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On the Electro-Mechanical
Stability of Elastomeric
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The stability of cylindrical coaxial fibers made from soft elastomeric materials is studied for
electro-static loadings. The general configuration considered is a three-component axisym-
metric fiber having a conducting core bonded to a dielectric annulus in turn bonded to an
outer conducting annular sheath. A voltage difference between the conducting components
is imposed. The stresses and actuated elongation in the perfectly concentric fiber are ana-
lyzed, and the critical voltage at which stability of the concentric configuration is lost is
determined via solution of the non-axisymmetric bifurcation problem. The role of the geom-
etry and moduli contrasts among the components is revealed, and the sub-class of two-
component fibers is also analyzed. The idealized problem of a planar layer with conducting
surfaces that is bonded to a stiff substrate on one surface and free on the other exposes the
importance of short wavelength surface instability modes. [DOI: 10.1115/1.4050397]
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1 Introduction
The coaxial geometry is an alternative actuator configuration to

the parallel plate, planar capacitor that forms the basis for most of
dielectric elastomer actuators designs discussed in the electro-
mechanics community [1,2] and the soft-robotics literature [3].
Geometrically, the electrode and dielectric configurations are iden-
tical to standard, coaxial cables used for screening electrical signals
and for high-frequency transmission lines. Consequently, in con-
trast to the planar actuator configuration, when a voltage is applied
between the inner and outer electrodes, the electric field in the
dielectric is not spatially uniform but varies radially. Because of
the high modulus of the materials typically used in coaxial cables,
such as polyethylene and copper, the electro-static forces produced
are insufficient to produce appreciable actuation. However, when
a soft elastomer (shear modulus∼ 10–200 kPa compared with
0.75 GPa for high-density polyethylene) and complaint electrodes
are used, the actuation strains can be significant and can result in
fiber actuators that extend in length when an electric field is
applied. Several examples of coaxial actuation have been demon-
strated [4,5] but because of the fabrication methods the fibers
have been short and have all had a hollow inner electrode. A con-
sequence of the inner core being hollow rather than solid is that
the tube can undergo an electro-mechanical instability in which
the dielectric abruptly thins above a critical electric field. This
was analyzed by Zhu et al. [5] for the conditions of a thin-walled
tube configuration, namely, the dielectric is much thinner than the
diameter of the tube.
Solid inner core coaxial elastomer fibers can now be fabricated in

arbitrary lengths by 3D printing in which the dielectric and conduc-
tive electrode materials are co-extruded through a compound nozzle
[6]. By varying the nozzle dimensions, the radii of the core, the
dielectric annulus, and the outer electrodes can all be systematically
varied. The electrode materials consist of an elastomer loaded with
hydrophobic carbon black particles above the electrical percolation
threshold concentration such that the electrodes are both elastically
compliant and electrical conducting. The solid core ensures that the
fibers do not undergo the electro-mechanical “thinning” instability.
As the fibers can be printed, not only long fibers can be produced

but also they can be formed in bundles as well as into complex
curved shapes, such as cylinders [6]. In these geometries, the
fibers are subject to bending.
In this work, the electro-mechanical stability of solid core coaxial

elastomer fibers is considered. The critical instabilities are bifurca-
tion modes associated with non-axisymmetric perturbations in
electro-static charge distribution and the associated deformations
and tractions of the fiber interfaces. The paper begins in Sec. 2
with an analysis of the stresses and deformation of a perfectly con-
centric three-component coaxial fiber comprised of neo-Hookean
materials. The non-axisymmetric stability analysis is carried out
in Sec. 3 with some of the analytic details given in the Supplemental
Material on the ASME Digital Collection. The stability analysis
requires a tightly coupled approach. The non-axisymmetric defor-
mations produce non-axisymmetric changes in the electro-static
charge distribution and in the associated electro-static tractions
acting on the fiber interfaces, and vice versa. The limit of the three-
component fiber wherein the modulus of the outer elastomeric
annular sheath is set to zero and the outer surface remains conduct-
ing corresponds to a well-defined two-component system which is
analyzed and discussed in Sec. 4. The two-component fiber with
a rigid core, in turn, leads to consideration of a basic limiting
problem: a planar elastomeric layer with conducting surfaces with
one surface bonded to a rigid substrate and the other traction-free.
This problem, which is solved in Ref. [7] and summarized in Sec.
5, provides additional fundamental insights into the nature of the
electro-mechanical instability.

2 The Stresses and Deformation of the Perfectly
Concentric Three-Component Fiber
The undeformed geometry of the three-component coaxial fiber

is defined by an inner conducting core of radius a0, surrounded
by and bonded to a concentric non-conducting dielectric annulus
with outer radius b0, which, in turn, is bonded to a conducting
annular sheath with outer radius c0, as depicted in Fig. 1. The
length of the fiber in the undeformed state is L0 which is assumed
to be much greater than c0. The core (denoted by A) and the
annular regions (denoted by B and C, respectively) are made of
incompressible, isotropic neo-Hookean elastomeric materials with
ground state shear moduli μA, μB, and μC. The interface at r0= a0
is identified by the label AB and that at r0= b0 by BC. These inter-
faces do not resist deformation in any way other than through their
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electro-static interaction driven by an imposed voltage difference
across them.
The electro-static forces conspire to elongate the fiber in the

z-direction. Away from the ends of the fiber (end details will not
concern us here), the axial stretch λz will be the same in each com-
ponent. A basic consequence of incompressibility and cylindrical
symmetry (and the absence of a cylindrical hole at the center of
the fiber) is that any material point at radius r0 in the undeformed
body will be at radius r = r0/

���
λz

√
in the deformed body. In partic-

ular, the radii of the two interfaces and the outer surface in the
deformed state are a = a0/

���
λz

√
, b = b0/

���
λz

√
, and c = c0/

���
λz

√
,

and the deformed length is L= λzL0. Note also that a/b= a0/b0
and c/b= c0/b0. Furthermore, since the circumferential stretch of a
material element at initial radius r0 is λθ = r/r0, it follows that
λθ = 1/

���
λz

√
. Incompressibility (λrλθλz = 1) gives λr = 1/

���
λz

√
. In

summary, incompressibility and cylindrical symmetry and other-
wise independent of any constitutive assumptions, the stretches
are uniform throughout the fiber and are given by

λr = λθ = 1/
���
λz

√
(2.1)

with λz to be determined.
The electrical charge associated with the imposed voltage V0

resides on the two interfaces, AB and BC, of the conducting compo-
nents. A direct calculation of the radial tractions given in the
Supplemental Material on the ASME Digital Collection provides
the tractions (force per area) acting on the two interfaces due to
the electro-static forces

TAB =
εV2

0

2(a ln(b/a))2
ir ≡ TABir and

TBC = −
εV2

0

2(b ln(b/a))2
ir ≡ TBCir

(2.2)

with ɛ as the permittivity of the dielectric material in B, a and b as
the radii in the deformed state of the perfectly concentric fiber, and
ir as the unit vector pointing in the radial direction. The electrical
energy stored in the perfectly concentric fiber is

Ψelectric =
πεLV2

0

ln(b/a)
≡
1
2
CV2

0 (2.3)

where C is the fiber capacitance in the current state.
The neo-Hookean strain energy density function is given by

W =
1
2
μ(λ2r + λ2θ + λ2z − 3) (2.4)

where (λr , λθ, λz) are the principal stretches which are aligned with
the cylindrical coordinates (r, θ, z) in the pre-bifurcation state and

the modulus is denoted by μA, μB, or μC in the respective compo-
nents. The incompressibility condition, λrλθλz = 1, must be
imposed. The true stresses are related to the stretches by

σr = μλ2r − q, σθ = μλ2θ − q, σz = μλ2z − q (2.5)

where q is related to the pressure and is determined by equilibrium
considerations. The stresses will be seen to be uniform in each
component.
Under prescribed voltage V0, the free energy of the coaxial fiber

system is the sum of the elastic energy and the potential energy of
the battery maintaining the voltage:

Ψ(λr , λθ, λz, V0) = Ψelastic − Ψelectric and

Ψelastic = 2πL0

∫c0
0
W(λr , λθ, λz) r0dr0

(2.6)

This is a mixed formulation in that the elasticity is Lagrangian
employing the undeformed state as reference, while the electrical
potential energy is defined in the current, deformed state. With
ur(r0) as the radial displacement, λr= 1+ dur/dr0 and
λθ = 1 + r−10 ur . Rendering the free energy stationary for fixed
voltage with respect to all admissible variations δur and δλz requires

2πL0

∫c0
0
(−σrλθλz + σθλrλz)δurdr0 + 2πL0

∫c0
0
σzλ

−1
z δλzr0dr0

+ 2πa0L0λθλz(σ
A
r − σBr )δur(a0)

+ 2πb0L0λθλz(σ
B
r − σCr )δur(b0)

+
πεV2

0L

[ln(b/a)]2
δur(b0)

b
−
δur(a0)

a

( )
−
πεV2

0L0
ln(b/a)

δλz = 0 (2.7)

Above, use has been made of the fact that ∂W/∂λi=Ni are the
nominal stresses (force/original area) which are related to the true
stresses (force/current area) by Nr = σrλθλz, Nθ = σθλrλz, and
Nz = σzλrλθ. The integration by parts employed in arriving at
(2.7) anticipates; σr is uniform within each component; σAr
denotes the radial stress within component A, etc.
Noting that λθλz = λrλz = λ1/2z throughout the fiber, the first inte-

gral in (2.7) requires σθ = σr which could have been anticipated.
Enforcing (2.7) for all variations δur(a0) and δur(b0) requires

(σAr − σBr ) =
εV2

0

2a2[ln(b/a)]2
= TAB and

(σBr − σCr ) = −
εV2

0

2b2[ln(b/a)]2
= TBC

(2.8)

These equations balance the electro-static normal interface trac-
tions, TAB and TBC, introduced earlier in (2.2), by the stresses in
the components. These conditions emerge naturally in rendering
the free energy of the system stationary. Stationarity with respect
to δλz requires

2π
∫c0
0
σzλ

−1
z r0 dr0 =

πεV2
0

ln(b/a)
(2.9)

which becomes the equation for determining the axial stretch in
terms of the stresses

(a20σ
A
z + (b20 − a20)σ

B
z + (c20 − b20)σ

C
z )λ

−1
z =

εV2
0

ln(b/a)
(2.10)

The final step in the calculation is to solve for the stresses using
the constitutive relations (2.5) together with (2.8). The outer surface
of the fiber is traction-free: σCr = μCλ

−1
z − qC = 0. It then immedi-

ately follows that

σCθ = μCλ
−1
z − μCλ

−1
z = 0 and σCZ = μC(λ

2
z − λ−1z ) (2.11)

Fig. 1 The three-component system in the undeformed state.
The shear moduli in the respective components are μA, μB, and
μC. The interface between A and B is denoted by AB and that
between B and C by BC.
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At r= b, the second balance equation in (1.8) must be satisfied,
requiring σBr = TB such that μBλ

−1
z − qB = TB. Thus,

σBr = σBθ = TBC and σBz = μB(λ
2
z − λ−1z ) + TBC (2.12)

At r= a, the radial stresses in A and B must balance TAB (first
equation in (2.8)) requiring σAr − σBr = TAB with the following
results for the components of stress in A

σAr = σAθ = TAB + TBC and

σAz = μA(λ
2
z − λ−1z ) + TAB + TBC

(2.13)

Finally, the equation for the axial stretch λz is obtained by enforc-
ing (2.10)

λz − λ−2z =
εV2

0

ln(b0/a0)
(a20μA + (b20 − a20)μB + (c20 − b20)μC)

−1 (2.14)

remembering that b/a= b0/a0 and using the fact that a20(T
AB + TBC)+

(b20 − a20)T
BC = 0, in agreement with the result in Ref. [6]. In dimen-

sionless form, this equation can be written as

λz − λ−2z

=
Ω0

ln(b0/a0)
a0
b0

( )2 μA
μB

+ 1 −
a0
b0

( )2
( )

+
c0
b0

( )2

− 1

( )
μC
μB

( )−1

(2.15)

with

Ω0 =
εV2

0

μBb
2
0

or
����
Ω0

√
=

���
ε

μB

√ |V0|
b0

The plots in Fig. 2 set the stage by illustrating theoretical and
experimental trends in the axial strain, ɛz= λz− 1, as dependent on
voltage and the radius ratio a0/b0. Figure 2(a) presents the strain
as a function of the dimensionless voltage load parameter

����
Ω0

√
from (2.15) for six radius ratios with outer sheath radius set at
b0/c0 = 0.95 and with μA= μB= μC≡ μ. For the cylindrical

geometry of the three-component fiber, the axial stretch increases
monotonically with increases in the voltage parameter. For large |
V0|, by (2.15), λz increases linearly with V2

0 . One implication of
this result is that an axisymmetric instability mode akin to
necking is unlikely to exist for solid core coaxial fibers made
from neo-Hookean materials or from other elastomeric materials
that display stiffening under stretch. The first occurrence of insta-
bility of the perfect fibers in Fig. 2(a) is indicated by the solid
black dot obtained from the analysis in Sec. 3. The instability
is a non-axisymmetric bifurcation with circumferential mode
number m. Figure 2(b) presents a comparison of experimental
data for axial strain (in percent) as a function of voltage from
Ref. [6] for three fibers with predictions from (2.15), including
the onset of the lowest non-axisymmetric bifurcation from the
analysis of Sec. 3. The termination of the experimental curves
in Fig. 2(b) is associated with electrical breakdown. The proper-
ties of the fibers (taken from [6]) are μA= μC= 114 kPa, μB=
155 kPa, and ɛ= 24.8 × 10−12 NV−2, with the component radii
(a0, b0, c0) of the three fibers in μm as (205, 361, 372), (110,
332, 347), and (53, 339, 356).
The onset of the instability in the form of the non-axisymmetric

bifurcation will be analyzed and discussed in the next section, but
several observations to set the stage can be made based on the
results in Fig. 2. First, the onset of instability has a strong geometric
dependency. Figure 2(a) already reveals that instability is signifi-
cantly postponed for fibers in the range 0.3 < a0/b0 < 0.5. Second,
none of the fibers in Ref. [6] in Fig. 2(b) reached the onset of insta-
bility. Nevertheless, a systematic increase in the axial strain above
the theoretical prediction for the axisymmetric fiber occurs when
the voltage exceeds about 50% of the instability onset predicted
for the perfect fiber. One possible explanation for this behavior is
that it is driven by non-axisymmetric imperfections—such behavior
is common in structural buckling problems at loads on the order of
50% of the buckling load. It is also worth noting that, in the range of
strains associated with the results in Fig. 2, the neo-Hookean mate-
rial model should be a good representation of isotropic elastomeric
materials.

Fig. 2 (a) Dependence of axial strain on the dimensionless voltage parameter for six three-component fibers over a
range of the radii ratio a0/b0 for components with identical shear moduli μ predicted by (2.15). (b) Experimentally mea-
sured actuation axial strain as dependent on applied voltage (square points and dashed curves) for three fibers
tested in Ref. [6] with properties listed in the text. The solid curves are the predictions for these fibers from (2.15). In
both (a) and (b), the black circular point on each of the theoretical curves marks the onset of instability of the axisymmet-
ric state as determined in Sec. 3. The indexm is the circumferential mode number as detailed in Sec. 3. The termination of
the experimental curves is due to electrical breakdown.
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3 Non-Axisymmetric Bifurcation From the Concentric
State for the Three-Component Fiber
The perfectly concentric fiber loses stability as a non-

axisymmetric bifurcation from the pre-bifurcation state detailed in
Sec. 2. At the point of bifurcation, the geometry of the fiber is spe-
cified by a = a0/

���
λz

√
, b = b0/

���
λz

√
, c = c0/

���
λz

√
, and L= L0λz. The

cylindrical coordinate system (r, θ, z) in the pre-bifurcation state
with r = r0/

���
λz

√
and z= z0λz will be used in the bifurcation analysis

such that in A, 0≤ r≤ a, etc. We will focus our attention on plane
strain bifurcations, with λz fixed at the value given by (2.15). The
equations governing bifurcation admit modes with incremental
changes in displacements and in q from the pre-bifurcation state,
(u̇r , u̇θ, u̇z, q̇), of the separable form

u̇r = U(r) cosmθ, u̇θ = V(r) sinmθ, u̇z = 0,

q̇ = Q(r) cosmθ, m = 1, 2, 3, . . .
(3.1)

with incompressibility requiring

U′ + r−1(U + mV) = 0 (3.2)

where ( )′ = d( )/dr.
The full details of the electro-static problem in the bifurcated state

are given in the Supplemental Material on the ASME Digital Col-
lection. The analysis conducted in this paper requires the lowest
order changes in the electro-static tractions and the work they
perform on interfaces AB and BC. These lowest order changes are
determined by perturbing about the axisymmetric pre-bifurcation
state using U(a)/a and U(b)/b as the amplitudes of the shape pertur-
bations. The electro-static tractions on the two interfaces subject to
fixed V0 are

TAB =
εV2

0

2[a ln(b/a)]2
1 +

2((m − 1) + (m + 1)(a/b)2m)

1 − (a/b)2m
U(a)
a

−
4m(a/b)m

1 − (a/b)2m
U(b)
b

( )
cosmθ

{ }
nAB (3.3)

TBC =
εV2

0

2[b ln(b/a)]2
1 − −

4m(a/b)m

1 − (a/b)2m
U(a)
a

+
2((m + 1) + (m − 1)(a/b)2m)

1 − (a/b)2m
U(b)
b

( )
cosmθ

{ }
nBC (3.4)

where nAB and nBC are the unit normal to the respective interfaces
pointing into component B. The work per current unit length per-
formed by these tractions on the fiber through the shape perturba-
tions is

ΔΨelectric =
π

2
εV2

0

[b ln(b/a)]2
{HAAU(a)2 + HABU(a)U(b) + HBBU(b)2}

(3.5)

with

HAA =
(m − 1)(b/a)2 + (m + 1)(a/b)2(m−1)

1 − (a/b)2m
, HAB = −

4(a/b)m−1

1 − (a/b)2m

HBB =
(m + 1) + (m − 1)(a/b)2m

1 − (a/b)2m

The expression (3.5) is positive definite for all U(a) and U(b) for
0 < a/b< 1. In other words, for shape changes in the form of any of
the modes in (3.1), the battery maintaining the voltage V0 does

positive work on the fiber to lowest order in the bifurcation ampli-
tudes. The axisymmetric pre-bifurcation tractions do no work
through the bifurcation displacements.
For the mode with m= 1, (3.5) reduces to

ΔΨelectric =
πεV2

0

[b ln(b/a)]2
1

1 − (a/b)2
(U(b) − U(a))2 (3.6)

The mode in (3.1) for m= 1 implies that to lowest order in the
bifurcation amplitude, the interfaces and the outer surface remain
circular and simply undergo lateral translations relative to one
another, as depicted in Fig. 3, even though straining occurs
within the three components. In particular, the two interfaces, AB
and BC, on which the charge resides translate relative to each
other by δ=U(b)−U(a). The result (3.6) is corroborated by the
exact result in the literature [8] for the electrical energy per unit
length stored in an cylindrical capacitor loaded to a voltage V0

and having a circular inner conducting surface of radius a and cir-
cular outer conducting surface of radius b whose centers are offset

Fig. 3 The plane strain bifurcation modes for m=1, 2, 3
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from one another by a distance δ:

Ψelectric =
πεV2

0

cosh−1((a2 + b2 − δ2)/2ab)

=
πεV2

0

ln(b/a)
1 +

δ2

b2 ln(b/a)(1 − (a/b)2)
+ O(δ4)

{ }
(3.7)

The expression for lowest order change in the elastic energy per
unit length due to bifurcation is also quadratic inU and V; the result,
derived in the Supplemental Material on the ASME Digital Collec-
tion, is

ΔΨ̃elastic =
ΔΨelastic

πμBb2/2

=
∫c̃
0
M̃ 2r̃−2(Ũ + mṼ)

2
+
1
2
(Ṽ

′ − r̃−1(mŨ + Ṽ))
2

( ){

+ �σ(Ṽ
′2
+ r̃−2(mŨ + Ṽ)

2
+ 2r̃−2(Ũ + mṼ)

2
)}r̃dr̃

(3.8)

where the stress σ ≡ σr = σθ takes on the uniform pre-bifurcation
value in each component as does the modulus M = 2μ(λ2z +
2λ−1z )/3 − 2(2σ2 + σ2z )/3. The following dimensionless quantities
have been employed: (Ũ, Ṽ) = (U, V)/b, r̃ = r/b, ( )′ = d( )/dỹ,
ã = a/b, b̃ = 1, and ã = a/b. The dimensionless component-
dependent stress and modulus are �σ = σ/M and M̃ =M/μB; the
incompressibility condition is Ũ

′
+ r̃−1(Ũ + mṼ) = 0.

The dimensionless work done by the perturbed electro-static trac-
tions (3.5) is

ΔΨ̃electric =
ΔΨelastic

πμBb2/2

=
Ω

(ln(b/a))2
{HaaŨ(a)2 + HabŨ(a)Ũ(b) + HbbŨ(b)2}

(3.9)

where

Ω =
εV2

0

μBb2
= Ω0λz (3.10)

The functional governing the bifurcation eigenvalue problem is

ΔΨ̃ = ΔΨ̃elastic − ΔΨ̃electric (3.11)

This functional is homogeneous of degree 2 in the modal dis-
placements. The eigenvalue is Ω while �σ and M̃ can be expressed
in terms of Ω, λz, and the shear modulus ratios. For any given m,
ΔΨ̃ > 0 at voltages below the lowest critical eigenvalue for all
non-zero admissible functions Ũ and Ṽ . The critical eigenvalue is
the lowest voltage for which ΔΨ̃ = 0 for some non-zero combina-
tion of Ũ and Ṽ , and this combination is the eigenmode when
appropriately normalized.

3.1 Solution Procedure. In each component, the field equa-
tions for the modal quantities in (3.1) generated by rendering the
functional (3.11) stationary admit four linearly independent solu-
tions (see Supplemental Material on the ASME Digital Collection).
For m= 1, the general solution in each component has the form

Ũ = b1 + b2r̃
2 + b3 r̃

−2 + b4 ln r̃,

Ṽ = −b1 − 3b2 r̃
2 + b3r̃

−2 − b4(ln r̃ + 1)

�Q = 4(1 + 2�σ) b2r̃ + (1 + 2�σ) b4r̃
−1

(3.12)

where the b’s are undetermined coefficients and �Q = Q/M. For
m ≥ 2, the four independent solutions are

Ũ = b1r̃
n1 + b2 r̃

n2 + b3r̃
n3 + b4r̃

n4 ,

Ṽ = b1v1r̃
n1 + b2v2r̃

n2 + b3v3r̃
n3 + b4v4r̃

n4

�Q = b2q2r̃
n2−1 + b3q3r̃

n3−1

(3.13)

where n1=m− 1, n2=m+ 1, n3=−(m− 1), n4=−(m+ 1), vi =
−(ni+ 1)/m , i= 1, 4, q2 = 2(m + 1)(1 + 2�σ)/m, and q3 = 2(m − 1)
(1 + 2�σ)/m. Each contribution in (3.12) and (3.13) satisfies the
incompressibility condition. Denote the coefficients in component
A by ai, i= 1, 4, in B by bi, i= 1, 4, and in C by ci, i= 1, 4.
It will now be shown that the bifurcation solution can be reduced

to a form dependent only on the bi ′s in B as independent unknowns.
The solution must be bounded at the origin requiring a3= a4= 0.
Continuity of Ũ and Ṽ at r̃ = ã provides two linear equations for
a1 and a2 in terms of the bi ′s. Four linear equations for ci, i= 1, 4
in terms of the bi ′s are obtained from the two traction-free condi-
tions at r̃ = c̃ and the two continuity conditions on Ũ and Ṽ at
r̃ = b̃. Thus, a1, a2 and ci, i= 1, 4 are uniquely determined for
every set of bi ′s. For m≥ 2, bi, i= 1, 4, are the free variables in
solving the bifurcation problem. For m= 1, the set of free variables
must be restricted to exclude the rigid body translation (i.e.,
Ũ = −Ṽ = constant). This is achieved by taking a1= 0 such that
the two interface continuity equations at r̃ = ã provide equations
for a2 and one of the bi ′s, which we have taken to be b4. Thus for
m= 1, there are three independent free variables, b1, b2, and b3.
For m= 1, the reduction gives

a2 =
ln ã(−2b2ã2 + 2b3ã−2) + b1 + b2ã

2 + b3ã
−2

ã2(1 − 2 ln ã)
,

b4 =
2b1 + 4b3ã−2

1 − 2 ln ã

(3.14)

c1 =
2(1 + c̃4)b1 + 4c̃4b2 + 4b3 − (1 − c̃4)b4

2(1 + c̃4)
,

c2 =
2b2 − 2b3 + b4

2(1 + c̃4)
, c3 = −c̃4c2, c4 = 0

(3.15)

The reduction for m≥ 2 is also straightforward but requires the
use of a linear equation solver which does not need to be described
here.
In summary, the bifurcation mode can be represented by some

combination of bi ′s (absent b4 as a free variable for m= 1). For
any combination of the bi ′s, the integrations in each component
region in the bifurcation functional can be carried out either analyt-
ically, although this would be lengthy, or numerically to high pre-
cision. The bifurcation functional (3.11) has thus been reduced to
a quadratic algebraic function of the bi ′s with Ω as the eigenvalue,
i.e., ΔΨ̃(b, Ω). Standard numerical methods are available for
solving the critical (lowest) eigenvalue and the associated bifurca-
tion mode for each m, as discussed in the Supplemental Material
on the ASME Digital Collection.

3.2 Critical Voltage for Three-Component Fibers. Figure 4
presents the solution to the eigenvalue problem just described for
circumferential wave numbers m= 1, 5 for the family of fibers con-
sidered in Fig. 2(a). For any geometry, the critical (lowest) eigen-
value which determines the onset of the instability of the perfect
fiber is indicated by a solid black dot in Fig. 2. For this example,
the critical circumferential mode number is m= 2 in the lowest
range of a0/b0, switches to m= 3 in the intermediate range of
a0/b0, and switches again to m= 4 for a0/b0 > 0.52. The critical
voltage,

������
ε/μB

√ |V0|/b0, and the associated axial strain, ɛz= λz− 1,
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do not vary monotonically with a0/b0. The maximum critical
voltage is attained for fibers having a0/b0≅ 0.35, but the maxi-
mum axial actuation strain at the onset of instability is ɛz≅ 0.2
throughout the range 0.35 < a0/b0 < 0.52.
Figure 5 reveals the influence of the shear modulus of the thin

outer sheath for fibers with a0/b0= 0.5 and b0/c0= 0.95. Over the
entire range of μC/μB plotted, the critical voltage eigenvalue is asso-
ciated with m= 3. Relative to the case where the sheath and dielec-
tric components have the same modulus, the critical voltage is
reduced by about 20% when the sheath modulus becomes negligi-
ble compared to μB and it is increased by about 15% when μC= 5μB.
A sheath modulus with μC≅ μB appears to be a good choice for
maximizing the stable actuation strain range without unduly elevat-
ing the voltage for actuation. No formal optimization work will be
conducted in this paper, but the stability analysis enables such
studies.

In the examples discussed above, the mode with circumferential
wave number m= 1 is not competitive in the sense that the eigen-
value associated with this mode lies well above the critical mode
having the lowest eigenvalue. This also will be the case for the two-
component fibers discussed in the next section. Of all the plane
strain circumferential modes considered in this paper, only the
m = 1 gives rise to a longitudinal bending moment (i.e., Mx or
My) in the fiber. The modes with m≥ 2 produce no longitudinal
bending moment, and thus, an unconstrained, vertically supported
fiber, as in the experiments in Ref. [6], would remain straight in
the post-bifurcation range, at least for relatively small bifurcation
displacements. Ifm= 1 were critical, the fiber in such an experiment
would undergo bending beyond the onset of instability. The
moment for m= 1 is computed in the Supplemental Material on
the ASME Digital Collection, but it will not be discussed further
here because this mode is not critical.

Fig. 4 Instability eigenvalue spectrum
����
Ω0

√
=

����
ε/μ

√ |V0|/b0 on the left and associated axial strain ɛz on the right as depen-
dent on a0/b0 and circumferential mode numberm for fibers with b0/c0=0.95 and identical component moduli μ. The sta-
bility limits (black dots) in Fig. 2(a) are derived from these results.

Fig. 5 The influence of the sheath shearmodulus on the voltage eigenvalue spectrum and the associated axial strain for
fibers with a0/b0=0.5, b0/c0=0.95, and μA=μB
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4 Critical Voltage for Two-Component Coaxial Fibers
If μC/μB→ 0, the solution method described in Sec. 3 generates

solutions for the two-component system consisting of a conducting
core A and annulus B with an outer conducting surface on B. Spec-
trums for the instability eigenvalue for the limiting cases of a fluid-
filled core, μA/μB→ 0, and a rigid core, μA/μB→∞, are presented in
Figs. 6 and 7. The associated axial stretch is shown for the fluid-
filled core; the rigid core constrains the stretch to be unity.
The limit μC/μB→ 0 of the solution does not correspond to a core

becoming a traction-free cavity [5], rather it corresponds to a con-
ducting incompressible fluid with zero shear modulus which is
assumed to be able to support the hydrostatic tension without cav-
itation in the core generated by the electro-static forces. In the limit
of the fluid-filled core, the critical voltage is associated with the
plane strain mode m= 2 over the entire range of geometry in
Fig. 6. In this limit, it is possible that a plane strain mode is not

the critical mode. Modes with both sinusoidal circumferential and
axial variations should be considered including axisymmetric
modes. The present analysis can be generalized to such modes
[9], but lower instability possibilities for the fluid-filled core will
not be pursued here.
The eigenvalue spectrum for rigid core fibers in Fig. 7 reveals that

the circumferential wave number associated with the critical voltage
eigenvalue depends strongly on a0/b0. The eigenvalue for m= 2 lies
well above the critical eigenvalue over the entire range plotted, but
the eigenvalue form= 1 is the critical eigenvalue at the lower end of
the interval, and it remains only modestly above the critical value
over the entire interval. For values of a0/b0 at the upper range
plotted, the critical eigenvalue approaches from above the asymp-
totic result derived in the next section:���

ε

μB

√
V0

b0
= 1.2872 1 −

a0
b0

( )
(4.1)

This asymptotic result becomes an increasingly accurate approx-
imation as the ratio of the thickness of the annulus B to b0 becomes
small. The result above holds in the limit of short wavelength modes
that are increasingly confined to the vicinity of the outer free surface
of component B, as will be discussed in the next section.
Figure 8 is a summary plot for the critical instability voltage and

associated axial strain for two-component fibers showing results for
five core-to-annulus shear modulus ratios.

5 A Dielectric Layer Clamped on the Bottom and Free
at the Top
Motivated by the behavior noted in the previous section for the

rigid core, consider as a special limiting case a planar incompress-
ible neo-Hookean layer modeling the dielectric elastomer, of thick-
ness h and shear modulus μ, that is bonded to a rigid substrate on the
bottom and traction-free on the top. The upper and lower surfaces of
the layer are conducting with a voltage V0 imposed across them.
This problem can be analyzed using the method laid out in Sec.
3. The bifurcation and initial post-bifurcation behavior of this
problem and a companion problem have been analyzed in
Ref. [7]. Experimental studies of versions of this planar problem
have also been carried out [10,11]. Here we provide a summary
of the results of the planar problem relevance to the two-component
fiber with the rigid core.
Owing to the constraint of the rigid substrate, the pre-

bifurcation state in the layer is one of hydrostatic compression:

Fig. 6 The dimensionless voltage eigenvalue spectrum in (a) and associated axial stretch in (b) for a two-component
system with a fluid-filled core, A, and an elastomeric annulus, B

Fig. 7 The dimensionless voltage eigenvalue spectrum for a
two-component system with a rigid core, A, and an elastomeric
annulus, B. The axial stretch is constrained by the core with
λz =1. Included as a dashed line is the asymptotic short wave-
length limit in Sec. 5.

Journal of Applied Mechanics JUNE 2021, Vol. 88 / 061005-7



σx = σy = σz = −εV2
0 /2h

2 with λx= λy= λy= 1 in the coordinates of
the insert in Fig. 9. The pre-bifurcation thickness in the current state
is unchanged from that in the unstressed state. Denote the plane
strain displacement increments associated with the bifurcation
solution by u̇x = U(y) sin(kx), u̇y = V(y) cos(kx), and u̇z = 0 with k
as the mode wave number and ℓ= 2π/k as the wavelength. On y
= 0, U=V= 0. With a voltage V0 prescribed across the top and
bottom surfaces, the traction, T, on the top perturbed surface and
the lowest order work, ΔΨelectric, done by these tractions per unit
length in the z-direction over one wavelength ℓ are

T =
εV2

0

2h2
1 − 2

kh

tanh(kh)
V(h)
h

cos(kx)

( )
n and

ΔΨelectric =
πεV2

0

2h2
1

tanh(kh)
V(h)2

(5.1)

with n as the unit normal to the top surface pointing into the layer.
The dimensionless quadratic functional governing bifurcation is

ΔΨ̃ =
∫1
0
{(2 + Ω)(2(k̃Ũ)

2
+ (Ũ

′ − k̃Ṽ)
2
/2)

− (Ω/2)(Ũ′2
+ 2(k̃Ũ)

2
+ (k̃ V

··
)
2
)}dỹ

− Ω(k̃/tanh (k̃))Ṽ(1)2 (5.2)

with ỹ = y/h, ( )′ = d( )/dỹ, k̃ = kh, (Ũ, Ṽ) = (U, V)/h, and
Ω = εV2

0 /(μh
2). The field equations admit linearly two linearly

independent solutions after the boundary conditions on the
bottom of the layer are satisfied:

Ũ = −b1k̃
2
ỹ sinh(k̃ỹ) + b2( sinh(k̃ỹ) + k̃ỹ cosh(k̃ỹ))

Ṽ = b1(−k̃ sinh(k̃ỹ) + k̃
2
ỹ cosh(k̃ỹ)) − b2k̃ỹ sinh(k̃ỹ)

(5.3)

The eigenvalue spectrum as dependent on the dimensionless
modal wavelength, ℓ/h = 2π/k̃, is plotted in Fig. 9. An interesting
feature of this spectrum is that for sufficiently short wavelengths,
the eigenvalue becomes independent of the wavelength and
given by

��
Ω

√
=

��
ε

μ

√ |V0|
h

= 1.2872 (5.4)

It can be seen from Fig. 9 that this limiting result is the critical
eigenvalue governing planar stability of the layer and, moreover,
the eigenvalue for a wavelength as large as ℓ/h= 1 is less than
0.1% above (5.4). Although not evident from (5.3), the mode
becomes increasingly concentrated at the top surface of the layer
as the wavelength gets shorter and shorter.
The problem for the short wavelength limit in which the eigen-

value becomes independent of the wavelength is readily formulated.
It corresponds to an infinitely deep layer with a conducting surface
subject to an electric field in the vertical direction producing a gra-
dient in the voltage potential of magnitude equal to |V0|/h (h is no
longer the layer thickness). In this formulation, with the vertical
coordinate y taken with its origin at the top surface, the short wave-
length eigenmodes associated with the critical eigenvalue (5.4) turn

Fig. 8 (a) Critical (lowest) voltage eigenvalue and (b) associated axial strain for two-component coaxial fibers for five
ratios of core to annulus shear moduli ranging from fluid-filled cores to fibers with rigid cores. The axial strain for the
rigid core fiber is zero.

Fig. 9 Spectrum of the voltage eigenvalue as a function of the
wavelength for the infinite dielectric neo-Hookean layer. The
top and bottom surfaces of the layer are conducting. The top
surface is unconstrained and the bottom surface is bonded to
a rigid substrate.
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out to be

u̇x = −1 +
��
2

√
(1 + ky)

( )
eky sin(kx) and

u̇y = 1 −
��
2

√
ky

( )
eky cos(kx)

In this form, it is evident that the bifurcation mode decays expo-
nentially into the layer scaled by the wavelength ℓ= 2π/k. This
surface instability has much in common with the instability of a
compressed neo-Hookean half-space with a traction-free surface
first analyzed by Biot [12], although in the present problem the pre-
bifurcation state is hydrostatic compression with no strain. Because
the arbitrarily short wavelength modes are localized near the
surface, the result in (5.4) implies that surface instabilities will
occur at any location on a conducting traction-free surface when
the magnitude of the electric field gradient normal to the surface
exceeds the limit associated with (5.4), assuming the elastomer is
constrained below the surface.
To address the relevance of (5.4) to the two-component coaxial

fiber with the rigid core, consider geometries such that the distance
between the conducting surfaces of the fiber, h= b0− a0, the inner
one fully constrained and the other unconstrained, is relatively small
compared to b0. If h is replaced by b0− a0 in (5.4), one obtains���

ε

μB

√ |V0|
b0

= 1.2872 1 −
a0
b0

( )
(5.5)

with the modulus identified as that of B. This is the result plotted as
a dashed line in Fig. 7.
The post-bifurcation analysis of the constrained layer in Ref. [7]

sheds light on the nature of the instability at bifurcation. The short
wavelength modes are highly unstable, and the maximum attainable
voltage is reduced below the bifurcation value by small imperfec-
tions in the system. In the physics community, such instabilities
are referred to as subcritical implying a bifurcated solution is asso-
ciated with falling voltage. Experiments on constrained planar
layers [10,11] reveal that the instability occurs as a dynamic
snaping from the nominally planar state to localized crease-like
entities. Therefore, it is logical to conclude that the short wave-
length modes on the fibers with rigid cores will similarly be
highly unstable and imperfection sensitive. Post-bifurcation analy-
ses have not been performed for the coaxial fiber modes with
small circumferential wavenumbers, i.e., m= 1, 2, 3, …, nor have
experimental observations been reported which would indicate
whether the bifurcation is subcritical or supercritical.

6 Conclusions
Current coaxial elastomer fibers are produced by co-extrusion of

the core, dielectric, and outer electrode so there exists the possibility
of local variations in the radii of these components as well as non-
perfect axial symmetry of the fibers. No direct evidence for the for-
mation of any voltage-induced bifurcations has been observed,
although as discussed below the electrical breakdown which termi-
nates the actuation strains in Ref. [6] may be triggered by the insta-
bility. Neither has any crease-like post-bifurcation associated with
short wavelength surface modes yet been observed for the fibers.
However, the analysis presented in this work suggests that they
may exist, although at electric fields not hitherto reached because
electrical breakdown provoked by other effects has intervened. Of
particular interest, since complex shapes can be produced by 3D
printing, is the possible occurrence of instabilities in lengths of
fibers bent prior to the application of a voltage. In a bent coaxial
fiber, there will be azimuthal variations in the thickness of the
dielectric and consequently non-axisymmetric electric fields.

The behavior of the coaxial fibers tested in Ref. [6] compared
with the theoretical predictions for their perfect counterparts in
Fig. 2(b) reveals that noticeably larger axial strains than those pre-
dicted begin to appear at voltages which are roughly one half of the
voltage predicted for the onset of instability. It is possible that the
larger strains might be due to the manufacturing imperfections
referred to above, particularly if the critical bifurcation turns out
to be subcritical, which has yet to be established except for the
short wavelength modes. If bifurcation for the modes with m= 1,
2, 3, … is also subcritical, then it is possible, and perhaps even
likely, that the maximum voltages achieved in the experiments in
Ref. [6] could be due to the instabilities investigated in this paper.
In the experiments, the maximum voltage attained is associated
by electrical breakdown occurring in the range between 50% and
80% of the bifurcation prediction (cf., Fig. 2(b)). Imperfections in
the fiber could be responsible for prematurely triggering the insta-
bility which in turn would bring about the electrical breakdown.

Acknowledgment
JWH is indebted to A. David Wunch for discussion on issues

related to the electro-statics and for calling his attention to
Ref. [8]. This research was supported by NSF through the
Harvard University Materials Research Science and Engineering
Center DMR-2011754.

Conflict of Interest
There are no conflicts of interest.

Data Availability Statement
The datasets generated and supporting the findings of this article

are obtained from the corresponding author upon reasonable
request. The authors attest that all data for this study are included
in the paper.

References
[1] Pelrine, R., Kornbluh, R., Pei, Q., and Joseph, J., 2000, “High-Speed Electrically

Actuated Elastomers With Strain Greater Than 100,” Science, 287(5454),
pp. 836–839.

[2] Suo, Z., 2010, “Theory of Dielectric Elastomers,” Acta Mech. Sol. Sin., 28(6),
pp. 549–578.

[3] Zhao, H., Hussain, A. M., Dudula, M., Vogt, D. M., Wood, R., and Clarke, D. R.,
2018, “Compact Dielectric Elastomer Linear Actuators,” Adv. Funct. Mater.,
28(42), p. 1804828.

[4] Carpi, F., and De Rossi, D., 2004, “Dielectric Elastomer Cylindrical
Actuators: Electromechanical Modelling and Experimental Evaluation,” Mater.
Sci. Eng. C, 24(4), pp. 555–562.

[5] Zhu, J., Stoyanov, H., Kofod, G., and Suo, Z., 2010, “Large Deformation and
Electromechanical Instability of a Dielectric Elastomer Tube Actuator,”
J. Appl. Phys., 108(7), p. 074113.

[6] Chortos, A., Mao, J., Mueller, J., Hajiesmaili, E., Lewis, J. A., and Clarke, D. R.,
in press, “Printing Reconfigurable Bundles of Dielectric Elastomer Fibers,” Adv.
Funct. Mater.

[7] Hutchinson, J. W., in press, “Surface Instabilities of Constrained Elastomeric
Layers Subject to Electro-Static Stressing.”

[8] Bewley, L. V., 1948, Two Dimensional Fields in Electrical Engineering,
Macmillan, New York.

[9] Hutchinson, J. W., 2020, “Instabilities of Embedded Cylindrical Inclusions
Undergoing Isotropic Swelling or Growth,” Extreme Mech. Lett., 40, pp. 1–6.

[10] Kofod, G., Kornbluh, R., Pelrine, R., and Sommer-Larson, P., 2003, “Actuation
Response of Polyacrylate Dielectric Elastomers,” J. Intell. Mater. Syst. Struct.,
14(12).

[11] Wang, Q., Tahir, M., Zhang, L., and Zhao, X., 2011, “Electro-Creasing Instability
in Deformed Polymer Experiments and Theory,” Soft Matter, 7(14), pp. 6583–
6589.

[12] Biot, M. A., 1963, “Surface Instability of Rubber in Compression,” Appl. Sci.
Res., 12(2), pp. 168–182.

Journal of Applied Mechanics JUNE 2021, Vol. 88 / 061005-9

http://dx.doi.org/10.1126/science.287.5454.836
http://dx.doi.org/10.1016/S0894-9166(11)60004-9
http://dx.doi.org/10.1002/adfm.201804328
http://dx.doi.org/10.1016/j.msec.2004.02.005
http://dx.doi.org/10.1016/j.msec.2004.02.005
http://dx.doi.org/10.1063/1.3490186
http://dx.doi.org/10.1002/adfm.201907375
http://dx.doi.org/10.1002/adfm.201907375
http://dx.doi.org/10.1016/j.eml.2020.100879
http://dx.doi.org/10.1177/104538903039260
http://dx.doi.org/10.1039/C1SM05645J
http://dx.doi.org/10.1007/BF03184638
http://dx.doi.org/10.1007/BF03184638

	1  Introduction
	2  The Stresses and Deformation of the Perfectly Concentric Three-Component Fiber
	3  Non-Axisymmetric Bifurcation From the Concentric State for the Three-Component Fiber
	3.1  Solution Procedure
	3.2  Critical Voltage for Three-Component Fibers

	4  Critical Voltage for Two-Component Coaxial Fibers
	5  A Dielectric Layer Clamped on the Bottom and Free at the Top
	6  Conclusions
	 Acknowledgment
	 Conflict of Interest
	 Data Availability Statement
	 References

