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Infinite circular cylindrical elastic inclusions, or rods, embedded in an unbounded elastic matrix display
various modes of instability when they undergo sufficiently large expansion due to either swelling
or volumetric growth. In this letter two modes of instability are examined: sinusoidal axisymmetric
modes and sinusoidal bending modes. The rod and the matrix are neo-Hookean materials, and the full
range of the modulus ratio of rod to matrix is considered. In the primary case examined, deformation
is driven by an isotropic volumetric expansion, or transformation, of the rod. A three-dimensional
bifurcation analysis of the rod constrained by the matrix reveals the onset of the critical instability
mode as dependent on the modulus ratio. Comparisons with related results are discussed, including
the compressive buckling of a stiff rod in a compliant matrix and the other limit when the modulus
of the rod is very small compared to that of the matrix and behaves effectively as a fluid exerting

pressure on the wall of the matrix cavity.!

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The buckling of rods and fibers supported by compliant matri-
ces has long been of interest in many applications particularly for
fiber reinforced composites and more recently for fine filament
wires embedded in compressed soft elastomeric materials (see
references in [1,2]). Other recent studies have focused on shapes
that develop when growing fibrils and tendrils are constrained by
their surrounding medium [3]. In this letter results are presented
for axisymmetric and bending instabilities that occur when a
cylindrical rod embedded in an unbounded elastic matrix under-
goes isotropic growth, equivalent to isotropic swelling. This form
of growth is called volumetric growth and is one of the simplest
of the many possibilities discussed in the recently published book
on the mechanics of growth [4].

The present work focusses on the basic mechanics of the
instability of compressed elastic rods surround by, and bonded
to, an elastic matrix. The rod and matrix are each taken to be
incompressible neo-Hookean materials. A bifurcation analysis is
performed revealing the competition between axisymmetric in-
stabilities and bending-like instabilities. The analysis is carried
out within an exact three-dimensional, finite strain framework.
The full range of rod to matrix moduli ratios is analyzed, from stiff
rods in compliant matrices to very compliant rod-like inclusions
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in a stiff matrix. The results presented here can serve as a bench-
mark for more approximate analyses such as those based on one
dimensional beam-spring models widely used to represent stiff
rods in compliant matrices. Systems where the rod and matrix
moduli are comparable are also considered and contact is made
with earlier work related to each of the two moduli ratio limits.

2. The bifurcation problem
2.1. Pre-bifurcation solution

For brevity the cylindrical inclusion is referred to as the ‘rod’
and the surrounding unbounded elastic medium to which it is
bonded will be called the ‘matrix’. The swelling, or growth, of the
rod is taken to be an isotropic expansion. The additional defor-
mation will be modeled as being an incompressible neo-Hookean
elastic solid with shear moduli in the rod and matrix denoted
by ugp and py respectively. With (r, 8, z) denoting cylindrical
coordinates of material points in the undeformed state, the radius
of the undeformed rod prior to growth is taken to be ry. The
rod/matrix combination is infinite in the z-direction and extends
to infinity in the radial direction. The pre-bifurcation deformation
and stresses are driven by the isotropic expansive transformation
in the rod material. This expansion is characterized by the stretch
Ag which would occur stress-free in the material if it were uncon-
strained. The constraint of the matrix generates the stresses and
strains in the rod and in the matrix in the pre-bifurcation state.

In the pre-bifurcation state the principal stretches are ori-
ented in the radial, circumferential and axial directions and are
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denoted by (A;, A9, Az). For an incompressible neo-Hookean ma-
terial, the strain energy density is given in terms of the principal
(stress-producing, or elastic) stretches by

1
W=3u (32 + ho® + 4,2 — 3) subject to A;rgh, = 1 (1)

where py pertains to the rod and py to the matrix. The true,
Cauchy, stresses are given by

o = i’ —q, 09 = phe’ — q. 0p = pr’ —q 2)

and q is not determined by the constitutive relation but by the
equilibrium conditions.

The solution to the pre-bifurcation problem is a classic fi-
nite strain elasticity problem and readily obtained. The elastic
stretches and stresses in the rod are uniform. The unbounded
matrix constrains the rod in the axial direction such that there is
no net stretch and, consequently, the axial elastic stretch in the
rod is A; = 1/A¢. Circular symmetry and the incompressibility
condition on the elastic stretches give the remaining two stress-
producing stretches in the rod as A, = Ay = A¢'/2 The radius of
the cylindrical rod in the pre-bifurcation state is Ry = A¢>/?rp. In
the matrix, the pre-bifurcation solution has A, = 1 and Ay =
1/A;. Incompressibility and circular symmetry dictate that the
radial position of a material point at r in the undeformed state
will be R = /Rg? + (r?2 — r?) in the deformed state. Thus, the
distribution of stretches in the matrix can be expressed in terms
of the variable locating points in the undeformed state, r, or in
the pre-bifurcation state, R, as

o =1/h = R/r =14 (0 — 1ro?/r?
=1/y1— (1 -2 3)Re?/R2, (3)
Ro = A¢*?rg

The stresses in (2) are determined apart from the pressure-related
term q. The equation of radial equilibrium in the pre-bifurcation
state can be integrated from R = oo where o, = 0 to give

1 T
R)=—= In(14+T —— ¢ with
Ur() ZMM (+)+1+T
1-¢°
(R/RoP? — (1 — 16?)
From (2), the other two stress components in the matrix are
09 :Ur+ﬁ’»MU\-92 _lrz)» 0z :O'r+JU«M()\‘22 _)er) (5)

The radial stress at the rod/matrix interface is

1
or(Ro) = —Zpm {3In ¢ +1—2¢ 7} (6)

The uniform stresses in the rod satisfying continuity of traction
across the interface are

Or = 0y = —l,u,v, [311])\.(; +1— )\.573} ,
- (7
07 = _f’LLM {31[1A.G +1 —1673} + R ()\.572 - A—G)

2.2. Eigenvalue problem governing bifurcation

The problem for the critical condition governing the onset of
bifurcation can be formulated in several ways. For example, one
can work with variables dependent on the coordinates (r, 8, z)
identifying material points in the undeformed state, or one can
take the deformed state at bifurcation as reference with vari-
ables dependent on coordinates (R, 6, z). Here, the latter choice
has been made. Furthermore, one can work with the quadratic
bifurcation functional or one can work directly with differen-
tial equations which are generated by rendering the bifurcation

functional stationary. The different choices are illustrated in the
paper [5] on a basic problem involving a uniformly stressed block
of a single material. The approach used here, which is given in
Section 4, works directly with the partial differential equations
governing the bifurcation problem. As a check on our results we
have also employed a method based on the bifurcation functional.

The increments of the displacements and of g in the bifurca-
tion mode are denoted by (il,, iy, i1, q). The partial differential
equations governing the bifurcation mode and the associated
eigenvalue separate exactly into sinusoidal variations of the form

it; = U(R)cos mé sin Bz
= V(R) sin m# sin Bz 3
i1, = W(R) cos mé cos Bz @)

q = Q(R) cos m# sin iz

where m = 0 (with V = 0) generates axisymmetric modes and
m = 1 generates bending-like modes. The axial wavelength of the
mode is L = 2;r /8. When substituted into the partial differential
equations in Section 4, a set of ordinary differential equations
(odes) for (U, V, W, Q) is obtained. This set can be reduced to
a set of sixth first order linear odes (four first order odes for m =
0) with variable coefficients derived analytically from the pre-
bifurcation solution. The continuity conditions at the rod/matrix
interface, R = Ry, require continuity of the displacement in-
crements and the traction increments. Homogeneous boundary
conditions at R = 0 which depend on m are given in Section 4,
and (U, V, W, Q) must vanish as R — oo. The eigenvalue of the
system is the swelling, or growth, parameter Ag. The sixth order
system of odes (and fourth order system) is an exact reduction
of the eigenvalue problem. The search for the critical eigenvalue
for either m = 0 or m = 1 involves incrementing the value of A¢
and evaluating the eigenvalue criterion as discussed in Section 4.
Thus, at each evaluation step, the reference geometry is the pre-
bifurcation state given in Section 2.1. A numerical ode solver [G]
has been used to generate the solutions. The numerical results
are accurate to the values listed, which is generally 4 significant
places for the critical strains and stresses and 3 significant places
for the wavelengths,

3. Critical strains and stresses at the onset of instability and
associated modes

Figs. 1 and 2 provide an overview of the instability modes for
the entire range of the matrix/rod modulus ratio. The plot of the
engineering growth strain, &g = Ag — 1, at bifurcation for the
axisymmetric mode (m = 0) and bending mode (m = 1) reveals
that the lowest, or critical, bifurcation is the bending mode if
m/pr < 5 and the axisymmetric mode for py /g > 5. The
bifurcation growth strains plotted in Fig. 1 have been minimized
with respect to the wavelength for each of the two modes, and
those critical wavelengths are plotted in Fig. 2, normalized by
the radius of the rod at bifurcation, Ry = Ac>/2rg. Conversion of
results to the original undeformed geometry can be made using
the results in Section 2, and the stretches and stress in the rod
and matrix at bifurcation are given in terms of Ag by (3)-(7).
The numerical results used to plot Figs. 1 and 2 are presented
in Table 1.

If the rod and the matrix have the same shear moduli, the
critical growth strain, axial stress and wavelength are

ec = 1.741

Oy /g = 4.598
L/Ry = 0.421
gc = 1.326
/g = 3.869
L/Ry = 3.10

m =0 and

m=1for uy/ g =1
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Table 1
Values for the growth model.
m =0, um/1r Ac L/Ro m=1, um/pg Ac L/Ro
1 2741 0.421 1 2.326 3.10
15 2.382 0.466 2/3 2.086 3.56
2 2982 0.506 1/2 1.925 3.95
3 3.106 0.580 1/3 1.750 4.60
5 3.207 0.702 1/5 1.562 5.55
10 3.228 0.916 0.1 1375 7.12
20 3.160 1.19 0.05 1.248 9.00
50 3.037 1.58 0.02 1.144 12.2
100 2.965 1.86 0.01 1.095 15.2
1000 2.869 2,42 0.001 1.0251 29.7
10000 2.857 253 0.0001 1.00694 55.6
2 2770 231
10 3.338 1.09
100 3.343 1.13

These results involve growth strains and elastic strains which
are relatively deep into the finite strain range. Consequently,
the numerical values determined in (9), as well as for the other
results in Figs. 1 and 2 for uy/pg > 0.01, are dependent on the
fact that the constitutive model is neo-Hookean model. However,
one can expect similar qualitative trends for other elastomeric
models.

The separation between the two eigen-strains and stresses in
(9) is substantial with the bending mode being critical. It is worth
noting that the logarithmic scale used in Fig. 1 tends to mask the
separation between the eigen-states. This is true when /g
becomes large. For example, for wuy/ug = 50, the critical grow
strain and axial stress in the rod are both about 15% smaller for
the axisymmetric mode than the bending mode.

In analyzing the growth bifurcation problem, we have checked
that short wavelength sinusoidal interface wrinkles and creases
(scale-independent with arbitrarily short wavelengths) oriented
either parallel to the circumferential direction or the axial di-
rection do not occur prior to the modes two modes of interest
discussed above. Apart from the left end of the curve for the
axisymmetric mode (m = 0) in Fig. 1, all the bifurcation results
in Fig. 1 lie well below the onset of short wavelength interface
wrinkles. The left end of the curve for m = 0 at uy/ug = 0.7
is approximately the point where this curve intersects the con-
dition for interface wrinkles. Further discussion of the interface
instability bifurcations is given in Section 4.

We next discuss, in turn, how the two limits seen in Fig. 1, a
rod in a highly compliant matrix on the left and a soft cylindrical
inclusion surrounded by a stiff matrix on the right, relate to
existing results in the literature,

3.1. Stiff rod in a compliant matrix py < g

Fig. 3 compares the results obtained in this paper for the
axial stress in the rod at the bending instability (m = 1) based
on the exact 3-D formulation for neo-Hookean materials (with
isotropic growth of the rod) with what, as far as we know, are the
most accurate 1-D modeling results in the literature for an axially
compressed rod surrounded by a compliant matrix. The plot on
the left presents the critical compressive axial stress —o; in the
rod at bifurcation normalized by g for ratios juu /e less than 1,
while the plot on the right presents the associated wavelength.

Most of the earlier modeling has represented the rod by a
compressed Euler-Bernoulli beam with bending stiffness, Egl
(with Eg as Young's modulus of the rod and I as the moment of
area of its cross-section) whose transverse deflection is resisted
by a distributed linear spring system having a stiffness K with

units of force per deflection per unit length of rod. The beam the-
ory equation governing the eigen-value problem for the critical
axial stress at which the rod buckles is
d*w d*w
ERIE —O'ZAE +Kw=0 (10)
where for a cylindrical rod with radius Ry, A = wR¢? and I =
mRy*/4. The authors of [7] (see also [1]) made use of the solu-
tion for a cylindrical cavity in an infinite isotropic linear elastic
medium subject to sinusoidally varying tractions in the axial
direction on the cavity wall to derive the following expression for
the wavelength-dependent stiffness representing the restoring
force exerted by the matrix
87 um
K(BRo) = (11)
2Ko(BRo) + BRoK1(BRo)

The above expression has been specialized to the incompressible
case with a matrix Poisson ratio of /2. As before, L/Ry = 27 /(BRo)
with Ky and K; as modified Bessel functions of the second kind
of order 0 and 1. Substitution of eigen-solutions of the form w =
sin(Bz) into (10) with Ezx = 3ug gives the associated eigen-stress

% _ 3Ry + B0 (12)
ur 4 7 r(BRo)?

Elementary numerical methods minimize this eigen-stress with
respect to SRy generating the curves in Fig. 3. Similar curves
based on this model were presented in [1]. Numerical fits to the
results of the present model for small values of the modulus ratio
have been generated by passing a straight line in the log-log plot
through the values in Table 1 at uy/ug = 0.0001 and 0.001.
These give

Y o \ 0510 L g\ 0272
Z =258 (—M) and — = 4.54 (—M) (13)
MR R Ro HR

and are plotted in Fig. 3.

Over a substantial range of the moduli ratio for pep/pg, al-
most as large as 0.1 in Fig. 3, the results for the axial stress at
bifurcation the rod (and for the associated wavelength of the
mode) are in close agreement. This is in spite of the fact that
the beam-spring model ignores the pre-bifurcation stress in the
matrix. To gain further insight into this class of problems, we have
generated results using the present 3-D approach for another
related problem—the buckling of an embedded rod where the rod
and matrix system is unstressed at zero load and is compressed
uniformly parallel to the cylindrical axis with A, < 1. For this
problem the pre-bifurcation stresses are uniform in the rod and
in the matrix with o, = oy = 0 throughout and

0z = MM()‘-ZZ - lzil)

in the rod and matrix respectively. The structure of the two
problems is similar, with the details laid out in Sections 2 and
4 still applicable apart from the difference in the pre-bifurcation
stress.

Fig. 4 presents the axial stress in the rod at bifurcation for
the two 3-D problems. Except for moduli ratios pu/pg larger
than 0.1, the critical stresses for the two problems are close. The
differences observed in the range where the modulus ratio is
not small is not surprising because the different states of pre-
bifurcation stress in the rod and in the matrix become important.
In this range, finite strain considerations and the specific consti-
tutive model itself also become important. In the range where
the growth strain &¢ at bifurcation is not small, one would expect
differences to arise between isotropic growth considered in this
paper and, for example, anisotropic growth in which the rod
extends but does not expand radially.

0z = PLR(l;:2 - A.271):
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Fig. 1. Critical growth strain e = A¢ — 1 at bifurcation for the axisymmetric mode (m = 0) and the bending mode (m = 1) for infinitely long cylindrical inclusions
(rods) embedded with an unbounded matrix. The materials are neo-Hookean and incompressible with s as the shear modulus of the matrix and uy as that of the
rod. The associated mode axial wavelengths are given in Fig. 2.
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Fig. 2. Axial wavelengths associated with the critical growth strain at bifurcation for the axisymmetric mode (m = 0) and the bending mode (m = 1), plotted as
L/Ry where Rp is the radius of the rod at the associated bifurcation strain, Ry = Ag*?r.
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Fig. 3. Axial stress in the rod at bifurcation and axial wavelength of the associated mode for the present 3-D growth problem compared with the buckling stress of
a compressed rod embedded in an elastic matrix as predicted by the beam-spring model (12). Also shown as dashed lines are the numerical fits in (13).

3.2. Soft cylindrical inclusion in a relatively stiff matrix up > ug (m = 0). It can be seen in Fig. 1 that for /g > 100 the critical
_ rowth strain has almost attained the limit. For = 104,

The other limit when py/pg becomes large in Figs. 1 and & Hm/Hr

2 approaches a recently published result for the instability of a
cylindrical cavity containing a fluid under pressure [8]. Recall that
for pym/mgr > 5 the lowest bifurcation mode is axisymmetric A =2.857, op/um = —2.054, L/Rg =2.53 (14)

the numerical results from Table 1 give



J.W. Hutchinson / Extreme Mechanics Letters 40 (2020) 100879 5

10 r ! !

Uniform compression

0.1

Mg ! Mg

0.01 i
0.01 01 1

0.0001

|
0.001

Fig. 4. Axial stress in the rod at bifurcation for two 3-D problems, uniform
compression of the rod/matrix combination and the growing rod.

The problem of an unbounded neo-Hookean material contain-
ing an infinitely long circular cylindrical cavity subject to fluid
pressure p is in the class of problems falling into the framework
laid out in Section 2. We have separately analyzed the pressurized
cavity problem obtaining the following results for the critical
bifurcation (with m = 0):

p/im = 2.054, L/Ry=2.62, Ro/ro=4.825, L/ro=12.6 (15)

The value of the wavelength differs slightly from the value given
in [8] but the critical pressure is in complete agreement with
their result. Moreover, this pressure is the same as that for the
radial stress acting on the matrix interface for the case in (14)
with uy/ug = 10%. The shear modulus of the ‘rod’ is so low
compared to that of the matrix that the rod functions effectively
as a fluid supporting a stress state that is nearly a pure hydrostatic
pressure. For completeness, we have included Fig. 5 displaying
the eigen-pressure spectrum plotted in terms of the wavelength
normalized by the radius of the cavity at bifurcation, Ry. Fig. 5
reveals a sharply defined minimum in the spectrum, which is less
clear when the spectrum is plotted against L/rq.

4. Formulation and reduction of the 3D bifurcation problem

The finite strain bifurcation approach employed in this paper
is heavily influenced by the work of R, Hill on bifurcation at
finite strain as represented by the paper [9], and it makes use
of developments in [5]. In the current deformed state when the
rod/matrix interface has radius Rp, the functional defining the
eigenvalue problem for bifurcation is (physical components are
used throughout this section)

1 s -
i= 5_[ (Tij’?ij + Ufjuk;ilik;g) av (16)
14

Here, in cylindrical coordinates (R, #,z) identifying material
points at bifurcation, (i, ily.11,) are the modal displacement-rate
components,

U g = 01, /OR, Uyg = R™\(D11,/00 — L), Uy, = 1 /dz

llg g = dllg /R, ilgo = R"(ditg/06 + i), Uy, = dilg/dz

24
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23
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22
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2.1
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] L/R,
2 i i | !

0 2 4 6 8 10

Fig. 5. Eigen-pressure spectrum for a pressurized cylindrical cavity in an
unbounded neo-Hookean material.

Uy g = il /3R, Tl = R13i1, /00, I, = dil,/dz

and 3 = (i; + 10;)/2. The non-zero Cauchy (true) stress
components in the current state are (o, 0y.0;) as given earlier.
The symmetric Piola-Kirchhoff stress z;; is work conjugate to the
Lagrangian strain 7; and coincides with the Cauchy stress oy
at bifurcation for an incompressible material in this reference
system. At bifurcation, the principal axes of stress coincide with
the cylindrical coordinate system. Increments of 7; are related to
the Jaumann-rate of the Cauchy stress, gj, by

Ty = O — 2000y, Tpo = Gpo — 200098, Ty = Gz — 20,0

Trg = Orp — (or + 09 )r0, Tre = Oy — (or + 02 )01z,

oz = G4z — (00 + 02 )0z

For an incompressible neo-Hookean material with ground state
shear modulus  [10,11],

G = 2ﬂ1r27.7n' —q, 6pp = 2U)~627-766 —§, 6z = 2ﬂ)~z2ﬁzz —q

6r8 = M(Arz =+ )\-Gz)ﬁrﬂa 61'2 = M(Arz g5 )\-zz)hrz»

oz = (Ao® + 220z

Combined, the above two sets of equations give the isotropic
incremental relation

T = Anj — 613,-] with

A= %u(xrzﬂazﬂzz) —%(ar+ae+az) )

Equilibrium equations governing bifurcation are obtained from
8l =0:

WREy) . Ot im0 o,
_ LTI A (T
Rt et az+aR(a’aR)
g azi(,- 8u9
il el 18
R (329 o6 ) (18)
Oy 81’19 azi‘r

T2 ViR, oD
R(39+’)+Gza2z
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dTge . I(R1:4) 9Ty, a dllg
i R — [ Re,—2
g0 Tt g TR TR\ PR
ag [0 .
e (;Tgr - UQ) (19)
op [ 3%y AL 9%,
il R =0
R (329 a@)+ 752,
dia | HRig) | Do | B (D oy 8%l
iz R 96 OR R R 926
9% (20)
+Ro,—= =0
0%z

The conditions across R = Rg require continuity of displacement-
rates, (i, Ug.11,), and traction-rates, (f,, +0, 01, /OR, g +0,01g/
R, 1y, + 0,011,/3R).

The field equations for the bifurcation problem comprise the
equilibrium equations, (18)-(20), the incremental constitutive re-
lation (17), and the expressions for 7, together with the continu-
ity conditions across the rod/matrix interface and homogeneous
conditions at R = 0 and R — oo to be discussed shortly. This set
is supplemented by the incompressibility equation:
10(Rl,) 100y 0l
R 4R R 90 0z
The form for (i, iy, i1z, g) given by (8) provides an exact separa-
tion of the field equations leading to a 6th order linear system of
odes with (U(R), V(R), W(R), Q(R)) as the unknowns for m = 1
and a 4th order system (with V = 0 and without (19)) when
m = 0; A¢ is the eigen-parameter for the growth problem
and A, for the uniform compression problem. Details of this
reduction, which is straightforward but lengthy, are omitted. The
6th order system of first order odes can be formed in several
ways. An attractive form takes the vector of unknowns as y =
(U, V,W,Q,V', W’) with a prime denoting the derivative with
respect to R. This form is possible because the incompressibility
equation, U’ + (U +mV)/R — BW = 0, and its derivative, give U’
and U” in terms of y. The fourth order system deletes V.

The homogeneous conditions at R = Oare U = W = 0
form =0and U+V =0 W = Q = 0form = 1.
The outer radius of the matrix, R, is taken to be large but
finite, and zero displacement rates are imposed. The solution in
the matrix decays exponentially with R. If R, is greater than 4
times the axial wavelength, L, to high accuracy the computed
results are the same for either zero displacement rates or zero
traction rates and, moreover, are insensitive to the choice of
Re. To evaluate the possibility of bifurcation at any value of
Ac (or of A; for the uniform compression), three (two for the
4th order system) linearly independent solutions are constructed
each satisfying displacement-rate continuity at the interface. The
eigenvalue equation becomes the determinant of a 3 x 3 (or
2 x 2) matrix ensuring continuity of the traction-rates.

An extensive study of interface wrinkling and creasing for
bonded neo-Hookean material layers is given in [12]. Interface
wrinkles and creases are localized at the interface and can have
arbitrarily short wavelengths and depths of penetration. A for-
mula for interface wrinkling in [12] accounts for general pre-
stretching of one of the layers prior to bonding. This formula
can be used to assess the interface in the uniform compres-
sion problem and in the limit problem for the fluid pressurized
cylindrical cavity, but it is not sufficiently general so that it can
be applied to the rod inclusion undergoing constrained growth.
Instead, for the growth problem, following an approach analogous
to that in [5], we have derived a test for interface wrinkling
that is applicable, It accounts for arbitrary stress states on either
side of a planar interface (with identical normal components and
no shear stress acting on the interface) and it accounts for the

=0 (21)

current incremental moduli on each side of the interface. This
test can be applied to wrinkles oriented in either of the two
principal stress directions parallel to the interface. The derivation
does not yield a compact formula as in [12], but it reduces to a
determinant of a 2 x 2 matrix that is readily evaluated. This test
for wrinkling was employed for assessing the growth problem in
the previous section. The results in [12] can be used as a guide as
to whether interface creases will occur, which can form before
wrinkles. Based on the findings in [12] and our own interface
test we are confident that the strains in Fig. 1 fall well below the
strains at which interface wrinkling and creasing occur.

5. Closing remarks

The role of the rod inclusion/matrix modulus ratio on the
instability mode of growing and compressed rods has been re-
vealed over a wide range of moduli. When the rod has a modulus
comparable to the matrix, or less than the matrix, the onset of the
instability occurs at relatively large strains and the critical mode
can be either axisymmetric or of the bending-type. Neo-Hookean
materials have been assumed in this paper and thus in this range
quantitative aspects will differ somewhat for other constitutive
models. The limit for a soft rod inclusion expanding in a cylindri-
cal matrix cavity is the axisymmetric mode of a fluid pressurized
matrix cavity [8], and this limit appears to provide a good ap-
proximation even for modestly stiff rods, i.e., pm /g & 100. At
the other limit of a stiff rod embedded in a compliant matrix,
the present results, which are based on an exact 3-D formulation,
suggest that the 1-D beam-spring models that have been widely
used to predict buckling instabilities provide accurate estimates
of the critical stress in the rod and the associated wavelength
of the mode for py/ug almost as large as 0.1, assuming a good
choice of spring model is made.

This paper has limited attention to conditions at bifurcation
and no effort has been made to investigate post-bifurcation be-
havior, The recent study [1] has presented experimental and
numerical studies of the post-buckling behavior of compressed
stiff elastic rods embedded in elastomeric matrices revealing a
rich array of buckling phenomena including modes in which
the beam bending deflections become non-planar. The authors
of [8] have also presented numerical and experimental results
on the post-bifurcation behavior of fluid pressurized cylindrical
cavities in elastomers and gels. They find that the initial post-
bifurcation behavior is stable under increasing pressure, and the
axisymmetric mode develops into a periodic sequence of bulges.
The cavitation pressure at which spherical voids expand without
limit in a neo-Hookean material iS Peqvitation/tm = 5/2, and this
is only modestly above the critical pressure at which bifurcation
occurs, p/uy = 2.054, suggesting that the bugles may be on the
verge of cavitating.
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