the saddle
Considering the spectrum of the linearization in the saddle at δ= h/4 and p/pC = 0.512 in figure 3,
we see that the saddle has one stable eigenvalue and one unstable eigenvalue. Their respective
eigenvectors correspond to directions in which trajectories exponentially converge to or diverge
from the saddle. Without damping, the saddle appears as linearly neutral in all other directions:
but with a little non-zero damping, these other directions would be stable modes with trajectories
converging to the saddle. This implies that close to the saddle, the set of all initial conditions
that do not diverge rapidly from the saddle forms a hypersurface, splitting the phase space
near the saddle into two subsets (and the boundary hypersurface). One subset contains those
initial conditions that buckle immediately. The other subset contains those initial conditions for
which trajectories do not buckle immediately but instead oscillate around the node and either
ultimately buckle or possibly converge to the nearby node if damping is present. The boundary
is the set of all initial conditions whose difference to the saddle is spanned by the eigenvectors
corresponding to the stable and neutral directions (directions that are neutral without damping
become weakly stable with damping). Mathematically, this boundary set is called the centre-
stable manifold (CSM). Close to the saddle, this CSM is approximately a hyperplane, a linear
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centre manifold.
dimension N – 2centre-stable manifold.

dimension N – 1

buckling
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under light
damping

saddle

node

Figure 10. Geometric arrangement of thresholds and buckling trajectories in the full phase space (including position and
velocities). (Online version in colour.)

space of co-dimension 1, that is, of dimension one less than the entire space (N − 1 in our
simplified argument). Further away from the saddle, the CSM is no longer a hyperplane but a
(differentiable) curved N − 1-dimensional hypersurface. It is known that CSMs of saddles can
fold back on themselves dramatically, even in low-dimensional systems, allowing the system to
become chaotic [23,24]. The CSM of the saddle depends on the parameter p (as does the location
of the saddle itself).

The sketch in figure 10 shows the geometry that we have been discussing in a heuristic three-
dimensional projection from a notional N-dimensional phase space. The base plane shows the
well-known two-dimensional phase portrait of a 1 d.f. system generated as a saddle and a node
approach one another to give a saddle-node fold (or limit point). For easy visualization, the
trajectory heading towards the node in this plane has been given a much higher damping level
than we are currently discussing. The single axis normal to the base plane has to represent all
the other phase dimensions. The first important subspace of this third axis is the CSM which is
illustrated as a green transparent upright surface (dimensionality, N – 1), containing the saddle
equilibrium and its intersection with the base plane (shown in yellow). This manifold acts as
a threshold for buckling, as we can see by following the three adjacent trajectories coloured
purple, red and blue all of which are heading towards the orange centre manifold of the saddle
equilibrium point (a subset of the transparent green CSM and discussed further below). As
shown by the vertical dashed lines, the blue trajectory lies behind the green manifold, and
eventually diverges to the right implying the buckling of the shell. Meanwhile, the purple
trajectory lies in front of the green manifold, and ends up turning towards the unbuckled node
equilibrium.

Somewhere between these two typical trajectories lies the special red trajectory which lies
precisely in the green CSM. Initial conditions behind the surface generate immediate buckling,
while those in front do not. However, the purple trajectory will make another round trip around
the node. As the (green) CSM folds strongly further as it extends away from the saddle, after its
next round trip, the purple trajectory may lie behind those further folds of the green manifold,
leading to multiple thresholds.

The final divergence of the trajectories is intimately related to the second important subspace,
the so-called centre manifold drawn in orange. This centre manifold is a subset of the green
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CSM, but has been expanded in the three-dimensional projection of figure 10. When there is no
damping, this multi-dimensional manifold (dimension N–2) contains a variety of periodic and
quasi-periodic orbits. On the introduction of damping, the orbits inside this manifold drift slowly
downwards towards the saddle equilibrium point. All trajectories close to the threshold (the green
CSM) are caught up in these circling motions before they are thrown off in opposing directions,
including the blue, red and purple examples in the sketch.

As dynamic simulations create a small amount of damping, a simple criterion for the different
sets is the long-time limit of the pole deflection w0(t). Let us denote by w0,s(p) the value of the
pole deflection w0 of the saddle equilibrium at pressure p (transparent surface in figure 6a). Then
(noting the pole deflections of interest are negative), a trajectory after pressure ramp to p

(1) buckles, if w0(t)<w0,s(p) − h for large times t,
(2) avoids buckling, if w0(t) − w0,s(p) converges to a positive value for large times t (namely

w0,n(p) − w0,s(p), where w0,n(p) is the pole deflection of the unbuckled stable equilibrium
at pressure p),

(3) is on the threshold (in the CSM), if w0(t) − w0,s(p) goes to zero for large times t.

With the small (and physically necessary) damping created by the dynamic simulations, the
convergence to w0,s(p) will be slow for threshold trajectories (being slower for smaller damping).
After an initial exponential approach to the CSM, damping will introduce a drift to the saddle
equilibrium, which is the point of lowest energy in its own CSM. For zero damping, the CSM
contains periodic and quasi-periodic orbits. These orbits are all themselves of saddle type (thus
unstable), and, hence, not visible in dynamic simulations.

(b) Thresholds as connections to the centre-stable set of the saddle
Despite the slow convergence, the above distinction provides a simple criterion for establishing
thresholds more accurately than shown in figure 6. A pressure ramp to low p leads to a trajectory
of the non-buckling type, while for ramps to p = ps, the trajectory will buckle. Thus, for fixed end
time tE, we may apply a bisection in ramp pressures p to find a pressure p that leads to a trajectory
that has w0(tE) = w0,s(p).

Figure 11 shows the bracketing trajectories for the result of the bisection for tE = 4T0 (blue
and red), and tE = 6T0 (green and purple), for imperfection δ= h/4 and time step �t = 0.087T0.
As figure 11a(i) shows, the pole deflection w0(t) performs oscillations around the saddle value
w0,s(p) (grey horizontal line) for considerable time before tE (larger than T0). During this time, the
trajectory is close to the saddle (as figure 11a(ii) shows). Hence, we can draw a first conclusion
that the saddle computed for figures 1 and 3 indeed plays a key role in the buckling. However,
the buckling threshold is not given by a trajectory that connects to the saddle, but rather a
trajectory that connects into the CSM of the saddle (into a small amplitude periodic or quasi-
periodic motion near the saddle). Figure 11b,c shows the threshold-bracketing trajectories in their
projection to the (w0(t), ẇ0(t)) plane. This projection also shows how the threshold trajectories
make a small number of excursions where w0(t) is between w0,s(p) and 0 before reaching the CSM.
The difference between the two bracketing pairs is the time it takes before reaching the CSM. The
red/blue pair brackets the threshold trajectory reaching the CSM before 4T0 (during the initial
time up to 2.5T0), while the green/purple pair reaches the CSM only after time 4.5T0. As the
threshold pressures used in figure 11 are close to each other, the threshold trajectory for tE = 6T0
is nearly identical to the threshold trajectory for tE = 4T0. All trajectories shown in figure 11
only diverge from each other while spending time near the saddle as small oscillations that are
part of the CSM: see the near-periodic orbits in the projected phase portraits in figure 11b,c, and
how previously nearly identical trajectories diverge from these small oscillations. The diverging
trajectories follow opposite directions in the unstable dimension (the outset [23]) of the small
amplitude oscillation in the centre manifold. This can be seen by comparing the end pieces of the
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Figure 11. (a(i)) Time profiles w0(t) for four different pressure ramps, 2 near p= 0.5104pC (green, purple) and 2 near
p= 0.5112pC (blue, red). (a(ii)) distance of same trajectories from saddle as function of time. (b,c) The same trajectories in
(w0(t), ẇ0(t)) plane. Other parameters: δ/h= 0.25, time stepsize�t = 0.087T0. (Online version in colour.)

red versus the blue (left (w0(t), ẇ0(t)) projection in figure 11b), or green versus purple trajectories
(right (w0(t), ẇ0(t)) projection in figure 11c).

(c) Time ordering of buckling threshold trajectories and pressures
From these observations, we expect that there is a discrete sequence of buckling thresholds when
considering a range of step load pressures p. The sequence is ordered by the time it takes for the
threshold trajectory to get close to the CSM of the saddle. This order is not necessarily the same
order as in the pressures p. For example, between the two thresholds pressures shown in figure 11,
there may be more threshold pressures, for which the trajectory reaches the passive set much later
in time (especially for small damping).

Thresholds that do not take a long time (such as the threshold given by the blue and purple
trajectories in figure 11 for tE = 4T0) depend only moderately on the damping (that is, they
have a well-defined limit for zero damping). However, the number of thresholds increases as
the damping goes to zero, as additional thresholds may occur later and later in time. A rough
estimate of how many additional thresholds to expect for a particular damping level can be
obtained by observing the amplitude and energy level of the small oscillations in the CSM to
which first threshold trajectories converge. In figure 11, the small amplitude oscillations for the
second (green/purple) pair near the saddle are already much smaller than the oscillations of the
first (red/blue) pair. Thus, we expect at most one more threshold occurring after the two observed
in figure 11 (in time ordering).

7. Conclusion
Accurate calculations for the buckling of elastic spherical shells under step pressure loading,
based on small strain/moderate rotation theory, have revealed nonlinear features of the dynamic
buckling of imperfection-sensitive structures that seem not to have emerged in earlier studies.
The most notable is the fact that there is not necessarily a clear threshold between pressure
levels that cause buckling and those that do not result in buckling. Instead, particularly for
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a shell with a relatively small imperfection, there exists a cascade of buckling thresholds. The
cascade of thresholds is sensitive to structural damping. For the spherical shell, and probably for
other imperfection-sensitive shell structures as well, it appears that, the smaller the damping, the
smaller the lowest pressure at which buckling occurs. For the spherical shells with the realistic
damping levels employed in this paper, the lowest step buckling pressures were reduced by
about 30% below the corresponding static buckling pressures for shells with relatively small
imperfections (cf. figure 8). For shells with larger imperfections, which buckle statically below
about 60% of the classical buckling pressure of the perfect shell, the lowest step buckling pressures
are reduced by less than 10% below the corresponding static buckling pressures.

These dynamic step buckling trends for the spherical shell differ significantly from trends
predicted using simple 1 d.f. imperfection-sensitive models. The simple models suggest that
nearly perfect structures will buckle under step loads only slightly below the corresponding
static buckling load, and that the ratio of the step buckling load to the corresponding static
load increases as the imperfection increases. We have also found that the lower bound (the astatic
pressure) on step buckling pressure for the spherical shell based on overcoming the energy barrier
associated with the saddle of the energy landscape lies far below the computed step buckling
pressure, especially for shells with small imperfections. By contrast, the lowest step buckling load
of the simple 1 d.f. models coincides with the astatic load. Since the damping in our dynamic
simulations was non-zero and the computed lowest step buckling pressure of the spherical shells
depends on damping, it remains an open question as to whether shells with no damping might
ultimately after long periods of dynamic oscillation buckle at pressures just above the astatic
pressure.

The oscillatory interaction between the so-called breathing mode and the modes contributing
to buckling, first investigated for ring buckling in [20], appears to be ubiquitous. In some
of the buckling literature, this type of interaction is referred to as ‘parametric resonance’ [7].
For spherical shells buckling at the lowest step pressures, this interaction amplifies the modes
contributing to buckling interactions to the point where snap buckling takes over. At step
pressures sufficiently above the lowest buckling threshold, snap buckling can occur almost
immediately without the preliminary oscillatory interactions.

Because the lowest buckling threshold depends strongly on damping, the damping in the
simulations should be calibrated to the particular experimental situation studied. Our simulations
suggest that most energy loss occurs at the breathing frequency such that matching the damping
to observations at the breathing frequency is more important than the particular damping
model. The lesson from the present study is that damping is an important consideration in the
determination of the lowest step buckling threshold, because lowering the damping level adds
additional thresholds that cause buckling with larger delay after the pressure step.
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